基于布里渊散射的多波长光纤激光器及分布式光纤传感研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着信息容量需求的日益增长,高速大容量长距离将成为下一代全光通信网络的发展趋势。为了有效的利用光纤中有限的频率资源,频率间隔20GHz,甚至10GHz将是未来密集波分复用技术发展方向之一。多波长的布里渊掺铒光纤激光器(MBEFL)具有窄线宽、宽调谐性、低阈值、低强度噪声、低成本,频率间隔固定,在室温下稳定的单纵模运转等特点,将可能成为未来最佳的通信光源之一。另外,布里渊光纤激光器(BFL)在光纤传感网络、频谱分析、RF等领域存在潜在的应用价值。分布式布里渊光纤温度与应变传感器具有分布式光纤传感器优点的同时,还具有其它光纤传感无法媲美的显著特点,能同时测量温度与应变,可以应用于电力,石油化工、核电站、公路、桥梁、隧道、大坝、铁路、航天航空等各行业,受到国外内广泛关注。然而分布式布里渊光纤传感存在系统复杂,技术不成熟,成本高,测试时间长等问题而难以广泛应用。
     本论文在佛山市禅城区工业公关计划,国家自然科学基金和国家863计划支持下,围绕多波长布里渊光纤激光器(MBFL)和分布式布里渊光纤传感两个方向进行初步的理论和实验研究,概括全文的研究成果和贡献,有如下几个方面:
     (1)根据布里渊耦合强度方程,推导出求解布里渊强度耦合方程一种快速有效近似解析方法,并数值解进行比较。分析了在四种情况下,光纤中的受激布里渊散射(SBS)阈值大小,用实验验证了光纤中的布里渊阈值与理论的一致性。研究了脉冲形式的布里渊泵浦光在光纤中的Stokes与泵浦光强演变,对光纤中的温度或应变引起的频率失谐对泵浦光与探测光光强的影响进行仿真研究,检测出失谐处的位置与失谐量。
     (2)基于135m的高非线性光纤(HNLF),利用光纤无源环形腔扩大激光器的自由频谱范围,和3m的非泵浦的掺铒光纤(EDF)产生自跟踪的窄带滤波和稳频特性,实验得到单纵模运转的布里渊光纤激光器,其功率波动不超过0.2dBm,该激光器可应用在分布式布里渊光纤传感系统做本征光。
     (3)基于萨格纳克(Sagnac)环结构,通过9.4km的SMF实现双向的SBS,实验得到26个波长间隔为10GHz的多波长布里渊掺铒光纤激光器,研究了掺铒光纤放大器(EDFA)的泵浦电流、布里渊泵浦功率对布里渊光纤激光器的波长数量和调谐性的影响,该激光器最大的调谐范围超过50nm。
     (4)在9.4km布里渊光纤激光器中,利用SBS产生斯托克斯光(Stokes),在20mW的泵浦功率下产生10.658GHz和21.316GHz的稳定的微波信号,最大的频率波动分别为0.9MHz和2MHz。
     (5)通过理论分析了简并与非简并四波混频(FWM)的相位匹配条件,利用了布里渊激光器线宽压窄效应和FWM透明的波长转换特性,研究了多级四波混频(MFWM)支持的多波长的布里渊光纤激光器。在2.5km的环形腔和160mW泵浦光功率下,实验得到19个波长间隔为21GHz的多波长光纤激光器;通过135m的高非线性光纤,使用泵浦预放大技术,基于级联的SBS和MFWM效应,得到20nm的梳状光谱,其最大的波长数量超过150个。使用9.4km的SMF代替HNLF,实验取得25个通道的多波长布里渊掺铒光纤激光器,该激光器具有极低的阈值功率和50nm调谐范围,多波长的功率平坦性良好。
     (6)基于实验室现有条件和布里渊光时域反射计(BOTDR)的研究现状,设计了一种基于双脉冲BOTDR分布式传感系统。系统使用布里渊光纤激光器作本征光与传感信号光外差,把高频信号降低为200MHz~1.5GHz的低频信号,降低了对光电器件的带宽要求,大大降低了传感系统成本。设计并制造了一种200MHz基于FPGA可编程的电脉冲信号源来驱动电光调制器来产生双脉冲光信号;双窄脉冲光利用声子的弛豫特性提高系统的分辨率、信噪比与测量速度。使用布里渊光纤激光器做本征光进行外差,实验得到1.4359GHz的外差信号,通过拟合可以测得布里渊温度系数为1.094MHz/℃。
With the increasing demand for information capacity, the high-speed, large-capacity andlong-distance telecommunication are the trends of development in the next generationall-optical network. In order to make good uses of the limited resource in communicationfrequency, the frequency spacing of20GHz or even10GHz is one of development directionfor the future DWDM. Mutiwavelength Brillouin-erbium fiber laser (MBEFL) has beenregarded as a potential and prosperous solution of communication source owing to severalimportant advantages, e.g. the narrow linewidth, rigid wavelength spacing, widely tunablility,low threshold, low intensity noise, the stable single-longitudinal-mode operation at roomtemperature. Moreover, there are potential applications in the fiber optics sensor network, RFand other areas.
     The distributed Brillouin fiber sensor possesses a distinguishing feature besides otherfiber-optic sensors, can measure temperature and strain simultaneously, and can be appliedto electric power, petrochemical, nuclear power plants, highways, bridges, tunnels, dams,railways, aerospace and other industries, and has attracted more and more attentions in therecent decade. However, the distributed Brillouin sensor is difficult to extensive use due tocomplicated system, immature technology, high cost and long acquisition time.
     Sponsored by the Industrial Key Projects Programs of Chancheng District of Foshan city,National Natural Science Foundation and Research and Development Program of China in thedissertation, the MBEFL and the distributed Brillouin sensing system are investigated bypreliminary theory and experiments. Several research achievements and contributions aresummarized as the followings:
     Firstly, according to Brillouin coupled-intensity equations, an approximate analyticexpression is derived under the steady state Brillouin scattering without neglecting the fiberattenuation and pump depletion, and is compared with the exact numerical solution. Brillouinthresholds under the four different conditions are studied and verified by experiment.Temporal and intensity evolution of the Stokes and pump and the effect of frequency detuningcaused by temperature or strain, are simulated, obtain an effective method, which can detectthe position and size of the frequency detuning.
     Secondly, using a135-m highly nonlinear fiber (HNLF), exploiting passive feedbackfiber ring to enlarge the free spectral range and a3-m unpumped EDF to help theimplementation of ultra-narrow comb filter and frequency stabilization, Brillouin fiber laser(BFL) with a single-longitudinal-mode operation is obtained with the power fluctuations of0.2dBm, which can be used as a local light in the distributed Brillouin fiber sensor.
     Thirdly, MBEFL is demonstrated Based on a Sagnac fiber ring with a9.4-km singlemode fiber (SMF). The proposed BFL is able to generate up to25Stokes lasing lines withwavelength spacing of10GHz and a tuning range of50nm. The impact of EDFA pumpcurrent and Brillouin pump (BP) power on the number of wavelength and tunableness areanalyzed.
     Fourthly, a simple configuration for achieving stable and widely tunable dual-wavelengthBrillouin fiber laser is proposed and experimentally investigated.21.316GHz and10.658GHz microwave signals can be achieved simultaneously by beating the Brillouin fiber laser ata high-speed photodetector. The maximum frequency fluctuation of the microwave signal is0.3MHz and3dB linewidth is4.5MHz.
     Fifthly, we qualitatively analyzed the phase-mismatch condition for degenerate andnon-degenerate four-wave mixing (FWM) processes. Make good uses of linewidth narrowingof Brillouin fiber laser and transparent wavelength conversion of FWM, the tunablemultiwavelength generation based on Brillouin-erbium comb fiber laser assisted by MFWMprocesses is investigated. Under the condition of160-mW pump power using a2.5-km SMF,multiwavelength Brillouin fiber (MBFL) is experimentally achieved19lasing lines with awavelength spacing of21GHz. MBEFL utilizing Brillouin pump preamplification techniqueand cascaded and multiple SBS and FWM processes, is demonstrated experimentally. TheMBEFL with a135-m HNLF can generate20-nm comb spectrum with0.075-nm wavelengthspacing, which is more than150lasing lines in a single-longitudinal-mode operation.However, a9.4-km SMF instead of a135-m HNLF, the MBEFL with a low threshold, atunable range of50nm and good power flatness is achieved.
     Finally, we propose a single and cost-effective technique that that can reduce theelectrical bandwidth for Brillouin frequency-shift sensors with heterodyne detection withoutthe need for expensive instruments or a complicated system. With this technique, a BFL isused as a local light for heterodyne detection and the bandwidth of photodetector and electronic devices are reduced to200MHz~1.5GHz. A double-pulse Brillouin pump makes agood use of the phonon relaxation properties in order to increase the spatial resolution,signal-to-noise ratio and acquisition time. Moreover, based on the FPGA techonlogy, wedesign and process a PCB with a frequency of200MHz to drive the electro-optic modulatorin order to produce double-pulse pump light. The heterodyne signal with1.4359GHz andBrillouin temperature coefficient of1.094MHz/℃are experimentally achieved by using theBFL with a135-m HNLF as a local light.
引文
[1]张朋,王宁,陈艳等.光纤传感器的发展与应用.现代物理知识,2009,(2):35-38
    [2] B. Culshaw, A. Kersey. Fiber-Optic Sensing: A Historical Perspective. Journal ofLightwave Technology,2008,26(9):1064-1078
    [3] L. Thévenaz. Review and Progress in Distributed Fiber Sensing. Optical Fiber SensorsOSA Technical Digest,2006, ThC1:1-6
    [4] T. Kurashima, T. Horiguchi, M. Tateda. Distributed-temperature sensing usingstimulated Brillouin scattering in optical silica fibers. Optics Letters,1990,15(18):1038-1040
    [5] X. Bao, D. J. Webb, D. A. Jackson.32-km distributed temperature sensor based onBrillouin loss in an optical fiber. Optics Letters,1993,18(18):1561
    [6] M. A. Soto, G. Bolognini, F. D. Pasquale. Long-range simplex-coded BOTDA sensorover120km distance employing optical preamplification. Optics Letters,2011,36(2):232-234
    [7] Y. Dong, L. Chen, X. Bao. Time-division multiplexing-based BOTDA over100kmsensing length. Optics Letters,2011,36(2):277-279
    [8] W. Zou, Z. He, K. Hotate. Single-End-Access Correlation-Domain DistributedFiber-Optic Sensor Based on Stimulated Brillouin Scattering. Journal of LightwaveTechnology,2010,28(18):2736-2742
    [9] K. Y. Song, S. Yang. Simplified Brillouin optical time-domain sensor based on directmodulation of a laser diode. Optics Express,2010,18(23):24012-24018
    [10] Y. Dong, L. Chen, X. Bao. System optimization of a long-range Brillouin-loss-baseddistributed fiber sensor. Applied Optics,2010,49(27):5020-5025
    [11] K. Y. Song, Z. Y. He, K. Hotate. Distributed strain measurement with millimeter-orderspatial resolution based on Brillouin optical correlation domain analysis. OpticsLetters,2006,31(17):2526-2528
    [12] K. Hotate, M. Tanaka. Distributed fiber Brillouin strain sensing with1-cm spatialresolution by correlation-based continuous-wave technique. IEEE Photonics TechnologyLetters,2002,14(2):179-181
    [13] S. Z. Yan, L. S. Chyan. Performance enhancement of BOTDR fiber optic sensor for oiland gas pipeline monitoring. Optical Fiber Technology,2010,16(2):100-109
    [14] J. H. Geng, S. Staines, M. Blake, et al. Distributed fiber temperature and strain sensorusing coherent radio-frequency detection of spontaneous Brillouin scattering. AppliedOptics,2007,46(23):5928-5932
    [15] M. N. Alahbabi, Y. T. Cho, T. P. Newson.150-km-range distributed temperature sensorbased on coherent detection of spontaneous Brillouin backscatter and in-line Ramanamplification. J. Opt. Soc. Am. B,2005,22(6):1321-1324
    [16] S. P. Smith, F. Zarinetchi, S. Ezekiel. Narrow-linewidth stimulated Brillouin fiber laserand applications. Optics Letters,1991,16(6):393-395
    [17] A. Debut, S. Randoux, J. Zemmouri. Linewidth narrowing in Brillouin lasers: Theoreticalanalysis. Physical Review A,2000,62(2):023803
    [18] D. R. Ponikvar, S. Ezekiel. Stabilized single-frequency stimulated Brillouin fiber ringlaser. Optics Letters,1981,6(8):398-400
    [19] F. Zarinetchi, S. P. Smith, S. Ezekiel. Stimulated Brillouin fiber-optic laser gyroscope.Optics Letters,1991,16(4):229-231
    [20] F. Mihélic, D. Bacquet, J. Zemmouri, et al. Ultrahigh resolution spectral analysisbased on a Brillouin fiber laser. Optics Letters,2010,35(3):432-434
    [21] Z. Wu, Q. Shen, L. Zhan, et al. Optical Generation of Stable Microwave Signal Usinga Dual-Wavelength Brillouin Fiber Laser. IEEE Photonics Technology Letters,2010,22(8):568-570
    [22] M. H. Al-Mansoori, B. Bouzid, S. Saharudin, et al. Low-threshold characteristics of alinear-cavity multiwavelength brillouin/erbium fiber laser. Microwave and OpticalTechnology Letters,2004,41(2):114-117
    [23] G. J. Cowle, D. Y. Stepanov. Hybrid Brillouin/erbium fiber laser. Optics Letters,1996,21(16):1250-1252
    [24] D. Y. Stepanov, G. J. Cowle. Properties of Brillouin/erbium fiber lasers. IEEE Journalof Selected Topics in Quantum Electronics,1997,3(4):1049-1057
    [25] M. H. Al-Mansoori, M. K. Abd-Rahman, F. R. M. Adikan, et al. Widely tunable linearcavity multiwavelength Brillouin-Erbium fiber lasers. Optics Express,2005,13(9):3471-3476
    [26] J. Geng, S. Staines, Z. Wang, et al. Highly stable low-noise Brillouin fiber laser withultranarrow spectral linewidth. IEEE Photonics Technology Letters,2006,18(17):1813-1815
    [27] L. F. Stokes, M. Chodorow, H. J. Shaw. All-fiber stimulated Brillouin ring laser withsubmilliwatt pump threshold. Optics Letters,1982,7(10):509-511
    [28] S. Norcia, R. Frey, S. Tonda-Goldstein, et al. High-efficiency single-frequencyBrillouin fiber laser with a tunable coupling coefficient. J. Opt. Soc. Am. B,2004,21(8):1424-1430
    [29] V. Lecoeuche, D. J. Webb, C. N. Pannell, et al. Brillouin based distributed fibre sensorincorporating a mode-locked Brillouin fibre ring laser. Optics Communications,1998,152(4-6):263-268
    [30] C. A. Galindez, F. J. Madruga, A. Ullan, et al. Multi-zone temperature sensor using amulti-wavelength Brillouin fiber ring laser. in: Jones, J. D. C., editor. Edinburgh,United Kingdom: SPIE,2009,7503:75030J-75034
    [31] R. Tkach, A. Chraplyvy. Fibre Brillouin amplifiers. Optical and Quantum Electronics,1989,21(1): S105-S112
    [32] M. C. Gross, P. T. Callahan, T. R. Clark, et al. Tunable millimeter-wave frequencysynthesis up to100GHz by dual-wavelength Brillouin fiber laser. Optics Express,2010,18(13):13321-13330
    [33] J. Geng, S. Staines, S. Jiang. Dual-frequency Brillouin fiber laser for opticalgeneration of tunable low-noise radio frequency/microwave frequency. Optics Letters,2008,33(1):16-18
    [34] M. L. Dennis, R. M. Sova, T. R. Clark. Microwave Frequency Generation up to27.5GHz Using a Dual-Wavelength Brillouin Fiber Laser. in:2007Digest of theIEEE/LEOS Summer Topical Meetings,2007.194-195
    [35] Y. C. Shen, X. M. Zhang, K. S. Chen. All-optical generation of microwave andmillimeter wave using a two-frequency Bragg grating-based Brillouin fiber laser.Journal of Lightwave Technology,2005,23(5):1860-1865
    [36] S. Norcia, S. Tonda-Goldstein, D. Dolfi, et al. Efficient single-mode Brillouin fiberlaser for low-noise optical carrier reduction of microwave signals. Optics Letters,2003,28(20):1888-1890
    [37] S. Shahi, S. W. Harun, H. Ahmad. Multi-wavelength Brillouin fiber laser usingBrillouin-Rayleigh scatterings in distributed Raman amplifier. Laser Physics Letters,2009,6(10):737-739
    [38] Y. Dong, Z. Lv, Q. Li, et al. Controllable optical delay line using a Brillouin opticalfiber ring laser. Chinese Optics Letters,2006,4(11):628-630
    [39] Z. Zhu, D. J. Gauthier, R. W. Boyd. Stored Light in an Optical Fiber via StimulatedBrillouin Scattering. Science,2007,318:1748-1751
    [40] K. Inoue, H. Toba. Wavelength conversion experiment using fiber four-wave mixing.IEEE Photonics Technology Letters,1992,4(1):69-72
    [41] A. Wiatrek, K. Jamshidi, R. Henker, et al. Nonlinear Brillouin based slow-light systemfor almost distortion-free pulse delay. J. Opt. Soc. Am. B,2010,27(3):544-549
    [42] S. F. Hanim, J. Ali, P. P. Yupapin. Dark soliton generation using dual Brillouin fiberlaser in a fiber optic ring resonator. Microwave and Optical Technology Letters,2010,52(4):881-883
    [43] R. Kadiwar, I. Giles. Optical fibre Brillouin ring laser gyroscope. Electronics Letters,1989,25(25):1729-1731
    [44] Y. Tanaka, S. Yamasaki, K. Hotate. Brillouin fiber-optic gyro with directionalsensitivity. IEEE Photonics Technology Letters,1996,8(10):1367-1369
    [45] K. Hill, B. Kawasaki, D. Johnson. CW Brillouin laser. Applied Physics Letters,1976,28:608
    [46] L. F. Stokes, M. Chodorow, H. J. Shaw. All-single-mode fiber resonator. Optics Letters,1982,7(6):288-290
    [47] J. C. Yong, L. Thevenaz, K. Byoung Yoon. Brillouin fiber laser pumped by a DFBlaser diode. Journal of Lightwave Technology,2003,21(2):546-554
    [48] W. Guan, J. R. Marciante. Single-frequency1W hybrid Brillouin/ytterbium fiber laser.Optics Letters,2009,34(20):3131-3132
    [49] S. W. Harun, S. Shahi, H. Ahmad. Brillouin fiber laser with a49cm long Bismuth-based erbium-doped fiber. Laser Physics Letters,2010,7(1):60-62
    [50] H. Ahmad, R. Parvizi, N. S. Shahabuddin, et al. Effect of gain medium on theperformance of Brillouin fiber laser. Microwave and Optical Technology Letters,2010,52(9):2158-2160
    [51] D. Culverhouse, F. Farahi, C. N. Pannell, et al. Stimulated Brillouin scattering: ameans to realise tunable microwave generator or distributed temperature sensor.Electronics Letters,1989,25(14):915-916
    [52] M. D mmig, G. Zinner, F. Mitschke, et al. Stimulated Brillouin scattering in fiberswith and without external feedback. Physical Review A,1993,48(4):3301
    [53] R. G. Harrison, P. M. Ripley, W. Lu. Observation and characterization of deterministicchaos in stimulated Brillouin scattering with weak feedback. Physical Review A,1994,49(1): R24
    [54] E. Picholle, C. Montes, C. Leycuras, et al. Observation of dissipative superluminoussolitons in a Brillouin fiber ring laser. Physical Review Letters,1991,66(11):1454
    [55] S. Randoux, V. Lecoeuche, B. Segard, et al. Dynamical analysis of Brillouin fiberlasers: An experimental approach. Physical Review A,1995,51(6): R4345
    [56] V. Lecoeuche, B. Segard, J. Zemmouri. Modes of destabilization of Brillouin fiberring lasers. Optics Communications,1997,134:547-558
    [57] B. S. Kawasaki, D. C. Johnson, K. Hill, et al. Bandwidth-limited operation of amode-locked Brillouin parametric oscillator. Applied Physics Letters,1978,32(7):429-431
    [58] C. Montes, D. Bahloul, I. Bongrand, et al. Self-pulsing and dynamic bistability incw-pumped Brillouin fiber ring lasers. J. Opt. Soc. Am. B,1999,16(6):932-951
    [59] S. W. Harun, M. R. Shirazi, H. Ahmad. Multiple wavelength Brillouin fiber laser frominjection of intense signal light. Laser Physics Letters,2007,4(9):678-680
    [60] S. Harun, M. Shirazi, H. Abdul-Rashid, et al. Multiwavelength Source Using aBrillouin Fiber Laser. Journal of Nonlinear Optical Physics&Materials,2008,17(2):199-203
    [61] S. W. Harun, M. R. Shirazi, H. Ahmad. A new configuration of multi-wavelengthBrillouin fiber laser. Laser Physics Letters,2008,5(1):48-50
    [62] R. Parvizi, H. Arof, N. M. Ali, et al.0.16nm spaced multi-wavelength Brillouin fiberlaser in a figure-of-eight configuration. Optics&Laser Technology,2011,43(4):866-869
    [63] G. J. Cowle, D. Y. Stepanov. Multiple wavelength generation with Brillouin/erbiumfiber lasers. IEEE Photonics Technology Letters,1996,8(11):1465-1467
    [64] P. R. Morkel, G. J. Cowle, D. N. Payne. Travelling-wave erbium fibre ring laser with60kHz linewidth. Electronics Letters,1990,26(10):632-634
    [65] H. Okamura, K. Iwatsuki. A finesse-enhanced Er-doped-fiber ring resonator. Journalof Lightwave Technology,1991,9(11):1554-1560
    [66] G. J. Cowie, D. Yu, C. Yew Tai. Brillouin/erbium fiber lasers. Journal of LightwaveTechnology,1997,15(7):1198-1204
    [67] J. Tang, J. Sun, L. Zhao, et al. Tunable multiwavelength generation based onBrillouin-erbium comb fiber laser assisted by multiple four-wave mixing processes.Optics Express,2011,19(15):14682-14689
    [68] M. H. Al-Mansoori, B. Bouzid, B. M. Ali, et al. Multi-wavelength Brillouin-Erbiumfibre laser in a linear cavity. Optics Communications,2004,242(1-3):209-214
    [69] M. H. Al-Mansoori, S. J. Iqbal, M. K. Abdullah, et al. Low threshold characteristics ofan L-band Brillouin-erbium comb fiber laser in a linear cavity. J. Opt. Soc. Am. B,2006,23(11):2281-2284
    [70] M. K. Abd-Rahman, M. K. Abdullah, H. Ahmad. Multiwavelength, bidirectionaloperation of twin-cavity Brillouin/erbium fiber laser. Optics Communications,2000,181(1-3):135-139
    [71] Y. J. Song, L. Zhan, S. Hu, et al. Tunable multiwavelength Brillouin-erbium fiber laserwith a polarization-maintaining fiber Sagnac loop filter. IEEE Photonics TechnologyLetters,2004,16(9):2015-2017
    [72] Y. J. Song, L. Zhan, J. H. Ji, et al. Self-seeded multiwavelength Brillouin-erbiumfiberlaser. Optics Letters,2005,30(5):486-488
    [73] L. Zhan, J. H. Ji, J. Xia, et al.160-line multiwavelength generation of linear-cavityself-seeded Brillouin-Erbium fiber laser. Optics Express,2006,14(22):10233-10238
    [74] R. Sonee Shargh, M. H. Al-Mansoori, S. B. A. Anas, et al. OSNR enhancementutilizing large effective area fiber in a multiwavelength Brillouin-Raman fiber laser.Laser Physics Letters,2011,8(2):139-143
    [75] A. Ramzia Salem, M. Al-Mansoori, H. Hizam, et al. Multiwavelength L-band fiberlaser with bismuth-oxide EDF and photonic crystal fiber. Applied Physics B,2010.1-6
    [76] S.W. Harun, S.D. Emami, F. Abd Rahman, et al. Multiwavelength Brillouin/Erbium-Ytterbium fiber laser. Laser Physics Letters,2007,4(8):601-603
    [77] X. Bao, D. J. Webb, D. A. Jackson.22km distributed strain sensor using Brillouin lossin an optical fibre. Optics Communications,1994,104(4-6):298-302
    [78] K. Kishida, L. CheHiena, K. i. Nishiguch. Pulse pre-pump method for cm-orderspatial resolution of BOTDA. SPIE,2005,5855:559-462
    [79] F. Ravet, L. Chen, X. Bao, et al. Theoretical study of the effect of slow light onBOTDA spatial resolution. Optics Express,2006,14(22):10351-10358
    [80] W. Li, X. Bao, Y. Li, et al. Differential pulse-width pair BOTDA for high spatialresolution sensing. Optics Express,2008,16(26):21616-21625
    [81] Y. Dong, L. Chen, X. Bao. High-Spatial-Resolution Time-Domain SimultaneousStrain and Temperature Sensor Using Brillouin Scattering and Birefringence in aPolarization-Maintaining Fiber. IEEE Photonics Technology Letters,2010,22(18):1364-1366
    [82] Y. Li, X. Bao, Y. Dong, et al. A Novel Distributed Brillouin Sensor Based on OpticalDifferential Parametric Amplification. Journal of Lightwave Technology,2010,28(18):2621-2626
    [83] M. A. Soto, G. Bolognini, F. Di Pasquale, et al. Simplex-coded BOTDA fiber sensorwith1m spatial resolution over a50km range. Optics Letters,2010,35(2):259-261
    [84] M. A. Soto, G. Bolognini, F. Di Pasquale. Optimization of long-range BOTDA sensorswith high resolution using first-order bi-directional Raman amplification. OpticsExpress,2011,19(5):4444-4457
    [85] K. Shimizu, T. Horiguchi, Y. Koyamada, et al. Coherent self-heterodyne BrillouinOTDR for measurement of Brillouin frequency shift distribution in optical fibers.Journal of Lightwave Technology,1994,12(5):730-736
    [86] T. R. Parker, M. Farhadiroushan, V. A. Handerek, et al. A fully distributedsimultaneous strain and temperature sensor using spontaneous Brillouin backscatter.IEEE Photonics Technology Letters,1997,9(7):979-981
    [87] K. De Souza, T. P. Newson. Brillouin-based fiber-optic distributed temperature sensorwith optical preamplification. Optics Letters,2000,25(18):1331-1333
    [88] H. H. Kee, G. P. Lees, T. P. Newson. All-fiber system for simultaneous interrogation ofdistributed strain and temperature sensing by spontaneous Brillouin scattering. OpticsLetters,2000,25(10):695-697
    [89] V. Lecoeuche, M. W. Hathaway, D. J. Webb, et al.20-km distributed temperaturesensor based on spontaneous Brillouin scattering. IEEE Photonics Technology Letters,2000,12(10):1367-1369
    [90] S. M. Maughan, H. H. Kee, T. P. Newson.57-km single-ended spontaneousBrillouin-based distributed fiber temperature sensor using microwave coherentdetection. Optics Letters,2001,26(6):331-333
    [91] H. Ohno, H. Naruse, M. Kihara, et al. Industrial Applications of the BOTDR OpticalFiber Strain Sensor. Optical Fiber Technology,2001,7(1):45-64
    [92] N. Nitta, M. Tateda, T. Omatsu. Spatial Resolution Enhancement in BOTDR bySpectrum Separation Method. Optical Review,2002,9(2):49-44
    [93] M. N. Alahbabi, Y. T. Cho, T. P. Newson.100km distributed temperature sensor basedon coherent detection of spontaneous Brillouin backscatter. Measurement Science andTechnology,2004,15(8):1544-1547
    [94] T. Horiguchi, M. Tateda. Optical-fiber-attenuation investigation using stimulatedBrillouin scattering between a pulse and a continuous wave. Optics Letters,1989,14(8):408-410
    [95] X. Bao, J. Dhliwayo, N. Heron, et al. Experimental and Theoretical Studies on aDistributed Temperature Sensor Based on Brillouin Scattering. Journal of LightwaveTechnology,1995,13(7):1340-1348
    [96] S. Kwang Yong, K. Hotate. Distributed Fiber Strain Sensor With1-kHz Sampling RateBased on Brillouin Optical Correlation Domain Analysis. IEEE Photonics TechnologyLetters,2007,19(23):1928-1930
    [97] S. Kwang-Yong, K. Hotate. Enlargement of measurement range in a Brillouin opticalcorrelation domain analysis system using double lock-in amplifiers and a single-sideband modulator. IEEE Photonics Technology Letters,2006,18(3):499-501
    [98] Seok-Beom Cho, J.-J. Lee. Strain event detection using a double-pulse technique of aBrillouin scattering-based distributed optical fiber sensor. Optics Express,2004,12(18):4339-4346
    [99] Y. Koyamada, Y. Sakairi, N. Takeuchi, et al. Novel Technique to Improve SpatialResolution in Brillouin Optical Time-Domain Reflectometry. IEEE Photonics TechnologyLetters,2007,19(23):1910-1912
    [100] A. W. Brown, B. G. Colpitts, K. Brown. Distributed sensor based on dark-pulseBrillouin scattering. IEEE Photonics Technology Letters,2005,17(7):1501-1503
    [101] A. W. Brown, B. G. Colpitts, K. Brown. Dark-Pulse Brillouin Optical Time-DomainSensor With20-mm Spatial Resolution. Journal of Lightwave Technology,2007,25(1):381-386
    [102] F. Wang, X. Bao, L. Chen, et al. Using pulse with a dark base to achieve high spatialand frequency resolution for the distributed Brillouin sensor. Optics Letters,2008,33(22):2707-2709
    [103] Y. Dong, X. Bao, W. Li. Differential Brillouin gain for improving the temperatureaccuracy and spatial resolution in a long-distance distributed fiber sensor. AppliedOptics,2009,48(22):4297-4301
    [104] Y. Dong, L. Chen, X. Bao. Extending the sensing range of Brillouin optical time-domain analysis combining frequency-division multiplexing and in-line EDFAs.Journal of Lightwave Technology,2011, DOI:10.1109/JLT.2011.2170813(Correctedproof)
    [105] R. Bernini, A. Minardo, L. Zeni. Reconstruction technique for stimulated Brillouinscattering distributed fiber-optic sensors. Optical Engineering,2002,41(9):2186-2194
    [106] K. D. Souza, T. P. Newson. Signal to noise and range enhancement of a Brillouinintensity based temperature sensor. Optics Express,2004,12(12):2656-2661
    [107] S. Afshar V, X. Bao, L. Zou, et al. Brillouin spectral deconvolution method forcentimeter spatial resolution and high-accuracy strain measurement in Brillouinsensors. Optics Letters,2005,30(7):705-707
    [108] Q. Yu, X. Bao, F. Ravet, et al. Simple method to identify the spatial location betterthan the pulse length with high high strain accuracy. Optics Letters,2005,30(17):2215-2217
    [109] F. Ravet, X. Bao, Q. Yu, et al. Criterion for subpulse-length resolution and minimumfrequency shift in distributed Brillouin sensors. IEEE Photonics Technology Letters,2005,17(7):1504-1506
    [110] F. Wang, X. Zhang, Y. Lu, et al. Spatial resolution analysis for discrete Fouriertransform-based Brillouin optical time domain reflectometry. Measurement Scienceand Technology,2009,20:1-5
    [111] T. Sperber, A. Eyal, M. Tur, et al. High spatial resolution distributed sensing in opticalfibers by Brillouin gain-profile tracing. Optics Express,2010,18(8):8671-8679
    [112] T. R. Parker, M. Farhadiroushan, R. Feced, et al. Simultaneous distributed measurementof strain and temperature from noise-initiated Brillouin scattering in optical fibers.IEEE Journal of Quantum Electronics,1998,34(4):645-659
    [113] J. Smith, A. Brown, M. DeMerchant, et al. Simultaneous Strain and TemperatureMeasurement using a Brillouin Scattering Based Distributed Sensor. Applied Optics,1999,38(25):6
    [114] X. Bao, Q. Yu, L. Chen. Simultaneous strain and temperature measurementswithpolarization-maintaining fibers and their error analysisby use of a distributed Brillouinloss system. Optics Letters,2004,29(12):1342-1344
    [115] L. Zou, X. Bao, S. Afshar V, et al. Dependence of the Brillouin frequency shift onstrain and temperaturein a photonic crystal fiber. Optics Letters,2004,29(13):1485-1487
    [116] R. W.Boyd. Noise initiation of stimulated Brillouin scattering. Physical Review A,1990,42(9):5514
    [117] A. Kobyakov, M. Sauer, D. Chowdhury. Stimulated Brillouin scattering in opticalfibers. Advances in Optics and Photonics,2010,2(1):1-59
    [118] G. P.Agrawal.非线性光纤光学原理及应用.(第二版).北京:电子工业出版社,2010.25-29
    [119] L. Chen, X. Bao. Analytical and numerical solutions for steady state stimulatedBrillouin scattering in a single-mode fiber. Optics Communications,1998,152:65-70
    [120] C. L. Tang. Saturation and Spectral Characteristics of the Stokes Emission in theStimulated Brillouin Process. Journal of Applied Physics,1966,37(8):2945-2955
    [121] Z. Ou, J. Li, L. Zhang, et al. An approximate analytic solution of the steady stateBrillouin scattering in single mode optical fiber without neglecting the attenuationcoefficient. Optics Communications,2009,282(18):3812-3816
    [122] R. G. Smith. Optical Power Handling Capacity of Low Loss Optical Fibers asDetermined by Stimulated Raman and Brillouin Scattering. Applied Optics,1972,11(11):2489-2494
    [123] T. Horiguchi, T. Kurashima. Tensile Strain Dependence of Brillouin Frequency Shiftin Silica Optical Fibers. IEEE Photonics Technology Letters,1989,1(5):107-108
    [124] K. Inoue. Brillouin threshold in an optical fiber with bidirectional pump lights. OpticsCommunications,1995,120(1-2):34-38
    [125] M. Ajiya, M. A. Mahdi, M. H. Al-Mansoori, et al. Reduction of stimulated Brillouinscattering threshold through pump recycling technique. Laser Physics Letters,2009,6(7):535-538
    [126] H. A. Al-Asadi, M. H. Al-Mansoori, M. Ajiya, et al. Effects of pump recyclingtechnique on stimulated Brillouin scattering threshold: a theoretical model. OpticsExpress,2010,18(21):22339-22347
    [127] C. Hanisch, A. Heuer, R.Menzel. Threshold reduction of stimulated Brillouinscattering (SBS) using fiber loop schemes. Applied Physics B,2001,73:851-854
    [128] F. Ravet, J. Snoddy, X. Bao, et al. Power thresholds and pump depletion in Brillouinfiber amplifiers. The Open Optics Journal,2008,2:1-5
    [129] T. R. Parker, M. Farhadiroushan, V. A. Handerek, et al. Temperature and straindependence of the power level and frequency of spontaneous Brillouin scattering inoptical fibers. Optics Letters,1997,22(11):787-789
    [130] J. Tang, J. Sun, T. Chen, et al. A stable optical comb with double-Brillouin-frequencyspacing assisted by multiple four-wave mixing processes. Optical Fiber Technology,2011,16(6):608-611
    [131] K. S. Abedin. Single-frequency Brillouin lasing using single-mode As2Se3chalcogenidefiber. Optics Express,2006,14(9):4037-4042
    [132]王承威.用于产生太赫兹波的双频光纤激光器研究:[硕士学位论文].武汉:华中科技大学图书馆,2009
    [133] J. Tang, J. Sun. Stable and widely tunable wavelength-spacing single longitudinalmode dual-wavelength erbium-doped fiber laser. Optical Fiber Technology,2010,16(5):299-303
    [134] G. Chen, D. Huang, X. Zhang, et al. Photonic generation of a microwave signal byincorporating a delay interferometer and a saturable absorber. Optics Letters,2008,33(6):554-556
    [135] K. Zhang, J. U. Kang. C-band wavelength-swept single longitudinal mode erbiumdoped fiber ring laser. Optics Express,2008,16(18):14173-14179
    [136] C.-C. Lee, Y.-K. Chen, S.-K. Liaw. Single-longitudinal-mode fiber laser with a passivemultiple-ring cavity and its application for video transmission. Optics Letters,1998,23(5):358-360
    [137] B. Dong, D.-P. Zhou, L. Wei. Tunable multiwavelength Brillouin-Erbium fiber laserby controlling self-lasing cavity modes' oscillation. Optical Fiber Technology,2010,16(1):17-19
    [138] S. Saharudin, M. K. Abdullah, M. A. Mahdi. Enhancement of Brillouin stokes powersin multiwavelength fiber laser utilizing band-pass filter. Microwave and OpticalTechnology Letters,2004,40(5):408-410
    [139] M. N. M. Nasir, Z. Yusoff, M. H. Al-Mansoori, et al. Broadly tunable multi-wavelength Brillouin-erbium fiber laser in a Fabry-Perot cavity. Laser Physics Letters,2008,5(11):812-816
    [140] M. A. Mahdi, M. H. Al-Mansoori, M. Premaratne. Enhancement of multiwavelengthgeneration in the L-band by using a novel Brillouin-Erbium fiber laser with a passiveEDF booster section. Optics Express,2007,15(18):11570-11575
    [141] M. H. Al-Mansoori, M. A. Mahdi. Multiwavelength L-Band Brillouin–Erbium CombFiber Laser Utilizing NonlinearAmplifying Loop Mirror. Journal of LightwaveTechnology,2009,27(22):5038-5044
    [142] X. Chen, Z. Deng, J. Yao. Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser. IEEE Transactions on MicrowaveTheory and Techniques,2006,54(2):804-809
    [143] J. Zhou, L. Xia, X. Cheng, et al. Photonic generation of tunable microwave signals bybeating a dual-wavelength single longitudinal mode fiber ring laser. Applied Physics B,2008,91(1):99-103
    [144] S. Gao, Y. Gao, S. He. Photonic generation of tunable multi-frequency microwavesource. Electronics Letters,2010,46(3):247-248
    [145] Shiming Gao, Hongyan Fu, Ying Gao. Photonic generation of microwave/millimeter-wave sources without cavity or modulation using fiber stimulated Brillouin scattering.Microwave and Optical Technology Letters,2009,51(5):1203-1206
    [146] G. F. Shen, X. M. Zhang, H. Chi, et al. Microwave/millimeter-wave generation usingmulti-wavelength photonic crystal fiber Brillouin laser. Progress in ElectromagneticsResearch-Pier,2008,80:307-320
    [147] D. Geng, D. Yang, X. Zhang, et al. All-optical generation of microwave using aphotonic crystal fiber Brillouin laser based on Bragg grating Fabry-Perot cavity.Microwave and Optical Technology Letters,2008,50(3):809-814
    [148] Y. M. Chang, J. H. Lee. High-Q, tunable, photonic microwave single passband filterbased on stimulated Brillouin scattering and fiber Bragg grating filtering. OpticsCommunications,2008,281(20):5146-5150
    [149] P. Chul Soo, L. Chung Ghiu, P. Chang-Soo. Photonic Frequency Upconversion Basedon Stimulated Brillouin Scattering. IEEE Photonics Technology Letters,2007,19(10):777-779
    [150] J. Sun, Y. Huang, H. Li, et al. Photonic generation of microwave signals usingdual-wavelength single-longitudinal-mode fiber lasers. Optik,2011,122(9):764-768
    [151] X. He, D. N. Wang, C. R. Liao. Tunable and Switchable Dual-Wavelength Single-Longitudinal-Mode Erbium-Doped Fiber Lasers. Journal of Lightwave Technology,2011,29(6):842-849
    [152] D. Chen, H. Fu, W. Liu, et al. Dual-wavelength single-longitudinal-mode erbium-doped fibre laser based on fibre bragg grating pair and its application in microwavesignal generation. Electronics Letters,2008,44(7):459-461
    [153] D. Culverhouse, K. Kalli, D. A. Jackson. Stimulated Brillouin scattering ring resonatorlaser for SBS gain studies and microwave generation. Electronics Letters,1991,27(22):2033-2035
    [154] T. Schneider, D. Hannover, M. Junker. Investigation of Brillouin scattering in opticalfibers for the generation of Millimeter waves. Journal of Lightwave Technology,2006,24(1):295-304
    [155] K. Y. Song, M. G. Herráez, L. Thévenaz. Observation of pulse delaying andadvancement in optical fibers using stimulated Brillouin scattering. Optics Express,2005,13(1):82-88
    [156] Y. G. Shee, M. A. Mahdi, M. H. Al-Mansoori, et al. All-optical generation of a21GHzmicrowave carrier by incorporating a double-Brillouin frequency shifter. OpticsLetters,2010,35(9):1461-1463
    [157] A. Cerqueira Sodre, J. M. Chavez Boggio, A. A. Rieznik, et al. Highly efficientgeneration of broadband cascaded four-wave mixing products. Optics Express,2008,16(4):2816-2828
    [158] S. C. Arismar Jr, J. D. Marconi, H. E. Hernandez-Figueroa, et al. Broadband cascadedfour-wave mixing by using a three-pump technique in optical fibers. OpticsCommunications,2009,282(22):4436-4439
    [159] Y. Han, S. Lee. Flexibly tunable multiwavelength erbium-doped fiber laser based onfour-wave mixing effect in dispersion-shifted fibers. Optics Express,2005,13(25):10134-10139
    [160]张瑞宝,刘红军,杨延龙等.双泵浦光子晶体光纤参量放大研究.光子学报,2006,(08):1137-1141
    [161] X. S. Liu, L. Zhan, X. Hu, et al. Multiwavelength erbium-doped fiber laser based onnonlinear polarization rotation assisted by four-wave-mixing. Optics Communications,2009,282(14):2913-2916
    [162] D. Chen, B. Sun. Multi-wavelength fiber optical parametric oscillator withultra-narrow wavelength spacing. Optics Express,2010,18(17):18425-18430
    [163] J. Li, L. R. Chen. Tunable and reconfigurable multiwavelength fiber optical parametricoscillator with25GHz spacing. Optics Letters,2010,35(11):1872-1874
    [164] D. S. Lim, H. K. Lee, K. H. Kim, et al. Generation of multiorder Stokes and anti-Stokes lines in a Brillouin erbium-fiber laser with a Sagnac loop mirror. Optics Letters,1998,23(21):1671-1673
    [165]赵亮.基于高非线性光纤的多级四波混频效应及其应用研究:[博士学位论文].武汉:华中科技大学图书馆,2011
    [166] C.-H. Chang, H. Lin, Y.-S. Huang, et al. Multi-wavelength-switchable and UniformErbium-doped Fiber Laser Using Unbalanced In-line Sagnac Interferometer. OpticsExpress,2007,15(19):12450-12456
    [167] J. Hansryd, P. A. Andrekson, M. Westlund, et al. Fiber-based optical parametricamplifiers and their applications. IEEE Journal of Selected Topics in QuantumElectronics,2002,8(3):506-520
    [168] P. O. Hedekvist, M. Karlsson, P. A. Andrekson. Fiber four-wave mixing demultiplexingwith inherent parametric amplification. Journal of Lightwave Technology,1997,15(11):2051-2058
    [169] M. R. Shirazi, N. S. Shahabuddin, S. N. Aziz, et al. A linear cavity Brillouin fiber laserwith multiple wavelengths output. Laser Physics Letters,2008,5(5):361-363
    [170] X. Liu, X. Zhou, C. Lu. Multiple four-wave mixing self-stability in optical fibers.Physical Review A,2005,72(1):013811
    [171] X. Liu, X. Zhou, C. Lu. Four-wave mixing assisted stability enhancement: theory,experiment, and application. Optics Letters,2005,30(17):2257-2259
    [172] M. Ajiya, M. A. Mahdi, M. H. Al-Mansoori, et al. Broadly tunable multiplewavelength Brillouin fiber laser exploiting erbium amplification. J. Opt. Soc. Am. B,2009,26(9):1789-1794
    [173] L. Zhao, J. Sun. Research into the gain characteristics of the highly nonlinearfiber-based degeneration four-wave mixing in the presence of dispersion fluctuations.Optical Engineering,2009,48(8):085001
    [174] X. Liu, C. Lu. Self-stabilizing effect of four-wave mixing and its applications onmultiwavelength erbium-doped fiber lasers. IEEE Photonics Technology Letters,2005,17(12):2541-2543
    [175] Y.-G. Han, T. Van Anh Tran, S. B. Lee. Wavelength-spacing tunable multiwavelengtherbium-doped fiber laser based on four-wave mixing of dispersion-shifted fiber. OpticsLetters,2006,31(6):697-699
    [176] A. A. Fotiadi, R. V. Kiyan. Cooperative stimulated Brillouin and Rayleigh backscatteringprocess in optical fiber. Optics Letters,1998,23(23):1805-1807
    [177] Y. Koyamada. Proposal and simulation of double-pulse brillouin optical time-domainanalysis for measuring distributed strain and temperature with cm spatial resolution inkm-long fiber. IEICE Transactions on Communications,2007, E90-B(7):1810-1815
    [178] S. Afshar V, G. A. Ferrier, X. Bao, et al. Effect of the finite extinction ratio of anelectro-optic modulator on the performance of distributed probe-pump Brillouinsensorsystems. Optics Letters,2003,28(16):1418-1420

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700