实用化光纤光栅传感器和微结构光纤光栅传感器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文是在国家科技部973计划项目和天津市科委重点攻关项目等课题的支持下完成的。本论文的研究重点为:用于分布式光纤光栅传感解调系统中的可实用化的温度和应变传感器、基于FP解调的传感解调系统的研制、微结构光纤光栅和微结构光纤光栅传感的研究。本论文的主要研究内容包括:
     1、总结了分布式光纤传感技术和准分布式光纤光栅传感技术的研究进展以及分布式传感的优越性并介绍了光纤光栅传感原理。对光纤光栅的分类进行了详细的论述,介绍了微结构光纤的理论分析方法。
     2、系统介绍了光纤光栅的理论分析方法,并利用这些方法中的耦合模理论、传输矩阵法和傅立叶变换法对布拉格光栅、长周期光栅、啁啾光栅的光谱特性进行了分析并详细介绍了光纤光栅传感的复用技术和解调技术。
     3、设计制作了实用化的光纤光栅温度传感器和应变传感器。对温度、应变传感器的传感原理和封装结构分别做了详细介绍。采用自动控温系统和数据自动采集系统测试传感器,提高了测试数据的准确性。应用差分等数据处理方法对大量数据进行分析,测试数据表明我们研制的温度、应变传感器重复性良好,线性拟和度高,达到了实际应用的要求。
     4、应用FP解调技术研制了光纤光栅传感网络系统。该系统以光纤光栅作为传感基元,采用了波分复用(WDM)、空分复用(SDM)相结合的技术,给出了系统的指标,并用于温度场和应变场的测试。实验结果表明,该系统具有很高的测量精度和实际应用潜力。
     5、进行了微结构光纤与普通单模光纤的熔接现象和熔接损耗的研究与分析,给出了一组相对理想的熔接参数和一种相对理想的熔接方法,利用全矢量有限单元方法数值模拟了微结构光纤中的低阶和高阶模场,计算了柚子型微结构光纤光栅的耦合波长。并利用微结构光纤光栅进行了温度、应变传感方面的初步实验,取得了一些有价值的实验结果。
This thesis focuses on the application of fiber Bragg grating (FBG) sensor and FBG sensing networks. The principles of the distributed fiber sensor and distributed FBG sensing technology are introduced. The FBG sensing technology, network multiplexing technology, and demodulation technology are mentioned in this dissertation. The FBG type and fabrication method have also been summarized. We have studied the application of FBG in temperature and strain sensing and highly precise and stable demodulation system. The experimental results are fairly good. The property of microstructure optic fiber (MOF)is researched in the thesis. We have analyzed and discussed the splicing loss between the MOF and the SMF, numerically simulated the fundamental and higher modes of the MOF, calculated the coupling wavelength of the MOF LPG(long-period grating) ,and utilized the MOF FBG in the field of fiber sensing.
     This thesis is supported by the national 973 project and key program sponsored by Tianjin science and technology committee. In this thesis, we have studied the FBG sensor used in the distributed FBG sensing demodulation system, FBG sensing networks based on the FP demodulation technology and MOF & MOF FBG. The main contents of the paper are listed as follows:
     1. The general development situation of the distributed fiber sensing technology, the distributed FBG sensing technology and the advantages of the distributed FBG sensing technology are summarized at first. Then we introduce the principles of the FBG sensing, FBG classification and theoretical analyzing method of the MOF.
     2.Several theoretical analysis methods of fiber grating characteristics are presented, including the mode-coupling theory, transfer matrix method,multi-film method and Fourier transfer method. The spectra of the FBG and LPG have been analyzed by these methods. The multiplexing techniques and fiber grating demodulation methods are introduced in this dissertation.
     3.We have designed and made the FBG-based temperature and strain sensors. The sensing principle and packaging configuration of the sensors are demonstrated. By using the automatic temperature control system and the automatic data acquisition system, the data precision has been greatly enhanced. The experimental data processed with new method show a good linearity and repetition of the sensor. The R2 is high enough to meet the demand in practical applications.
引文
1. 常胜,李伟良 分布式光纤温度传感检测技术及其应用. 广东电力 2002 年 第 15 卷 第4 期
    2. K.O.Hill, Y.Fuji, D.C.Jonson and B.S.Kawasaki. Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication. Appl. Phys. Lett. 1978,32:647~649.
    3. G.Meltz, W.W.Morey and H.Glenn. Formation of Bragg gratings in optical fibers by a transverse holographic method. Opt.Lett. 1989, 14: 823~825.
    4. K.O.Hill,B.Malo, F.Bilodeau, D.C.Johnson and J.Albert. Bragg grating fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask. Appl. Phys. Lett. 1993,62:1035~1037.
    5. P. J. Lemaire, R. M. Atkins, V. Mizrahi et al. High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibers. Electronics Letters, 1993,29(13):1191~1193
    6. W.X.Xie, P.Niay, P.Bernage, M.Douay, J.F.Bayon,T.Georges, M.Monerie, and B.Poumellec. Experimental evidence of two types of photorefractive effects occurring during photoinscriptions of Bragg gratings written within germanosilicate fiber. Optics Communications .1993,104:185~195
    7. Othonos amd K.Kslli. Fiber Bragg Gratings: fundamentals and Applications in Telecommuniccations and Sensing. Artech House,Boston,1999.
    8. H.J.Patrick, C.C.Chang, S.T. Vohhra. Long period fiber gratings for structural bend sensing. Electron. Lett. 1998,34(18):1773~1775
    9. R.Kashyap, R.Wyatt and R.J.Campbell. Wideband gain flattened erbium fiber amplifier using a photosensitive fiber blazed grating. Electron. Lett. 1993, 29(2): 154~156.
    10. J.A.R.Williams et al.. Fiber dispersion compensation using a chirped in-fiber Bragg grating Electron. Lett. 1994, 30(12): 985~987.
    11. R.Zengerle and O.Leminger. Phase-shifted Bragg Filters with improved transmission characteristics. IEEE Journal of Lightwave Tech. 1995,13:2354~2358
    12. M.A.Putnam, G.M.Williams and R.J.Friebele. Fabrication of tapered, strain-gradient chirped fiber Bragg gratings. Electron. Lett. 1995,31(4):309~310
    13. B.J.Eggleton, P.A.Krug, L.Poladian and F.Ouellette. Long periodic superstructure Bragg gratings in optical fibers. Electron.Lett. 1994,30(19):1620~1622.
    14. Bennion, J.A.R.Williams, L.Zhang, K.Sugden and N.J.Doran. UV-written in-fiber Bragg grating. Optical and Quantum Electronics,1996,28:93~135
    15. Ibsen, B.J.Eggleton, M.G.Sceats et al.. Broadly tunable DBR fiber laser using sampled fiber Bragg gratings. Electron.Lett. 1995,31:37~38.
    16. H.Storoy, H.E.Engan, B.Sahlgren and R.Stubbe. Position weighting of fiber Bragg gratings for bandpass filtering. Opt.Lett. 1997,22(11):784~786.
    17. M.Ibsen, B.J.Eggleton, M.G.Sceats et al.. Broadly tunable DBR fiber laser using sampled fiber Bragg gratings. Electron.Lett. 1995,31: 37~38
    18. H.Storoy, H.E.Engan, B.Sahlgren et al. Position weighting of fiber Bragg gratings for bandpass filtering. Opt.Lett. 1997,22(11):784~786
    19. H. N. Rourke, S. R. Baker, K. C. Byron, et al, Fabrication and characterization of long, narrowband fibre gratings by phase mask scanning. Electron Lett. 1994,30(16):1341~1342
    20. Cole M. J., Loh W. H., Laming R. I., et al, Moving fiber/phase mask-scanning beam technique for enhanced flexibility in producing fiber gratings with a uniform phase mask. Electron. Lett. 1995,31(17): 92~94
    21. Hill K. O., Bilodeau F., Malo B., et al, Efficient mode conversion in telecommunication fiber using externally written gratings, Electron. Lett. 1990, 26:1270~1272
    22. A.D. Kersey, et al., Fiber grating sensors, J. Lightwave Technol., 1997,15:1442
    23. Yunqi Liu, Zhuanyun Guo, Ying Zhang et al. Simultaneous pressure and temperature measurement with a polymer-coated fibre Bragg grating. Electronics Letters, 2000, 36 (6): 564~566
    24. Measures R M, Alavie T, Maakant R et al. Bragg grating fiber optic sensing for bridge and other structure.Second European Conference on Smart Structures and Materials, Glagow, Scotland, 12-14, October, 1994d, SPIE, 1994D: 162-167.
    25. Gusmeroli V, Martinelli M, Barberis A. Thermal expansion messurements of a concrete structure by embedded fiber optic an effective example of simultaeous strail-temperature detection, Second European Conference on Smart Structures and Materials. Glagow, Scotland, 12-14, October, 1994d, SPIE, 1994D: 220-223.
    26. M. Aufleger, Th. Strobl, J. Dornstadter. Fibre Optic Temperature Measurements for Dam Monitoring [C]. International Conference on Health Monitoring of Civil Infrastructure Systems, 24-26, October, 1994, Chongqing University Press, 121-128.
    27. 胡晓东,胡小唐,刘文晖.基于布里渊放大的分布式光纤温度传感技术的研究 [J].天津大学学报,1999,(11): 678-681.
    28. 张在宣,郭宁,余向东,吴孝彪.分布式光纤传感温度报警系统 [J].计量技术,2000,(2):24-26.
    29. Limpert J., Schreiber T., Nolte S., et. al. “All fiber chirped-pulse amplification system based on compression in air-guiding phototnic bandgap fiber” Opt.Exp., 2003,11(24),3332-3337.
    30. Benabid F., Knight J. C., G. Antonopoulos, et. al. “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber” Science, 2002 298(5592):399-402
    31. Wadsworth W. J., Knight J. C., Reeves W. H., et. al. “Yb3+-doped photonic crytal fibre laser” Electron. Lett., 2000, 36(17): 1452-1453.
    32. E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physical Electronics”, Physical Rev. Lett, 58, 2059-2062 (1987)
    33. S. John, “Strong Localization of Photons in Certain Dielectric Superlattices”, Physical Rev. Lett, 58,2086-2089 (1987)
    34. J. C. Knight, T. A. Birks, et. al., “All-silica single-mode optical fiber with photonic crystal cladding,” Optics Lett., vol.21, pp.1547-1549, 1996
    35. T. A. Birks, J. C. Knight, et. al., “Endlessly single-mode photonic crystal fiber” Optics Lett, vol.22,pp.961-963,1997
    36. J. C. Knight, J. Broeng, et al., “Photonic band gap guidance in optical fibers,” Science,vol. 282,pp.1476-1478,1998.
    37. E. Yablonovitch, Physical Review Lett., vol. 58, pp. 2059, 1987
    38. M. Koshiba, “full-vector analysis of photonic crystal fibers using the finite elementmethod,” Ieice Transactions on Electronics, vol. E85c, pp.881-888,2002
    39. Y. Z. He and F. G. Shi, “Finite-difference imaginary-distance beam propagation method for modeling of the fundamental mode of photonic crystal fibers,” Optics Communications, vol. 225,pp.151-156,2003.
    40. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Optics Express, vol. 8,pp. 173-190, 2001.
    41. Z. M. Zhu and T. G. Brown, “full-vectorial finite-difference analysis of microstructured optical fibers,” Optics Express, vol. 10, pp. 853-864,2002
    42. T. P. White, B. T. Kuhlmey, et al., “Multipole method for microstructured optical fibers. I.Formulation,” Journal of the Optical Society of America B-Optical physics, vol. 19, pp. 2322-2330, 2002
    43. V. Mizrahi, et al., Optical properties of photosensitive fiber phase gratings, IEEE J. Lightwav. Techn. 1993, 11: 1513~1517
    44. Yariv. Coupled-mode theory for guided-wave optics. IEEE J. of Quantum Electron. 1973,QE-9:919~933.
    45. 董孝义编著,光波电子学. 南开大学出版社,1987 年 11 月版
    46. H. Kogelnik. Filter response of non uniform almost-periodic structures. Bell syst. Tech. J., 1976, 55(1):109~126.
    47. M. Yamada and K.Sakuda. Analysis of almost periodic distributed feedback slab waveguides via a fundamental matrix approach. Appl. Opts., 1987, 26(16):3474~3478.
    48. Weller-Brophy L.A. and Hall D.G. Analysis of waveguide gratings: a comparison of the results of Rouard’s method and coupled-mode theory. J. Opt. Soc. Am. 1987,A 4(1), 60-65.
    49. H.Kogelnick, “Filter response of non uniform almost-periodic gratings,” Bellsystem.Tech.J., 1976, 55(1):106-126.
    50. T. Erdogan, Fiber grating spectra, IEEE J. Lightwav. Tech. 1997, 15(8): 1277~1294.
    51. G.P.Agrawal and A.H.Bobeck. Modeling of distributed feedback semiconductor lasers with axially-varying parameters. IEEE J.of Quantum Electron. 1988,24:2407~2414.
    52. M.P. Rouard. Etudes des proprietes optiques des lames metalliques treminces. Annal. Phys. II 1973, 7(20)
    53. K.C.Byron, K.Sugden, T.Bircheno, and I.Bennion. Fabrication of chirped Bragg gratings in photosensitive fiber. Electron. Lett. 1993, 29(18):1659
    54. Eggleton, P.A.Krug, and L.Poladin. Dispersion compensation by using Bragg grating filters with self induced chirp. Tech. Digest of Opt. Fib. Comm. Conf., OFC’94, 227
    55. M. C.Farries, K.Sugden, D. C. J.Reid, I.Bennion, A.Molony, and M. J.Goodwin. Very broad reflection bandwidth (44nm) chirped fiber gratings and narrow-band pass filters produced by the use of an amplitude mask. Electron. Lett., 1994, 30(11):891-892
    56. Xu M G, Geiger H , Dakin J P. Fiber grating pressure sensor with enhanced sensitivity using a glass-bubble housing. Electron. Lett. 1996, 32 (2) :128~129
    57. 余有龙,刘志国,耿淑伟等. 光纤光栅力传感器的无源温漂补偿技术. 光学学报, 2000, 20 (3) :400~404
    58. 余有龙,谭华耀,何海律等. 高分辨率单信道输出的光纤光栅传感系统时域地址查询技术. 光学学报,2001 , 21(7) :874~877
    59. Y.N.Ning, A.Meldrum, J. Shiw. Bragg Grating sensing instrument using a tunable Fary-perot filter to detect wavelength variations. Meas. Sci.& Teechnol. 1998,9(6): 599~606
    60. Davis M A , Bellemore D G, Putnam M A et al . .Interrogation of 60 fiber Bragg grating sensors with microstrain resolution capability. Electron. Lett. , 1996, 32 (15) :1393~1394
    61. G.A.Ball, et al.. Fiber laser source/analyzer for Bragg grating sensor array interrogation. J.of Lightwave Tech. 1994,12(4):700~703.
    62. BERKOFF T. A, KERSEY A. D. Fiber Bragg grating array sensor system using a bandpass wavelength division multiplexer and interferometric detection IEEE Photon Technol Lett, 1996, 8(11):1552~1524
    63. Mizrahl V, Erdogan T. D, Digiovanni D. J,et al. Four channel fiber grating demultiplex[J], Electronics Letters, 1994,30(10):780~781
    64. T.A.Berkoff and A.D.Kersey. Eight element time-division multiplexed fiber grating sensor array with integrated-optic wavelength discriminator. Proc. of SPIE. 1994,2316: 350~353
    65. Y.J.Rao, K.K.Kalli, G.Brady, D.J.Webb, D.A.Jackson, L.Zhang and I.Bennion. Spatially multiplexed fiber-optic Bragg grating strain and temperature sensor system based on interferometric wavelength-shift detection. Electron. Lett. 1995,31(12):1009~1010
    66. Y.J.Rao, A.B.L.Ribeiro, D. A. Jackson et al. Simultaneous spatial, time and wavelength division multiplexed in-fiber grating sensing network. Opt. Commun. 1996,125:53~58
    67. P.Oberson, B.Huttner, O.Guinnard, et al. Optical frequency domain reflectometry with a narrow linewidth fiber laser[J], IEEE Photo. Tech. Lett., 2000, 12(7):867-869
    68. Y.J.Rao, D.A.Jackson, L.Zhang and I.Bennion. Combined spatial- and time- division-multiplexing scheme for fiber grating sensors with drift-compensated phase-sensitive detection. Opt. Lett. 1995,20(20):2149~2151.
    69. 余有龙、谭华耀、锺永康. 基于干涉解调技术的光纤光栅传感系统,光学学报,2001,21(8):987~989.
    70. 余 有 龙 、 谭 华 耀 . 有 源 波 、 空 分 复 用 光 纤 光 栅 传 感 网 络 , 中 国 激 光 , 2002,A29(2):131~134.
    71. A.D.Kersey, T.A.Berkoff and W.W.Morey. High-resokution fiber-grating based strain sensor with interferometric wavelength-shift detection. Electron. Lett. 1992,28(3):236~238.
    72. A.D.Kersey and T.A.Berkoff. Dual wavelength fiber interferometer with wavelength selection via fiber Bragg grating elements. Electron. Lett. 1992,28, (13):1215~1216.
    73. R.S.Weis, Member, IEEE, A.D.Kersey and T.A.Berkoff. A four-element fiber graring sensor array with phase-sensitive detection. IEEE Photo. Tech. Lett. 1994,6(12):1469~1472.
    74. Seunghwan Chung, Jungho Kim, Bong-Ahn Yu, etc. A Fiber Bragg Grating Sensor Demodulation Technique Using a Polarization Maintaing Fiber Loop Mirror, IEEE Photo Tech. Lett. 2001, Vol. 13, No.12:1343-1345.
    75. D.A.Jackson and A.B. Lobo Ribeiro, L.Reekie and J.L. Archambault. Simple multiplexing scheme for a fiber-optic grating sensor network. Opt. Lett. 1993,18(14):1192~1194.
    76. M.A. Davis and A.D.Kersy. Matched-filter interrogation technique for fiber Bragg grating arrays. Electron. Lett. 1995,31(10):822~823.
    77. L.a. Ferreira ,J.L. santos,and F. Farahi“Pseudoheterodyne demodulation technique for fiber Bragg grating sensors using two marched gratings ” IEEE Photo.Techn. Lett.,Vol.1997,9(4):487~489.
    78. Serge M.Melle, Kexing Liu and Raymond M.Measures. A passive wavelength demodulation system for guided-wav Bragg grating sensors. IEEE Photo.Tech.Lett. 1992,4(5):516-518.
    79. M.A.Davis and A.D.kersey. All-fiber Bragg grating strain-sensor demodulation technique using a wavelength division coupler. Electron. Lett. 1994,30(1):75-77.
    80. A.B.Lobo Riberiro, L.A.Ferreira, M.tsvetkov and J.L.Santos.. All-fiber interrogation technique for fiber Bragg sensors using a biconical fiber filter. Electron.Lett.. 1996,32(4):382~383.
    81. A.D.Kersey, T.A.Berkoff and W.W.Morey. Multiplexed fiber Bragg grating sreain-sensor system with a fiber Fabry-Perot wavelength filter. Opt. Lett. 1993,18(16):1370-1372.
    82. M.A.Davis, D.G.Bellemore and M.A.Putnam and A.D.Kersey.. Interrogation of 60 fiber Bragg grating sensors with microstrain resolution capability. Electron. Lett. 1996,32(10):1393~1394.
    83. Y.N.Ning, A.Meldrum, J. Shiw. Bragg Grating sensing instrument using a tunable Fary-perot filter to detect wavelength variations. Meas. Sci.& Teechnol. 1998,9(6):599~606.
    84. 刘云启,郭转运,刘志国等. “光纤光栅的压力传感特性研究,”光子学报,1999,28(5):443~445.
    85. D. Kersey, T. A. Berkoff, W. W. Morey. “Fiber-optic Bragg grating strain sensor with driftcompensated high-resolution interferometric wavelength-shift detection.” Opt. Lett., 1993, 18(1): 72~74.
    86. 梁龙彬,张伟刚,赵启大等, “基于光纤光栅的标准梁应变分析与测量,”光电子.激光,2001,12(11):1152~1155.
    87. Eggleton B. J., Westbroo P. S., Windeler R. S., “Grating resonances in air –silica microstructured optical fibers,” [J] Opt Lett,1999,24:1460-1462.
    88. Kakarantzas G., Birks T. A., Russell P. S., Structural long-period gratings in photonic crystal fibers [J].Optics Lett.,2002,27(12):1013-1015.
    89. Yinian Zhu, Ping Shum, Hin-Joo, Byoung Yoon Kim. Long-period fiber gratings based on periodic microbends[J]. Optics Lett.,1999,24(18):1263-1265.
    90. Humbert G, Malki A, Fevrier S et al., Electric arc-induced long-period gratings in Ge-free air-silica microstructure fibers[J]. Electronics Lett., 2003,39(4):349-350
    91. Groothoff N, Canning J, Ebuckley E et al., Bragg gratings in air silica structured fibers[J]. Optics Lett., 2003,28(4):233-235
    92. Lim J H, Jang H S, Lee K S et al., Mach-zehnder interferometer formed in a photonic crtystal fiber based on a pair of long-period fiber gratings[J]. Optics Lett., 2004,29(4):346-348
    93. 涂勤昌等 光子晶体光纤制备方法最新进展 激光与光电子学进展 2005
    94. P J Bennent, T M Monro, and D J Richardson Toward practical holey fiber technology: Fabrication, splicing, modeling, and characteri-zation. Optics Lett.,vol.24 pp.1203-1205, sept.1999.
    95. Joo Hin Chong, M K Rao, Yinian Zhu, and Ping Shum An effective splicing method on photonic crystal fiber using co2 laser. IEEE photon. Technol. Lett., vol 15,No.7,July 2003.
    96. J T Lizier and G E Town Splice Losses in Holey Optical Fibers. IEEE Photon. Technol.Lett.,vol.13,No.8,August 2001.
    97. S A Cooper and R W Erskine Jr., Practical guidelines for mass splicing. National Fiber Optic Engineers Conference, Technical Proceedings, 2001.
    98. O Kawata et al., A Splicing and Inspection Technique for Single-Modle Fibers Using Direct Core Monitoring. J. Lightwave Technol.,LT-2,No.2, pp 185-191(1984)
    99. 刘波. 光纤光栅传感系统的研究与实现. [理学博士学位论文]. 天津:南开大学. 2004.
    100. 罗建花. 工程化光纤光栅传感器及其网络解调系统研究. [理学硕士学位论文]. 天津:南开大学. 2005
    101. 王志. 光子晶体光纤及其功能型器件的研究. [理学博士学位论文]. 天津:南开大学. 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700