远距离激光挠度/位移测量系统
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
挠度或位移的测量可以用传统方法也可以使用光学手段。相比而言光学方法具有以下几个优点:非接触、高精度、快速反应并且更为精确。本文描述了一种能够测量远距离物体的挠度或者位移的测量系统。其基本原理为:采用激光水准仪作为光源,激光光束首先经过校准,然后聚焦在固定于被测物体上的测量系统上来实现远距离精确测量。激光光源和测量系统之间的相对位移反应出了物体的挠度或者位移。测量系统分为两个部分:一、无线通信发射机,由传感器、单片机系统和无线数字通信系统组成;二、无线通信接收机,由无线数字通信系统、数据处理系统和显示控制系统组成。软件部分包括线阵CCD数据采集程序、单片机系统扩展数据存储器存取程序、无线数字通信的实现、位移挠度测量数据的处理和显示等。
     测量系统最主要的创新点在于将远距离无线数字通信应用到光电检测系统中以提高信号传输的稳定性、安全性,避免远距离信号线布线的麻烦,提高系统的实用性。测量系统还使用单片机和8位数码管结合的方式进行数据计算和显示,为仪器的小型化和简单化打下基础。由于该测量系统在具有高精度、高准确度的特点同时结构简单、成本低廉,可以预期将有良好的应用前景。
     本文详细介绍了测量系统的结构、工作原理、硬件设计和软件开发,给出了重要部分的电路图和程序流程图。在20米的距离上通过实验验证了系统的测量效果,得出了系统的性能参数:系统测量频率29Hz,适于测量静态挠度和位移;通过对多个位移值的重复测量,系统绝对误差值小于±0.07mm,测量标准差小于0.05mm;通过4小时连续测量对同一点测量系统标准差为0.0134mm。同时在实践的基础上针对系统的测量频率及测量精度的提高提出了改进意见。
Displacement can be measured by traditional mechanical methods and optical means. Optical displacement measuring systems have the advantages of nor-contact, high resolution, fast response, and more importantly being remote. We describe in this paper a laser-based displacement measuring system, which can detect displacement or deflection of an object in a long distance. In order to achieve a remote measurement, the laser beam is first collimated, and directed to the detector array, which is attached to the object to be measured. The relative movement between the laser source and the detector will provide a measure to the displacement or deflection of the object. The system consists of a laser source and a linear detector system. And the linear detector system include two parts, one part is measuring transmitter which consists a detector, a MCU system and a wireless transmission module, the other one is data receiving system which consists a wireless transmission module, a data processing system, a module used to display and control. The software consists of linear CCD data collection, memorizer management, wireless digital communication, measurement data processing and data display.
     The most important feature of the system is the using of long distance wireless digital signal and data transmission which increases the stability and practicability of the system. MCU and LED have also been investigated, which makes the system more convenient and small. The features of the current displacement measuring system include high resolution and accuracy while still keeping a relatively simple structure and a low cost. Due to its features, perspective of its appreciation should be wide.Experimental results are presented and the structure, working principle, hardware and software design are also introduced in detail. The measurement effect is proved by experiment. The measuring of the system is 29Hz. The error of the system is between -0.07mm to 0.07mm and the standard error is less than 0.05mm. Simultaneity, the method in order to improve the measuring frequency and precision of the system is also introduced.
引文
[1]Djordjevich A, Structural deflection measurement. Journal of Strain Analysis for Engineering Design,2003.37~44
    [2]秦权,桥梁结构的健康监测,中国公路学报,2000,13(3):37~42
    [3]徐日旭,王博仪,赵家奎,桥梁检测,人民交通出版社,1992
    [4]Samuel Vurpillot, Daniele Inaudi, Antonio Scano. Mathematical model for the determination of the vertical displacement from internal horizontal measurements of a bridge. Smart Structure and Materials, 1996.46~53
    [5]李小英,桥式起重机主梁变形原因与修复,有色设备,2004,(2):41~42
    [6]侯绯,桥式起重机主梁挠度激光测试技术的研究:[硕士学位论文],哈尔滨;哈尔滨工业大学,2005
    [7]徐亚力,桥梁挠度测量方法的探讨,铁路建筑,1996,12(6):32~33
    [8]赵贤森,经纬仪原理使用与检定,北京:中国计量出版社,1993
    [9]侯兴民,杨学山,黄侨,利用倾角仪测量桥梁的挠度,Bridge Consnllcfion,2004,2:69~72
    [10]Hou Xingmin, Yang Xueshan, Huang Qiao. Using inclinometers to measure bridge deflection. Journal of Bridge Engineering,2005.564~569
    [11]Dong-June Choi, hun-Taek Rim, oohyun Kim, Yoon Keun Kwak. High sensitivity inductive sensing system for position measurement, Instrumentation and Measurement Technology Conference. Proceedings of the 17th IEEE,2000.595~599
    [12]Shin Seung Mok, Kim Sang Song, Jeon Yang Bae, Kim Choon Sik. Development of precise deflection measurement system for civil structures and its application. ICCAS 2002, International Conference on Control, Automation and Systems,2001.1931~1934
    [13]杨志文,董静,ZNC-1型智能桥梁挠度测试仪,自动化仪表1996,17(1):9~12
    [14]D V Jauregui, K R White, C B Woodward, K R Leitch. Noncontact photogrammetric measurement of vertical bridge deflection. Journal of Bridge Engineering,2003.212~222
    [15]T C Hutchinson, F Kuester. Monitoring global earthquake-induced demands using vision-based sensors. IEEE Transaction on Instrumentation andMeasurement,2004.31~36
    [16]C Forno, S Brown, R A Hunt, A M Kearney, S Oldfield. Measurement of deformation of a bridge by moire photography and photogrammetry. Strain, 1991.83~87
    [17]Jauregui David V, White Kenneth R, Woodward Clinton B, Leitch Kenneth R. Noncontact photogrammetric measurement of vertical bridge deflection. Journal of Bridge Engineering,2003.212~222
    [18]Yoneyama S, Kitagawa A, Iwata S, Tani K. Bridge deflection measurement using digital image correlation. Proceedings of the 2006 SEM Annual Conference and Exposition on Experimental and Applied Mechanics 2006,2006.1720-1729
    [19]Jauregui David V, White Kenneth R, Woodward Clinton B. Noncontact photogrammetric measurement of vertical bridge deflection. Journal of Bridge Engineering,2003.212~222
    [20]孙路,丁杰雄,CCD挠度测量系统的研究,Practical MeasurementTechnology,2002,1(1):6~11
    [21]陈仁文,孙亚飞,陈勇,一种利用光反射原理测量小位移的新方法,Spectroscopy and Special Analysis,2004,24(1):21~24
    [22]Ming-Chih Weng, Xiaodong Lu, Trumper D L. Vibration control of flexible beams using sensor averaging and actuator averaging methods. IEEE Transactions on Control Systems Technology,2002.568~577
    [23]Trumper David L, Weng Ming-chih, Ritter Robert J. Magnetic suspension and vibration control of beams for non-contact processing. IEEE Conference on Control Applications - Proceedings, 1999.551~557
    [24]Vogel F, Toulouse B. Alow-cost medium-resolution rangefinder based on the self~mixing effect in a VCSEL. IEEE Transactions on Instrumentation and Measurement,2005.428~431
    [25]Morgan C, Bordovsky M, White I, Griffiths R. Noncontact vibration sensors based on current modulated external cavity semiconductor lasers. IEE Proceedings-Optoelectronics,2000.413~416
    [26]Kury P, Zahl P, Horn-von Hoegen. Precise calibration for surface stress induced optical deflection measurements. Review of Scientific Instruments, 2004.2211-2212
    [27]Yoneyama S, Kitagwa A, Kitamura K, Kikuta H. Deflection distribution measurement of steel structure using digital image correlation. Proceedings of SPIE -The International Society for Optical Engineering, Optical Diagnostics,2005.1~8
    [28]周忠漠等,GPS卫星测量原理与应用,北京:北京测绘出版社,1993
    [29]Tse C M, Baki Iz H. Deflection of the vertical components from GPS and precise leveling measurements in Hong Kong. Journal of Surveying Engineering, 2006.97~100
    [30]YANG Jian-chun, CHEN Wei-min. Connected Pipe Opto-electronic Deflection Measurement System and the Application in Dafoshi Yangtze River Bridge. Journal of Optoelectronics·laser,2006.343~346
    [31]P A. Fuchs, G. A. Washer S. B. Chase and M. Moore. Laser-based instrumentation for bridge load testing. Journal of Performance of Constructed Facilities,2004.213-218
    [32]C. Frohlich, M. Mettenleiter, F. Hartl, G. Dalton and D. Hines. Imaging laser radar for 3-D modeling of real world environments. Sensor Review,2000.273~281
    [33]Jiang Desheng, Sun Dongya, Liang Lei. Slab deflection measurement technique based on fiber optic gyro. Proceedings of SPIE - The International Society for Optical Engineering,2000.141~144
    [34]Cai Desuo, Ding Tao, Cai Shunde, Wei Yan, Li Rong. Fiber optic deflection measurement of high concrete-faced rockfill dam. Proceedings of the 4th International Conference on Dam Engineering - New Developments in Dam Engineering, Proceedings of the 4th International Conference on Dam Engineering - New Developments in Dam Engineering,2004.155~161
    [35]张伟刚,董新永,赵春柳等,利用光纤光栅在双侧悬臂梁中的啁啾实现对挠度和应力的传感研究,光学学报,2001,21(11):1309~1312
    [36]王跃,张伟刚,杨翔鹏等,光纤布拉格光栅的半金属管封装及挠度实验研究,传感技术学报,2002,(3):203~207
    [37]张春满,曹文,程振西.超声波在液位测量中的应用,大学物理实验,1995,3: 21—22
    [38]胡德钧,杨春宁,叶锦亭,基于光纤光栅的标准梁应变分析与测量,光电子·激光,2001,12(11):1152~1155
    [39]侯绯,激光法测量桥、门式起重机主梁挠度,铁道货运,2004,3:30~32.
    [40]Yoshida Hirotomo, Tanabe Tadaaki, Umehara Hidetaka. Development of the system to measure three-dimensional deflection of large concrete structures using a laser diode and a quadrant pin photo diode. Doboku Gakkai Rombun-Hokokushu/Proceedings of the Japan Society of Civil Engineers,1988.105-113
    [41]刘念东,朱永,陈伟民,激光挠度、位移测量系统的研究与开发,LaserJournal,2001,22(6):49~50
    [42]Xu Guanyao, Sun Hongcai, Xu Yuequn. The Measuring System of Dynamic Deflection of Bridges. Proceedings of the International Symposium on Test and Measurement,2003.3551~3553
    [43]Wang Chunyu, Ding Jiexiong, Wen Ji. A CCD measurement system for the deflection of truss. Journal of University of Electronic Science and Technology of China,2001.629~32
    [44]卞春江,张天宏,邓志伟等,面向旋转构件的高速无线数据采集系统,Journal ofTransducer Technolog,2004,23(11):53~55
    [45]夏秀兰,龚正烈,半导体激光器光束的准直,光电子·激光,1996,7(5):283~287
    [46]郁道银,谈恒英,工程光学,北京:机械工业出版社,2002:142~148
    [47]徐学文,管树国,几种桥梁挠度测量方法的比较,林业科技情报,2006,37(2):85~85
    [48]蔡文贵,李永远,许振华, CCD技术及应用,北京:北京电子工业出版社,1992:1~54
    [49]马荣贵,宋宏勋,CCD位移传感器结构参量计算方法,Acta PhotonicaSinica,2001,30(2):225~227

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700