铁—邻菲咯啉类金属配合物与DNA作用机理及DNA荧光光纤传感器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脱氧核糖核酸(DNA)是生命的最基本物质之一,广泛存在于各种生物体内,是储存、复制和传递遗传信息等生命过程的主要物质基础。金属离子及其配合物在许多生命过程中起着核心作用,是核酸等生物大分子研究的重要探针。本文以研究DNA传感器为目的,合成和表征了两种铁-邻菲咯啉类金属配合物;用荧光光谱法、紫外.可见光谱法、电化学法研究了它们与DNA的相互作用;采用共键合法对光纤表面进行了修饰,分别以这两种金属配合物为杂交指示剂制成了DNA荧光光纤传感器,具体工作如下:
     (1)以邻菲咯啉及其中性衍生物咪唑并[f]邻菲咯啉和对羟基苯并咪哗并[f]邻菲咯啉为配体,合成了[Fe(phen)_2IP]·3ClO_4·2H_2O(phen=邻菲咯啉,IP=咪唑并[f]邻菲咯啉)和[Fe(phen)_2PHPIP]·3ClO_4·2H_2O(phen=邻菲咯啉,PHPIP=对羟基苯并咪哗[f]邻菲咯啉)两种金属配合物;通过配合物的红外光谱(IR)、元素分析(EA)测定,确定了配合物的分子组成;用3-D荧光光谱验证了它们的荧光特性。
     (2)利用荧光光谱法、紫外-可见光谱法和电化学法研究了[Fe(phen)_2IP]~(3+)和[Fe(phen)_2PHPIP]~(3+)与鲑鱼精DNA的相互作用,确定了配合物与DNA的作用方,测定了结合比和结合常数。实验结果表明,[Fe(phen)_2IP]~(3+)与DNA的作用方式嵌插结合,结合比为1:1,结合常数为4.00×102L·mol~(-1)。[Fe(phen)_2PHPIP]~(3+) DNA的作用方式也为嵌插结合,结合比为1:2,结合常数为1.02×103L0.5·mol-0.5。
     (3)对光纤表面进行了修饰,用共价键合法制备了DNA修饰石英光纤,分别以[Fe(phen)_2IP]~(3+)和[Fe(phen)_2PHPIP]~(3+)为杂交指示剂制成了DNA荧光光纤传器,分别用它们检测了与固定光纤上的探针DNA互补的靶DNA。实验表明,以[Fe(phen)_2IP]~(3+)为杂交指示剂对互补DNA进行检测,检测的线性范围为1.25×10-8 mol-L-1~1.50×10-7 mol·L~(-1) ,检测限为1.35×10-9 mol·L~(-1)。以[Fe(phen)_2PHPIP]~(3+)为杂交指示剂对互补DNA进行检测,检测的线性范围为4.98×10-7 mol·L~(-1)~4.88×10-6 mol·L~(-1) ,检测限为1.08×10-7 mol·L~(-1)。
Deoxyribonucleic acid (DNA) is the basic material in the most of lives, which exits in all kinds of organism extensively, and it is the main material base of some lives course, such as storing, duplicating and transmitting hereditary information, etc.. Metal complexes play a key role in the course of a lot of lives, and they are important probes for studying some molecular such as nucleic acid. To study DNA biosensor, two 1,10-phenanthroline complexes of ferrum(III) were synthesized and characterized. The interactions between the complexes and salmon sperm DNA were studied by fluorescence spectrum, UV-Vis spectrum and electrochemical methods. With two 1,10-phenanthroline complexes of ferrum(III) as the hybridization indicators, the fluorescence fiber-optic DNA biosensors with covalently immobilized DNA modified optical fiber have been prepared.
     (1) With 1,10-phenanthroline and 1,10-phenanthroline ramification using as ligands, two complexes imidazo [f]1,10-phenanthroline ferrum(III) ([Fe(phen)2 IP]·3ClO4·2H2O) and p-Hydroxyphenylimidazo [f] 1,10-phenanthroline ferrum(III) ([Fe(phen)2 PHPIP]·3ClO4·2H2O) have been synthesized successfully. The structures of these novel complexes have been determined by means of IR and EA, respectively. The fluorescent property of the two complexes were demonstrated by 3-D fluorescence spectrum.
     (2) The interactions mechanism between two metal complexes and salmon sperm DNA have been studied by means of fluorescence spectrum, UV-Vis spectrum and electrochemical methods, respectively. The results show that the interaction mode between [Fe(phen)_2IP]~(3+) and DNA is intercalation, binding ratio is 1:1 and binding constant is 4.00×102 L·mol-1. The interaction mode between [Fe(phen)_2PHPIP]~(3+) and DNA is intercalation too, binding ratio is 1:2 and binding constant is 1.02×103 L0.5·mor-0.5。
     (3) With the two complexes as the hybridization indicators respectively, the fluorescence fiber-optic DNA biosensors with covalently immobilized DNA modified optical fiber have been prepared. The fluorescence fiber-optic DNA biosensors can be used to the recognition of complementary ssDNA segment. Using [Fe(phen)_2IP]~(3+) as hybridization indicator, the complementary ssDNA could be quantified over the ranges from 1.25×10-8mol·L~(-1) to 1.50×l0-7 mol·L~(-1) and a detection limit of 1.35×10-9 mol·L~(-1) . Using [Fe(phen)_2PHPIP]~(3+) as hybridization indicator, the complementary ssDNA could be quantified over the ranges from 4.98×10-7 mol·L~(-1) to 4.88×10-6 mol·L~(-1) and a detection limit of 1.08x 10-7 mol·L~(-1) .
引文
[1] Watson J. D., Crick F. H. C., Genetical implication of the structure of deoxyribonucleic acid [J], Nature, 1954, 171: 964-967
    [2]宋玉民,康敬万,高锦章,钴(Ⅲ)配合物与DNA作用的研究[J],无机化学学报,2000,16:53-57
    [3] Babkina S. S., Ulakhovich N. A., Zyavkina Yu. I., Amperometric DNA biosensor for the determination of auto-antibodies using DNA interaction with Pt(II) complex[J], Anal. Chim. Acta, 2004, 502: 23-30
    [4] Pang D. W., Abruňa H. D., Interactions of benzyl viologen with surface-bound single- and double-stranded DNA[J], Anal. Chem., 2002, 72: 4700-4706
    [5]张蓉颖,庞代文,蔡汝秀,DNA与其靶向分子相互作用研究进展[J],高等学校化学学报,1999,20,8:1210-1217
    [6] Erdem A., Ozsoz M., Electrochemical DNA biosensors based on DNA-drug interactions[J], Electronanal., 2002, 14(14): 965-974
    [7]李红,计亮年,李伟善等,脱氧核糖核酸电化学研究进展[J],无机化学学报,2003,19(3):225-231
    [8] Sigman D. S., Mazumder A., Perrin D. M., Chemical nucleases[J], Chem. Rev., 1993, 93: 2295-2316
    [9] Atsuka M., Martin T., Man-designed bleomycin with altered sequence specificity in DNA cleavage[J], J. AM. Chem. Soc., 1990, 112: 838-854
    [10] Fitzsimons M. P., Barton J. K., Design of a Synthetic Nuclease: DNA hydrolysis by a Zinc-Binding peptide tethered to a rhodium intercalator[J], J. Am. Chem. Soc., 1997, 119: 3379-3380
    [11] Krotz A. H., Kuo L. Y., Shields T. P., et.al, DNA recognition by rhodium(Ⅲ) polyamine intercalators: considerations of hydrogen binding and van der Waals interactions[J], J. Am. Chem. Soc., 1993, 115: 3877-3882
    [12] Matews B. M., Structural basis of the action of thermolysin and related zinic peptidases[J], Acc. Chem. Res., 1988, 21: 333-340
    [13] Fisher J. F., Aristoff P. A., The chemistry of DNA modification by antitumor antibiotics, Prog. Drug Res., 1988, 32: 411-498
    [14]杨培慧,苏章益,陈晓翔,EB荧光探针表征阿霉素及其转铁蛋白复合物与DNA的相互作用[J],药物分析杂志,2006,26(8):1124-1127
    [15]李来生,黄志兵,王宇晓等,荧光光谱法研究对-二甲氨甲基-杯[8]芳烃与DNA相互作用[J],光谱学与光谱分析,2005,25(7):1088-1091
    [16]顾晓怡,姜藻,何华等,荧光光谱法测定外周血DNA对恶性肿瘤的筛选价值[J],现代医学,2006,34(3):166-169
    [17]卞伟,魏玉霞,卫艳丽等,四溴荧光素与DNA作用的研究[J],光谱学与光谱分析,2006, 26(1):125-129
    [18]苏界殊,龙云飞,周梅芳等,灿烂绿于DNA作用的紫外-可见光谱的特性及其分析应用[J],光谱实验室,2004,21(1):160-162
    [19]徐华,接贵芬,牛淑妍等,臧红T与DNA相互作用的电化学及紫外-可见光谱研究[J],青岛科技大学学报,2004,25(5):385-389
    [20]张朝洪,臧树良,耿兵等,紫外和圆二色谱法研究丁基锡化合物与牛血清蛋白的相互作用[J],分析科学学报,2005,21(2):179-181
    [21]刘劲刚,计亮年,多吡啶钌配合物作为DNA结构探针的研究,无机化学学报[J],2000,16(2):195-203
    [22]计亮年,张黔玲,巢晖,多吡啶配合物在大分子DNA中的功能及其应用前景[J],科学通报,2001,46(6):451-460
    [23]王树玲,于俊生,表面增强拉曼光谱研究小檗碱与DNA的相互作用[J],高等学校化学学报,2002,23(9):1676-1679
    [24]方晔,钟发平,王霆等,双螺旋DNA在银和金电极上的现场傅立叶表面增强拉曼光谱[J],物理化学学报,11(9):854-854
    [25] Zhao G. Ch., Zhu J. J., Zhang J. J., et.al, Voltammetric studies of the interaction of methylene blue with DNA by means ofβ-cyclodextrin[J], Anal. Chim. Acta, 1999, 934: 337-344
    [26] Hason S., Dvorak J., Jelen F., et.al., Interaction of DNA with echinomycin at the mercury electrode surface as detected by impedance and chronopotentiometric measurements[J], Talanta, 2002, 56: 905-913
    [27] Wang J., Ozsoz M., Cai X., et.al, Interactions of antitumor drug daunomycin with DNA in solution and at the surface[J], Bioelectochem. Bioeng., 1998, 45: 33-40
    [28]周丹,王延梅,毛细管电泳无胶筛分介质分离DNA的机理[J],化学进展,2006,18(7):987-994
    [29]万荣,王宁,赵刚等,丝组二肽所含基因在其切割DNA反应中的作用[J],高等学校化学学报,2000,21(2):1864-1866
    [30] Xu X. H., Bard A. J., Immobilization and hybridization of DNA on an aluminum(Ⅲ) alkanebisphosphonate thin film with electrogenerated chemiluminescent detection[J], J. Am. Chem. Soc., 1995, 117(9): 2627-2631
    [31] Vo-Dinh T., Houck K., Stokes D. L., Surface-enhanced raman gene probes[J], Anal. Chem.,1994, 66(20): 3379-3383
    [32]刘超,周雪芳,徐远盛,光学DNA生物传感器,光电子技术与信息[J],2002,15:27-30
    [33] Pazos M. J., Alfonso A., Vieytes M. R., et.al, Kinetic Analysis of the interaction between yessotoxin and analogues and immobilized phosphodiesterases using a resonant mirror optical biosensor[J], Chem. Res. Toxicol., 2005, 18: 1155-1160
    [34] Kikuchi Y., Uno S., Nanami M., et.al, Determination of concent ration and binding affinity of antibody fragments by use of surface plasmon resonance[J], J. Biosci. Bioeng., 2005, 100: 311-317
    [35] Drummond T. G., Hill M. G., Barton J. K., Electrochemical DNA sensors[J], Nat. Biotechnol., 2003, 21: 1192-1199
    [36] Palecek E., Fojta M., Electrochemical DNA sensors [M], Bioelectronics. Willner I., Katz E., (Eds.), Wiley-VCH, Weinheim, 2005
    [37] Bagni G., Osella D., Sturchio E., et.al, Deoxyribonucleic acid (DNA) biosensors for environmental risk assessment and drug studies[J], Anal. Chim. Acta, 2006, 573-574: 81-89
    [38] Palecek E., Wang J., Scheler F., (Eds.), Perspectives in Bioanalysis[M], volume 1, Elsevier Inc., 2005
    [39] Dhar S., Nethaji M., Chakravarty A. R., Synthesis, crystal structure and photo-induced DNA cleavage activity of ternary copper(Ⅱ) complexes of NSO-donor Schiff bases and NN-donor heterocyclic ligands[J], Inorg. Chim. Acta., 2005, 358: 2437-2444
    [40] Ito K., Hashimoto K., Ishimori Y., Quantitative analysis for solid-phase hybridization reaction and binding reaction of DNA binder to hybrids using a quartz crystal microbalance[J], Anal. Chim. Acta, 1996, 327: 29-35
    [41] Su H., Williams P., Thompson M., Platinum anticancer drug binding to DNA detected by thickness-shear-mode acoustic wave sensor[J], Anal. Chem., 1995, 67 (5): 1010-1013
    [42] Su H., Kallury K. M. R., Thompson M., et.al, Interfacial nucleic acid hybridization studied by random primer 32P labeling and liquid-phase acoustic network analysis[J], Anal. Chem., 1994, 66(6): 769-777
    [43]田艳慧,童朝阳,刘冰等,压电基因传感器检测芽孢杆菌靶序列研究[J],传感器与微系统,2006,25:34-36
    [44]刘仲明,刘芳,郑文岭等,压电石英晶体DNA传感器的性能研究[J],北京生物医学工程,2002,21:137-140
    [45] Ketterer T., Stadler H., Rickert J., et al., Detection of oligonucleotide sequences with quartz crystal oscillators[J], Sensors and Actuators B, 2000, 65: 73-75
    [46] Sara T., kMarco M., Leonardo B., et.al., Coupling of a DNA piezoelectric biosensor and polymerase chain reaction to detect apolipoprotein E polymorphosis[J], Biosensors &Bioelectronics, 2000, 15: 363-370
    [47]黄琛,黄智伟,光纤DNA生物传感器的研究动向[J],传感器技术,2002,21(2):59-62
    [48] Piunno P. A. E., Krull U. J., Hudson R. H. E., et.al, Fiber optic biosensor for fluorimetric detection of DNA hybridization, Anal. Chim. Acta, 1994, 288: 205-214
    [49] Piunno P. A. E. and Krull U. J., Fiberloptic DNA sensor for fluorometric nucleic acid determination[J], Anal. Chem., 1995, 67(15): 2635-2643
    [50] Uddin A. H., Piunno P. A. E., Hudson R. H. E., et.al, A fiber optic biosensor for fluorimetric detection of triple-helical DNA[J], Nucleic Acids Research, 1997, 25(20): 4139-4146
    [51] Abel A. P., Weller M. G., Duveneck G. L., et.al, Fiber-optic evanescent wave biosensor for the detection of oligonucleotides[J], Anal. Chem., 1996, 68(17): 2905-2912
    [52] Kleinjung F., Bier F. F., Warsinke A., et.al, Fibre-optic genosensor for specific determination of femtomolar DNA oligomers [J], Anal. Chim. Acta, 1997, 350(1-2):51-58
    [53] Graham C. R., Leslie D. and Squirrell D. J., Gene probe assays on a fibre-optic evanescent wave biosensor[J], Biosens. Bioelectron., 1992, 7(7): 487-493
    [54] Healey B. G., Matson R. S. and Walt D. R., Fiberoptic DNA sensor array capable of detecting point mutations[J], Anal. Biochem., 1997, 251(2): 270-279
    [55] Pilevar S., Tapered optical fiber sensor using near-infrared fluorophores to assay hybridization, Anal. Chem. 1998, 70(10): 2031-2037
    [56] Liu X. J. and Tan W. H., A fiber-optic evanescent wave DNA biosensor based on novel molecular beacons, Anal. Chem., 1999, 71(22): 5054-5059
    [57]张国军,周宜开,庞代文,光纤DNA传感器[J],国外医学分子生物学分册,2000,22(6):337-341
    [58] Miller M. M., Sheehan P. E., Edelstein R. L., et.al., A DNA array sensor utilizing magnetic microbeads and magnetoelectronic detection[J], J. Magn. Mater, 2001, 225: 138-144
    [59] Cai H., Cao X., Jiang Y., et al., Carbon nanotube-enhanced electrochemical DNA biosensor for DNA hybridization detection[J], Anal. Bioanal. Chem., 2003, 375: 287-293
    [60] Fan C., Plaxco K. W., Heeger A. J., Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA[J], Proc. Nat. Acad. Sci. USA, 2003, 100: 9134-9137
    [61] Gooding J. J., Chou A., Mearns F. J., et al., The ion-gating effect: using a change in flexibility to allow label free electrochemical detection of DNA hybridization[J], Chem. Commun., 2003, 1938-1939
    [62] Masarik M., Kizek R., Kramer K. J., et.al., Application of avidin-biotin technology and adsorptive transfer stripping square-wave voltammetry for detection of DNA hybridization andavidin in transgenic avidin maize[J], Anal. Chem., 2003, 75: 2663-2669
    [63] Wang J., Rivas G., Parrado C., et.al, Electrochemical bisensor for detection DNA sequence from the pathogenic protozoan Cryptosporidium[J], Talanta, 1997, 44: 2003-2010
    [64] Merrazza G., Chianella I., Mascini M., Disposable DNA electrochemical biosensors for environment monitoring [J], Anal. Chim. Acta, 1999, 387: 297-307
    [65] Miroslav F., Veronika S., Emil P., et.al, A superooiled DNA-modifiedmercury electrode-based biosensor for the detection of DNA strand cleaving agents[J], Talanta, 1998, 46: 155-161
    [66] Wang J., Rivas G., Cai X. H., Sequence-specific electrochemical biosensing of M. tubeculosis DNA[J], Anal. Chim. Acta, 1997, 337(1): 41-48
    [67] Zhou L., Rusing J. F., Detection of chemically induced DNA damage in layered filmsby catalytic sequare ware voltammetry using Ru(bpy)32+[J], Anal. Chem., 2001, 73: 4780-4786
    [68] Zhou Y. J., Estavillo C., Rusling J. F., Toxicity screnning by electeochemical detection of DNA damage by metabolites generated in situ in ultrathin DNA-enzyme films[J], J. Am. Chem. Soc., 2003, 125: 1431-1436
    [69] Wang J., Rivas G., Cai X. H., et.al, Detection of point mutation in the p53 gene using a peptide nucleic acid biosensor[J], Anal.Chim. Acta, 1993, 344: 111-118
    [70] Wang J., Palecek E., Nielsen P. E., et.al, Peptide nucleic acid probes for sequence-specific DNA biosensors[J], J. Am. Chem. Soc., 1996, 118: 7667-7670
    [71] Palecek E., Fojta M., Tomschik M., et.al, Electrochemical biosensors for DNA hybridization and DNA damage[J], Biosen. and Bioelctron., 1998, 13: 621-628
    [72] Brabec V., DNA sensor for the determination of antitumor platinum compounds[J], Electrochim Acta., 2000, 45: 2929-2932
    [73]吴建中,王雷,杨光等,钌多吡啶配合物的合成及结合DNA的研究[J],高等学校化学学报,1996,17(7):1010-1015
    [74]庄惠生,郭春华,陈鹏等,两种新型镍-邻菲咯啉类核酸荧光探针的合成及性质研究[J],化学试剂,2003,25(6):325-328
    [75] Sammes P. C., Yahioglu G., 1,10-phenanthroline: a versatile ligand[J], Chem. Soc. Rev., 1994, 327-334
    [76] Barton J. K., Metals and DNA[J], Science, 1986, 233: 727
    [77] Naing K., Takashani M., Taniguchi M., et.al, Electric dichroism evidence for intercalation of optically active [Ru(bpy)2(phi)]2+ (phi=9,10-phenanthrenequinone diimine, bpy=2,2′-bipyridyl) by DNA[J], Inorg. Chem., 1995, 34: 350-356
    [78] Arounaguiri S., Maiya B. G., Dipyridophenazine complexes of cobalt(Ⅱ) and nickel(Ⅱ) DNA-binding and photocleavage studies[J], Inorg. Chem., 1996, 35: 4267-4270
    [79] Jin L., Yang P., Synthesis and DNA-binding studies of a nickel(Ⅱ) coordination compound[J], Microchem. J., 1998, 58: 144-150
    [80]赵广超,朱俊杰,陈洪渊,电化学诱导咪唑铜配合物断裂DNA的研究[J],高等学校化学学报,2003,24(3):414-418
    [81]鄢远,许金钩,陈国珍,溴化乙锭的三维荧光光谱用于研究DNA构像[J],科学通报,1995,40(18):1664-1666
    [82]刘雪平,冯素玲,潘自红等,溴化乙锭探针研究劳氏青莲与脱氧核糖核酸的相互应用[J],光谱学与光谱分析,2006,26(10):1895-1898
    [83] Long E. C., Barton J. K., On demonstrating DNA interrelation[J], Accounts of Chemical Research, 1990, 23(9): 271-273
    [84] Carter M. T., Rodriguez M., Bard A. J., Voltammetric studies of interaction of metal chelates with DNA 2.Tris-chelated complexes of coblt(III) and iron(II) with 1,10-phenanthroline and 2,2-bipyridine[J], J. Am. Chem .Soc., 1989, 111(24): 8901-8911
    [85]高小霞,电分析化学导论[M],北京:科学出版社,1986,309-313
    [86] Qu F., Li N. Q., Jiang Y. Y., Electrochemical studies of porphyrin interacting with DNA and determination of DNA[J], Anal. Chim. Acta, 1997, 344: 97-104

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700