光纤结构健康监测系统及其传感器网络可靠性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于光纤布拉格光栅(Fiber Bragg Grating, FBG)传感器网络的结构健康监测系统因其突出的优点在土木工程和航空航天领域受到了大家的青睐。但在实际工程应用中,FBG传感器网络通常埋置于结构中,一旦发生故障很难进行更换,从而影响结构健康监测系统的性能。为了解决上述问题,本文研究内容围绕结构健康监测系统及提高系统中光纤传感器网络可靠性的关键技术依次展开,探索提高光纤结构健康监测系统中的损伤识别精度、容错能力及其传感器网络的可靠性方法。
     首先,采用耦合模理论、传输矩阵法、色心模型、有限包层半径布拉格光栅理论,研究了FBG传感器在使用中因疲劳应变、高/低温、紫外线漂白和化学腐蚀等作用性能发生退化的原理,并借助光波导数值分析软件OptiFDTD对FBG传感器性能发生退化时的信号特征进行了分析,为及时准确判别与评估FBG传感器的健康状况提供依据。接着以FBG传感器网络监测飞机机翼盒段试验件上的静态载荷和碳纤维复合材料板试验件上的动态载荷为研究对象,对基于支持向量机算法的结构损伤定位方法进行了研究,重点研究了支持向量机参数优化方法,分别采用网格搜索算法、遗传算法和粒子群优化算法对支持向量机的参数进行优化,并对三种方法的性能进行了分析对比。在以上损伤定位研究的基础上,进一步研究了FBG传感器网络故障情况下如何避免系统性能严重退化,提高结构健康监测系统的可靠性。在FBG传感器网络故障的情况下,研究了通过动态修改支持向量机模型和支持向量机参数来提高损伤定位精度。结果表明:以8个FBG传感器组成的网络为例的静态载荷和动态载荷结构健康监测系统,当网络中1个或2个FBG传感器信号失效时,其识别精度同传感器网络完好时的识别精度保持一致。因此,采用模型重构算法可以显著提高传感器故障时系统的监测精度,提高了结构健康监测系统的可靠性。
     其次,研究了通过优化结构健康监测系统中FBG传感器网络的排布位置提高结构健康监测系统的可靠性。以机翼形状铝合金板试验件为研究对象,以不同FBG传感器数据之间的相关系数为依据,研究采用逐步累积法和支持向量回归机优化FBG传感器的布置位置和数量。首先在监测对象上设置足够多的传感器预布置点,并对被测对象进行加载,获得每个监测点(即传感器预布置点)与所有加载点之间的相关性,然后从所有监测点挑选一个点作为第一个传感器布置点,接着从剩余预布置点中挑选和第一个相关性最小的点作为第二个传感器布置点,依次类推,从剩余预布置点中挑选和已选点相关性均比较小的点作为下一个传感器布置点。每增加一个点需要计算一次采用已选传感器组合进行监测时的系统的性能,以此作为评价所选传感器组合的标准,直至已选传感器的位置和数量满足要求。结果表明:对应于初始布置模式下传感器网络的布置方案,优化后的传感器布置方案可以在保证系统监测精度的情况下采用更少的传感器,采用相同数量的传感器可以获得更高的监测精度。
     接着,研究了通过优化结构健康监测系统中FBG传感器网络的拓扑结构提高结构健康监测系统的可靠性。在传统FBG传感器网络中引入光导开关,并采用图论相关理论建立传感器网络的拓扑模型,当网络中某个传感器或传输光纤发生故障时,通过分析网络模型的邻接矩阵确定光开关切换顺序,从而为网络中依然存活的传感节点重新寻找新的传输路径,使故障对网络中其余传感器的影响减到最小。同时,根据可靠性相关理论,在模型重构算法的基础上,分析对比了传统的光纤传感器网络拓扑结构和引入光导开关后的网络拓扑结构的可靠性,分析结果表明:引入光开关后的网络拓扑结构的可靠性明显高于传统网络拓扑结构的可靠性,单个传感器的失效概率不同,两种网络可靠性差别也不同;当单个元器件的失效概率在0.001和0.01之间变动时,若系统允许距离误差在40mm以内的预测点占总测试数据的比例达到95%,则引入光开关后的FBG传感器网络拓扑结构的失效率降低为传统网络拓扑结构失效率的50%;若系统允许距离误差在40mm以内的预测点占总测试数据的比例达到90%,则引入光开关后的FBG传感器网络的失效率至少可以降低为传统网络拓扑结构失效率的12.5%。
     最后,研究了采用多主体技术提高FBG传感器网络的可靠性。针对FBG传感器网络的结构健康监测系统设计了多主体框架结构、主体的结构形式和功能、主体之间的通信方式和数据融合方式,并结合FBG传感器网络监测飞机机翼盒段试验件上的静态载荷为研究对象,对双主体协作进行了重点研究。首先根据研究的传感器优化排布方法,确定了每个主体内部的传感器数量和排布位置。接着分别研究两个主体均正常和一个主体故障情况下多主体融合结果。当两个主体均完好时,直接采用加权平均法对两个主体的识别结果进行融合;当某个主体发生故障时,故障主体内部首先采用模型重构的方法对失效信号进行补偿,在此基础上再对两个主体的结果进行加权平均,获得最终的识别结果。研究结果表明:采用多主体技术不仅可以显著提高外部载荷位置的预测精度,而且提高了整个系统在故障情况下的预测性能,提高了整个系统的可靠性。
The intelligent structural health monitoring system based on the fiber Bragg grating (FBG)sensor network has been widely used in the civil engineering and aerospace fields because of itsoutstanding advantages. In practical engineering, FBG sensors are usually embedded in thestructure, once the sensing or transmission optical fibers are breakage or invalid, it is difficult torenew the invalid point. Therefore, the performance of the structural health monitoring will beaffected. For solving above problems, the optical fiber structural health monitoring system and thereliability of its sensor network are researched in this paper, the method that how to improve thedamage detection precision, fault-tolerant ability and FBG sensor netwok reliability are explored.
     Firstly, depending on the coupled-mode theory, Transfer matrix, color center model, limitedcladding radius Bragg grating theory, the principle of the performance degradation when the FBGsensor is suffered strain fatigue, high/low temperature, ultraviolet bleaching, chemical corrosionetc. are researched. By virtue of the optical waveguide numerical analysis software OptiFDTD, thesignal characteristic of the main parameters degenerated FBG sensor is analyzed, the resultsprovide a certain reference for judging and assessing the healthy situation of the FBG sensornetwork. Next, with the static load on the typical structure of the plane wing box test pannel andthe dynamic load on the Carbon Fiber composite structure test pannel as subjects seperately, byvirtue of the FBG sensor network signals embeded in the structure, the loading damagelocalization algorithm based on the support vector machine is researched, and the parametersoptimization method of the support vector is studied detailly. The grid search algorithm, geneticalgorithm and particle swarm optimization algorithm are proposed to optimize the mainparameters of the support vector machine, and the performances of the three mathods arecompared in this paper. Depending on the above research method, the reliability method thatpartial FBG sensors are invalid in the structural health monitoring system is researched. Forenhancing the damaging localization precision when the FBG sensors or fiber nodes are invalid inthe network, the model reconstruction which the support vector machine models and parametersare modified dynamically is research. The research results indicate that the proposed modelreconstruction algorithm based on above three damaging localization algorithm can almost keepthe predicting precision when no sensor, one sensor and two sensors are invalid in the structuralhealth monitoring, thus the reliability is improved when there are FBG sensors are invalid in thestructural health monitoring system.
     Secondly, for improving the reliability of the structural health monitoring, the optimumarrangement of the FBG sensor in the aviation structure is researched. The wing shape aluminum alloy test pannel is taken as research object, by virtue of the correlation coefficient betweendifferent FBG sensor data, the gradual accumulation method and support vector machine are usedto optimize the arrangement placement and numbers of the FBG sensors. First of all, enoughpre-arrangement positions are set in the monitored structure, and certain loads are applied on thedifferent positions of the structure. Thus the correlation coefficient between the loading andmonitoring (that is to say sensor pre-arrangement) positions are obtained. Then, one of position ischoiced as the first sensor arrangement position from all of the monitoring position. Next, thesmallest correlation coefficient relative to the first sensor position is choiced as the second sensorarrangement position. And so on, the smaller correlation coefficient relative to the selectedposition is choiced as the next sensor arrangement position. When one sensor arrangementposition is added to the selected sensor combination, the performance of the monitoring system iscomputed by the support vector machine, and the predicting accuracy is considered as theevaluation standard of selected sensor combination, until the positions and the numbers of theselected sensor meet the monitoring requirement. The research results indicate that the optimalarrangement scheme of the FBG sensor network relative to the initial arrangement mode isobtained, and the monitoring system predicting accuracy can be obtained with fewer FBG sensorsin the optimal arrangement scheme. Simultanely, with the same numbers of FBG sensors, theoptimal arrangement scheme can obtain higher monitoring accuracy.
     Thirdly, the high reliability structural health monitoring system based on the optimum FBGsensor network topology is researched. The optical switch is introduced in the traditional network,and the sensor network topological model is built depending on the adjacency matrix in the graphtheory, if there are some sensors or transmitted optical fiber invalid, the adjacency matrix of theFBG sensor network topological model is analyzed to ensure the switch sequence of the opticalswitch, thus the transmission path for the survival sensor node can be obtained again, and theinfluence of the invalid point to the sensor network signals are minimize to the smallest.Meanwhile, depending on the related reliability theory, on the basis of model reconstruction, thereliability of traditional and introducing optical switch FBG sensor network are compared andanalyzed separately. The research results indicate that the reliability of the introducing opticalswitch FBG sensor topology is higher than the traditional one obviously. When the failure rate ofthe single component is diffeent, the reliability of the two network topology is also different.When the single component failure rate change between0.001and0.01, if the ratio that thedistance error between the actual value and predicting value less than or equal to40mm countsdivide total sample counts reachs to95%, the failure rate of the introducing optical switch sensornetwork topology is reduced to50%than the traditional one. If the ratio that the distance error between the actual value and predicting value less than or equal to40mm counts divide totalsample counts reachs to90%, the failure rate of the introducing optical switch sensor network isreduced to12.5%at least than the traditional one.
     Finally, the high reliability FBG sensor network based on multi-agent technique is researched.Not only the multi-agent framework of the structure health monitoring system based on the FBGsensor network is designed, but also the agent’s structure and function, communication mode anddata fusion method between agents are designed, together with the static load on the plane wingbox test pannel as subject,the double agent cooperation is studied. In the first place, depending onthe sensor network optimization method above proposed, the arrangement position and number ofthe FBG sensor network adhered to the structure is determined. Following, the agent fusion resultthat each FBG sensor is in good condition in the agent and partial sensors can’t work as normal orsome sensors signal can’t be acquired in one agent is demonstrated separately. If all of the FBGsensor signals can be acquired correctly in each agent, the weighted average data fusion method isused to fuse the predicting result of the two agents directly for each external loading damageposition. If partial sensor signals can’t be acquired in one agent, at first, the model reconstructionalgorithm above proposed is used to compensate the invalid sensor signals in the faulted agent, onthat basis, the weighted average data fusion method is used to fuse the predicting result of the twoagents for each external loading damage, and the final predicting results are obtained for thestructural health monitoring. The research results indicate that the predicting accuracy of theexternal loading position is not only improved by the multi-agent technique, but also the reliabilityof the structural health monitoring system if partial sensors are invalid in the network is improved.
引文
[1] Hong-Nan Li,Dong-Sheng Li,Gang-Bing Song. Recent applications offiber optic sensors tohealth monitoring in civil engineering. Engineering Structures,2004,26(11):1647~1657.
    [2] Zhi Zhou,Thomas W. Graver, Luke Hsu et al.. Techniques of Advanced FBG sensors:fabrication, demodulation, encapsulation and their application in the structural health monitoringof bridges. Pacific Science Review,2003,5(2):116~121.
    [3] Tan Si-yun,Zhou Sheng-fei,Chun Wan et al.. Research on remote health monitoring systemfor Wuhan Chang Jiang Bridge at Tianxingzhou.Proceedings-International Conference onElectrical and Control Engineering (ICECE2010),2010,1746~1749.
    [4] Alan Baker,Nik Rajic,Claire Davis.Towards a practical structural health monitoringtechnology for patched cracks in aircraft structure.Composites Part A:Applied Science andManufacturing,2008,40(9):1340~1352.
    [5] Mickens T,Schulz M,Sundaresan M et al..Structural Health Monitoring of an AircraftJoint.Mechanical Systems and Signal Processing,2003,17(2):285~303.
    [6] Kim H S,Ghoshal A.Development of embedded sensor models in composite laminates forstructure health monitoring. Proceedings of SPIE-THE International Society for OpticalEngineering,2003,5056:99~110.
    [7]Takeda S,Aoki Y,Ishikawa T et al..Structural health monitoring of composite wing structureduring durability test.Composite Structures,2007,79(1):133~139.
    [8] Todd, Michael D.(Naval Research Lab),Johnson, Gregg A.,Chang, C.C..Real-time girderdeflection reconstruction using a fiber Bragg grating system. Proceedings of SP1E-TheInternational Society for Optical Engineering,2000,4062:1313~1319.
    [9]孙汝蛟.光纤光栅传感技术在桥梁健康监测中的应用研究,[博士学位论文].上海:同济大学,2007.
    [10] M. S. Chueng,G. S. Tadros,T. G. Brown et al..Field Monitoring and Research onPerformance of the Confederation Bridge. Canadian journal of Civil Engineering,1997,24(6):951~962.
    [11]杜立峰,闫志刚.光纤传感技术在结构健康监测系统的应用.徐州工程学院学报,2007,22(4):37~40.
    [12] G. W. Housner,L. A. Bergman,T. K. Caughey et al.. Structural Control:Past, Present, andFuture.Journal of Engineering Mechanics,1997,123(9):890~897.
    [13] N. Hoschke,C. J. Lewis,D. C. Price et al..A Self-organizing Sensing System for StructuralHealth Monitoring of Aerospace Vehicles. Advances in Applied Self-organizingSystems/Advanced Information and Knowledge Processing,2008,Part II,51~76.
    [14] Jinsong Leng,Anand Asundi.Structural health monitoring of smart composite materials byusing EFPI and FBG sensors.Sensors and Actuator,A:physical,2003,103(3):330~340.
    [15] Kirikera Goutham R.,Vishal Shinde,Mark J. Schulz et al..Damage localisation in compositeand metallic structures using a structural neural system and simulated acousticemissions.Mechanical Systems and Signal Processing,2007,21(1):280~297.
    [16]陶宝祺主编.智能材料结构.北京:国防工业出版社,1997:10~120.
    [17] Hong-Nan Li,Dong-Sheng Li,Gang-Bing Song.Recent applications of fiber optic sensorsto health monitoringin civil engineering.Engineering Structures,2004,26(11):1647~1657.
    [18] Zhou J,Zhou Z and Zhang D.Study on strain transfer characteristics of fiber Bragg gratingsensors.Journal of Intelligent Material Systems and Structures,2010,21(11):1117~1122.
    [19] Mieloszyk M.,Krawczuk M.,Zak A. and Ostachowicz W..An adaptive wing for asmall-aircraft application with a configuration of fiber Bragg grating sensors.Smart Materials andStructures,2010,19(8):085009(12pp).
    [20] Tschope C. Wolff M..Statistical classifiers for structural health monitoring.IEEE sensorsJournal,2009,11(9):1567~1576.
    [21] Zaurin Ricardo,Catbas,F. Necat.Structural health monitoring using video stream, influencelines, and statistical analysis.Structural Health Monitoring,2011,10(3):309~332.
    [22]虞和济,陈长征,张胜等著.基于神经网络的智能诊断.北京:冶金工业出版社,2000:43~49.
    [23] Shih-Yu Chu,Shih-Chieh Lo.Application of real-time adaptive identification technique ondamage detection and structural health monitoring.Structural Control and Health Monitoring,2009,16(2):154~77.
    [24]孙即祥,姚伟,滕书华编著.模式识别.北京:国防工业出版社,2009,5.
    [25]Mokhnache L., Kada Ch.,Boubakeur A. et al..Condition monitoring of fuzzy logic systemfor oil insulated transformer diagnosis.International Journal of COMADEM,2005,8(1):13~15.
    [26]Morais Diego Roberto,Rolim Jacqueline Gisele.A hybrid tool for detection of incipient faultsin transformers based on the dissolved gas analysis of insulating oil.IEEE Transactions on PowerDelivery,2006,21(2):673~680.
    [27] Liu Sifeng,Jeffrey Forrest,Yang Yingjie.A Brief Introduction to Grey Systems Theory.2011International Conference on Grey Systems and Intelligent Services,2011,1~9.
    [28] Hu-Chen Liu,Long Liu,Qi-Hao Bian et al..Failure mode and effects analysis using fuzzyevidential reasoning approach and grey theory.Expert Systems with Applications,2011,38(4):4403~4415.
    [29] Dong Lixin,Xiao Dengming,Liu Yilu.Insulation fault diagnosis based on group greyrelational grade analysis method for power transformers.Journal of Southeast University,2005,21(2):175~179.
    [30] Ge Zhang.An adaptive tool-based telerobot control system,[Ph.D. Thesis].Knoxville:TheUniversity of Tennessee,2004.
    [31] Jiyoung Min,Seunghee Park and Chung-Bang Yu.Impedance-based structural healthmonitoring using neural networks for autonomous frequency range selection.Smart Materials andStructures,2010,19(12):125011(10pp).
    [32] Ch. Efstathiades,C.C. Baniotopoulos,P. Nazarko et al..Application of neural networks forthe structural health monitoring in curtain-wall systems.Engineering Structures,2007,19(12):3475~3484.
    [33] JongWon Lee,Goutham R Kirikera,Inpil Kang et al..Structural health monitoring usingcontinuous sensors and neural network analysis.Smart Materials and Structures,2006,15(5):1266~1274.
    [34] Meltz G..Overview of fiber grating based sensors.Proceedings of the SPIE-TheInternational Society for Optical Engineering,1996,2838:2~22.
    [35] Velazco Fontova, Marta I.,Oliveira, Aurelio R.L.,Lyra Christiano.Hopfield neural networksin large-scale linear optimization problems.Applied Mathematics and Computation,2012,218(12):6851~6859.
    [36] Vapnik V N.The Nature of Statistic Learning Theory.New York:Springer Verlag,1995.
    [37] V. David Sanchez A.Advanced support vector machines and kernelmethod.Neurocomputing,2003,55(1-2):5~20.
    [38] Emre C omak,Ahmet Arslan.A new training method for support vector machines:Clusteringk-NN support vector machines.Expert Systems with Applications,2008,35(3):564~568.
    [39] Eslam Pourbasheer,Siavash Riahi,Mohammad Reza Ganjali et al..Application of geneticalgorithm-support vector machine (GA-SVM) for prediction of BK-channels activity.EuropeanJournal of Medicinal Chemistry,2009,44(12):5023~5028.
    [40] B. Samanta,C.Nataraj.Use of particle swarm optimization for machinery faultdetection.Engineering Applications of Artificial Intelligence,2009,22(2):308~316.
    [41]张金涛.基于光纤光栅传感网络的健康监测技术,[硕士学位论文].黑龙江:黑龙江大学,2005.
    [42]Youlong Yu,Luenfu Lui,Hwayaw Tam et al..Fiber-Laser-Based Wavelength-DivisionMultiplexed Fiber Bragg Grating Sensor System.IEEE photonics technology letters,2001,13(7):702~704.
    [43]胡顺仁.桥梁结构健康监测系统中安全评价环节的差错控制研究,[博士学位论文].重庆:重庆大学,2007.
    [44]邱雷,袁慎芳,苗苗.基于FBG的机翼盒段结构健康监测系统功能验证研究.压电与声光,2009,31(3):350~353.
    [45] Toru Mizunami, Hiroaki Tatehata, Hideo Kawashima.High-sensitivity CryogenicFiber-Bragg-grating Temperature Sensors using Teflon Substrates.Meas. Sci. Technol,2001,12(4):914~917.
    [46]郭明金.恶劣飞行环境中光纤光栅传感方法和技术研究,[博士学位论文].武汉:武汉理工大学,2007.
    [47]孟和,赵政,李华舟.光缆监测系统的设计与实现.计算机工程,2005,31(4):195-196.
    [48] Edward Tapanes,Stephen C. Galea.Use of optical fiber sensors to detect and monitor damagein bonded composite repairs of cracked metallic composite.Proceedings of ICCM-11,1997,VI:421.
    [49] Peng-Chun Peng,Wen-Piao Lin and Sien Chi.A Self-Healing Architecture for Fiber BraggGrating Sensor Network.Proceedings of IEEE Sensors,2004,v1:60~63.
    [50] XiaoLi Zhang,DaKai Liang,Jie Zeng,Anand Asundi.Genetic Algorithm-Support VectorRegression for High Reliability SHM System based on FBG Sensor Network.Optics and Lasersin Engineering,2011,50(2012):148~153.
    [51]姜德生,信思金.光纤光栅智能混凝土材料与结构试验技术的研究.中国水泥,2004,20(8):57~59.
    [52]姜德生,左军,信思金等.光纤Bragg光栅传感器在水布垭工程锚杆上的应用.传感器技术,2005,24(1):72~74.
    [53] G. Kister,D. Winter,R.A. Badcock et al..Structural health monitoring of a composite bridgeusing Bragg grating sensors.Part1:Evaluation of adhesives and protection systems for the opticalsensors.Engineering Structures,2007,29(3):440~448.
    [54]李俊,吴瑾,高俊启.混凝土结构光纤光栅腐蚀传感器.中国腐蚀与防护学报,2009,29(2):109~118.
    [55]王晓洁,曾捷,梁大开等.用于沥青路面载荷监测的光纤光栅压力传感器,光电子·激光,2011,22(2):197~200.
    [56]芦吉云,光纤智能夹层自诊断系统研究,[硕士学位论文].南京:南京航空航天大学,2006.
    [57] Peng-Chun Peng,Hong-Yih Tseng and Sien Chi.Self-healing fibre grating sensor systemusing tunable multiport fibre laser scheme for intensity and wavelength divisionmultiplexing.Electronics leters,2002,38(24):1510~1511.
    [58] Peng-Chun Peng,Hong-Yih Tseng,and Sien Chi.A Novel Fiber-Laser-Based SensorNetwork with Self-Healing Function,IEEE photonics technology letters,2003,15(2):275~277.
    [59] Peng-Chun Peng,Hong-Yih Tseng,Sien Chi.A hybrid star-ring architecture for Fiber BraggGrating sensor system.Photonics Technology Letters,2003,15(9):1270~1272.
    [60] Peng-Chun Peng,Jun-Bo Wang,and Kuan-Yan Huang.Reliable Fiber Sensor System withStar-Ring-Bus Architecture.Sensors,2010,10(4):4194~4205.
    [61] C. Schuetz,M. Golt,D. Lipiecki et al..Self-Diagnostic, Self-Healing Multifunctional FiberOptic Networks.Universit of Delaware·Department of Electrical&Computer Engineering.PPT.
    [62] Wen-Piao Lin,Ming-Seng Kao and Sien Chi.A DWDM/SCM Self-Healing Architecture forBroad-Band Subscriber Networks.Journal of lightwave technology,2003,21(2):319~328.
    [63] Andrew M. Gillooly,Lin Zhang,Ian Bennion.High survivability fiber sensor network forsmart structures.Proceedings of SPIE-The International Society for Optical Engineering,2004,v5579,n PART1:99~106.
    [64] Eduardo López Izquierdo,Paul Urquhart,Manuel López-Amo.Protection Architectures forWDM Optical Fibre Bus Sensor Arrays.Journal of Engineering,2007,1(2):1~18.
    [65]林建廷.星形环状被动式光纤网路之错误侦测与自动复原机制,[硕士论文].台湾:台湾国立交通大学,2007.
    [66] Chien-Hung Yeh,Chi-Wai Chow,Chia-Husan Wang et al..A simple self-restored fiberBragg grating (FBG)-based passive sensing ring network.Measurement Science and Technology,2009,20(4):1~6.
    [67] Li-Mei Peng,Xin-Wan Li,Won-Hyuk Yang et al..Investigation on Reliability andScalability of an FBG-Based Hierarchical AOFSN.Sensors,2010,10:2901~2918.
    [68] Chien-Hung Yeh,Chi-Wai Chow,Ping-Chun Wu et al..A Simple Fiber Bragg Grating-BasedSensor Network Architecture with Self-Protecting and Monitoring Functions.Sensors,2011,11:1375~1382.
    [69] Shu-Tsung Kuo,Peng-Chun Peng,Jen-Wei Sun et al..A Delta-Star-Based Multipoint FiberBragg Grating Sensor Network.IEEE sensors journal,2011,11(4):875~881.
    [70] Pu Wei and Xiaohan Sun.A Novel FBG Sensor Network with High Survivability.Proceed-ings of the SPIE-The International Society for Optical Engineering,2006,v6387:63870B-1~9.
    [71] Xiaohan Sun and PuWei.Using new models to enhance optical-fiber-sensor networks.Proceedings of the SPIE-The International Society for Optical Engineering,2007.
    [72] Hongxia zhang,Shu Wang,Guoqiang Wen et al..Large-Scale Self-Healing Architectures forFiber Bragg Grating Sensor Network. The9th International Conference on OpticalCommunications and Networks (ICOCN2010),Nanjing,China,24-27,October,2010.
    [73]杨勇,高顺利,吴先良.一种采用冗余设计的高可靠温度监测系统.安徽大学学报(自然科学版),2003,27(3):68~71.
    [74]姜绍飞,张帅.基于概率神经网络分类器的数据融合损伤检测方法.计算力学学报,2008,25(5):700~705.
    [75]全军,李娜,殷鹏雷等.宁波青林湾大桥健康监测及安全监控预警系统自动化传感测试子系统方案综述.公路,2010,25(10):33~38.
    [76] Hu w,Starr A.G.,Zhou Z..A systematic approach to integrated fault diagnosis of flexiblemanufacturing systems.International Journal of Machine Tools&Manufacture,2000,40(11):1587~1602.
    [77] Lyell M J,Krueger W,Zhang R et al..An agent-based approach to health monitoring appliedto the ISS power system.The45th AIAA Aerospace Science Meeting and Exhibit,Reno,Nevada,Jan8-11,2007.
    [78] Lodding,Kenneth N.,Brewster Paul.Biomorphic Multi-Agent Architecture for PersistentComputing.NASA\Information sciences,2009.
    [79]卢朝霞.迁移工作流容错执行模型及其实现方法研究,[博士学位论文].山东:山东大学,2009.
    [80] Wolfgang Fink,James Dohm,A. Tarbell.Multi-agent autonomous system.United StatesPatent,Patent No.:US7,734,063B2,2010.
    [81] Mikhail Prokopenko,Peter Wang,Mark Foreman et al..On connectivity of reconfigurableimpact networks in ageless aerospace vehicles.Robotics and Autonomous Systems,2005,53(1):36~58.
    [82] D.A. Scott,A. Batten,G.C. Edwards.An Intelligent Sensor System for Detection andEvaluation of Particle Impact Damage.AIP Conference Proceedings,2005,760:1825~1832.
    [83] Xia Zhao,Shenfang Yuan,Zhenhua Yu et al..Designing strategy for multi-agent systembased large structural health monitoring.2008,34(2):1154~1168.
    [84] D. A. Scott,D. C. Price,N. Hoschke and W. L. Richards.structural health monitoring ofthermal protection systems,materials forum,2009,33:457~464.
    [85] Zhan, Chun.Femtosecond laser inscribed fiber Bragg grating sensors,[Ph.D.Thesis].Pennsylvania:The Pennsylvania State University,2007.
    [86]刘宇主编.光纤传感原理与检测技术.北京:电子工业出版社,2011,P54~55.
    [87]张自嘉著.光纤光栅理论基础与传感技术.北京:科学出版社,2009,48~51.
    [88] Y.M. Chang,Chih-Chun Cheng,Yu-Lung Lo.Thermal compensation for a chirp fiber Bragggrating bonded substrate.IEEE Transactions on Advanced Packaging,2004,27(1):188~193.
    [89]芦吉云,梁大开,张晓丽等.基于支持向量回归机的机翼盒段结构健康监测研究.仪器仪表学报,2009,30(3):486~491.
    [90] Ming Chang Shih,C.L. Ko,C.Y. Yang.Dynamic strain monitoring by wavelength lockingbetween two fiber Bragg gratings fiber sensing system.Optics and Lasers in Engineering,2008,46(7):546~549.
    [91]梁大开,李东升,潘晓文.智能结构中光纤智能夹层力学特性的实验研究.应用力学学报,2006,23(1):150~153.
    [92] Stanford,Christopher J.Highly sensitive fiber Bragg grating biosensors,[M.S.Thesis].Maryland:University of Maryland,2008.
    [93] Abdi,Abdeq Mohamed.Structural monitoring with fiber Bragg grating strain sensor arrayand optical frequency domain reflectometry,[Ph.D. Thesis].Arizona:The University of Arizona,2005.
    [94]冯艳.埋入金属结构的光纤Bragg光栅传感性能研究,[博士论文].南昌:南昌大学,2009.
    [95] R.M.Atkins,V.Mizrahi,T.Erdogan.248nm induced vacuum UV spectral changes in opticalfibre preform cores:support for a color centre model of photosensitivity.Electron Letter,1993,29(5):385~387.
    [96] M.J.Digonnet.A Kromers-Kroning analysis of the absorption change in fiber gratings.Proc.SPIE.,1996,2841:109~120.
    [97]吴俊,陈伟民,张娅玲等.交替温度对FBG性能蜕化的影响机理及试验研究.光电子·激光,2010,21(9):1301~1305.
    [98] Chun Zhan.Femtosecond laser inscribed fiber Bragg grating sensors,[Ph.D.Thesis].Pennsylvania:The Pennsylvania State University,2007.
    [99] H. Minato,Y. Kakui and A. Nishimoto.Remote refractive index difference meter for salinitysensor.IEEE Trans. Instrum. Meas,1989,38(2):608~612.
    [100] Y. Zhao and Y. Liao.Novel optical fibre sensor for simultaneous measurement oftemperature and salinity.Sensors Actuators B,2002,63:63~67.
    [101]王若林.桥梁实时在线检测与健康监测若干问题研究,[博士学位论文].武汉:武汉大学,2005.
    [102] GUO Z W and BAI G C..Application of least squares support vector machine for regressionto reliability analysis.Chinese Journal of Aeronautics,2009,22(2):160~166.
    [103] Md. Mahmudur Rahman,Bipin C. Desai and Prabir Bhattacharya.Medical image retrievalwith probabilistic multi-class support vector machine classifiers and adaptive similarityfusion.Computerized Medical Imaging and Graphics,2008,32(2):95~108.
    [104]Chuxiong Miao.A support vector machine model for pipe crack size classification,[M.S.Thesis].Edmonton,Alberta:University of Albert,2009.
    [105] Ismail Babaoglu,Oguz Findik,Erkan ülker.A comparison of feature selection modelsutilizing binary particle swarm optimization and genetic algorithm in determining coronary arterydisease using support vector machine.Expert Systems with Applications,2010,37(4):3177~3183.
    [106] Keivan Kianmehr.CARSVM:Classification by Integrating Class Association Rules andSupport Vector Machine,[M.S. Thesis].CALGARY, ALBERTA:The University of CALGARY,2006.
    [107]孙永奎,基于支持向量机的模拟电路故障诊断方法研究,[博士学位论文].成都:电子科技大学,2009.
    [108] Girish Nehate.Solving large scale support vector machine problems using matrix splittingand decomposition methods,[Ph.D. Thesis].Manhattan, Kansas:Kansas State University,2006.
    [109] John Brantley Halstead.Support vector machine/regression feature selection with anapplication towards classification,[Ph.D. Thesis].Charlottesville, Virginia:University ofVirginia,2005.
    [110] Wei-Chiang Hong,YuchengDong,Li-YuehChen et al..SVR with hybrid chaotic geneticalgorithms for tourism demand forecasting.Applied Soft Computing,2010,11(2):1881~1890.
    [111]毛先柏.基于支持向量机的模拟电路故障诊断研究,[博士学位论文].武汉:华中科技大学,2009.
    [112]Md. Mahmudur Rahman,Bipin C. Desai,Prabir Bhattacharya.Medical image retrieval withprobabilistic multi-class support vector machine classifiers and adaptive similarityfusion.Computerized Medical Imaging and Graphics,2008,32(2):95~108.
    [113] Ankit B. Gandhi,Jyeshtharaj B. Joshi,Valadi K. Jayaraman et al..Development of supportvector regression (SVR)-based correlation for prediction of overall gas hold-up in bubble columnreactors for various gas–liquid systems.Chemical Engineering Science,2007,62(24):7078~7089.
    [114] M. Fatih Akay,Ipek Abas keles.Predicting the performance measures of an opticaldistributed shared memory multiprocessor by using support vector regression.Expert System withApplication,2010,37(9):6293~6301.
    [115] Kuan-Yu Chen,Cheng-Hua Wang.Support vector regression with genetic algorithms inforecasting tourism demand,Tourism Management,2007,28(9):215~226.
    [116]陈刚,闫飞,龚啸等,基于参数优化的最小二乘支持向量机状态估计方法,电力系统保护与控制,2011,39(19):83~88.
    [117] Jinghua Li,Congying Zhang,Zhenning Li.Battlefield Target Identification Based onImproved Grid-search SVM Classifier.Proceedings-2009International Conference onComputational Intelligence and Software Engineering,2009,1~4.
    [118] Zhou Xuan,Li Zhanchao,Dai Zong et al..QSAR modeling of peptide biological activity bycoupling support vector machine with particle swarm optimization algorithm and geneticalgorithm, Journal of Molecular Graphics and Modelling,2010,29(2):188~196.
    [119] Li Li,Wei Jiang,Xia Li et al..A robust hybrid between genetic algorithm and supportvector machine for extracting an optimal feature gene subset.Genomics,2005,85:16~23.
    [120]李国勇,李维民编著.人工智能及其应用,北京:电子工业出版社,2009,148~153.
    [121] Vahid Ranaee,Ata Ebrahimzadeh,Reza Ghaderi.Application of the PSO_SVM model forrecognition of control chart patterns.ISA Transactions,2010,49(4):577~586.
    [122] Ata Ebrahimzadeh,Reza Ghazalian.Blind digital modulation classification in software radiousing the optimized classifier and feature subset selection.Engineering Applications of ArtificialIntelligence,2011,24(1):50~59.
    [123] Qi Wu.A hybrid-forecasting model based on Gaussian support vector machine and chaoticparticle swarm optimization.Expert Systems with Applications,2010,37(3):2388~2394.
    [124] Y. Shi R. Eberhart and C. Empirical.Study of Particle Swarm Optimization.Proceeding ofthe World Multi conference on Systemic Cybernetics and informatics,2000,1945~1950.
    [125]魏秀业,潘宏侠著.粒子群优化及智能故障诊断.北京:国防工业出版社,2010,30.
    [126][希腊] Sergios Theodoridis,Konstantinos Koutroumbas著李晶皎王爱侠王骄等译.模式识别,北京:电子工业出版社,2010,178~179.
    [127]段鸿杰.桥梁健康监测中的传感器优化布置研究,[硕士学位论文].大连:大连理工大学,2006.
    [128]高社生,张玲霞编著.可靠性理论与工程应用.北京:国防工业出版社,2002,78-80.
    [129]刘鸿文主编.材料力学.北京:高等教育出版社,2004:230~236.
    [130] Prakash R. Kotecha,Mani Bhushan,Ravindra D. Gudi.Design of robust, reliable sensornetworks using constraint programming.Computers and Chemical Engineering,2008,32(9):2030~2049.
    [131]刘亚国.图论中邻接矩阵的应用.忻州师范学院学报,2008,24(2):18~24.
    [132] Daxini Monal.GeMS:A multi-agent system using market-based control and generationalscheduling for real-time distributed resource-allocation,[M.S. Thesis].Logan, Utah:Utah StateUniversity,2004.
    [133] Wooldridge M,Jennings N R.Intelligent agents: theory and practice.KnowledgeEngineering,1995,10(2):115~152.
    [134]李国勇,李维民编著.人工智能及其应用.北京:电子工业出版社,2009,241~250.
    [135]鲁玉良.基于Agent的多机器人的任务协作研究,[硕士学位论文].北京:北京工业大学,2003.
    [136] Fu-ren Lin,You-yu Lin.Integrating multi-agent negotiation to resolve constraints infulfilling supply chain orders.Electronic Commerce Research and Applications,2006,5(4):313~322.
    [137] Yi-Chuan Jiang,J.C. Jiang.A multi-agent coordination model for the variation ofunderlying network topology.Expert Systems with Applications,2005,29(2):372~382.
    [138] ShenfangYuan,Xiaosong Lai,Xia Zhao et al..Distributed structural health monitoringsystem based on smart wireless sensor and multi-agent technology. Smart Materials andStructures,2006,15(1):1~8.
    [139] M. Prokopenko,G. Poulton,D. C. Price et al..Self-Organising Impact Sensing Networks inRobust Aerospace Vehicles.In John Fulcher (ed.) Advances in Applied Artificial Intelligence,2006,186~233,Idea Group.
    [140] J. Zhou,Z. Zhou and D. Zhang.Study on strain transfer characteristics of fiber Bragggrating sensors.Journal of Intelligent Material Systems and Structures,2010,21(11):1117~1122.
    [141]李常洪.多Agent合作机制与合作结构研究,[硕士学位论文].天津:天津大学,2002.
    [142] Abdulla M. Mohamed.Benevolent Agents,[Ph.D. Thesis].University of South Carolina,2000.
    [143] Heo, Jin S.A multi-agent system-based intelligent control for large-scale power plants,
    [Ph.D. Thesis].Pennsylvania State: The Pennsylvania State University,2006.
    [144]谢学科.多Agent交互协作研究及系统模拟,[硕士学位论文].西安:西北工业大学,2005.
    [145] Sun wanjun.Efficient communication and coordination for large-scale multi-agent systems,
    [Ph.D. Thesis].Canada:Carleton University,2004.
    [146]王汝传,徐小龙,黄海平编著.智能Agent及其在信息网络中的应用.北京:北京邮电大学出版社,2006,31-42.
    [147]张凯.基于多智能体的机器人系统通信技术的研究,[硕士学位论文].南京:南京理工大学,2004.
    [148] Qin Li.Cooperative Control of Multi-Agent System,[Ph.D. Thesis].New York:Polytechnic Institute of New York University,2009.
    [149] Ciprian Candea,Huosheng Hu,Luca Iocchi.Coordination in multi-agent RoboCupteams.Robotics and Autonomous Systems,2001,36(2-3):67~86.
    [150] Fu-Shiung Hsieh.Developing cooperation mechanism for multi-agent systems withPetrinets.Engineering Applications of Artificial Intelligence,2009,22(4):616~627.
    [151]赵霞.多主体协作结构健康监测系统的关键技术研究,[博士学位论文].南京:南京航空航天大学,2008.
    [152] Xuan Ping.Uncertainty handling and decision making in multi-agent cooperation,[Ph.D.Thesis]. Massachusetts:University of Massachusetts Amherst,2002.
    [153] Davy Sannen,Hendrik Van Brusse.A multilevel information fusion approach for visualquality inspection.Information Fusion,2012,13(1):48~59.
    [154]唐慧.区域电网智能化发展水平综合评价研究,[博士学位论文].保定市:华北电力大学,2011.
    [155] Qiang Liu,Guang Jin,Jing Feng.GeMiBi:A general multiple sources information Bayesianfusion for performance evaluation and an application to HPC cluster.Engineering FailureAnalysis,2011,18(6):1465~1476.
    [156] Monwar. M.M.,Gavrilova. M..A novel fuzzy multimodal information fusion technology forhuman biometric traits identification,201110th IEEE International Conference on CognitiveInformatics&Cognitive Computing (ICCI-CC2011),2011,112~119.
    [157] Bo Sun,Wenqiang Luo and Jigang Li.Study on methods for extracting comprehensiveinformation based on the sequential dynamic weighted fusion.Proceedings of the InternationalConference on Human-Centric Computing2011and Embedded and Multimedia Computing2011(HumanCom and EMC2011),2011,102:385~391.
    [158]谢建宏,张为公,梁大开.基于GANN的机翼盒段试验件传感器的优化配置.系统仿真学报,2007,19(9):1917~1921.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700