工程化光纤光栅传感器及其网络解调系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤光栅作为一种新型的传感器件,从它问世之日起就受到人们的广泛关注,在二十多年中实现了突飞猛进的发展。随着光纤光栅技术的不断完善发展,其在传感器领域的应用研究越来越引起人们的重视。
     光纤光栅传感器除了具有重量轻、耐腐蚀、抗电磁干扰、灵敏度高、结构紧凑等优点外,还有其独特的优越性,如探头尺寸小,其直径与光纤等同;易于与光纤耦合,耦合损耗小;波长调制型,抗干扰能力强;集传感与传输于一体且具有极强的复用能力,易于构成传感网络;测量对象广泛,易于实现多参数传感测量等等。这是基于上述其他传统传感器无可比拟的优点,使得光纤光栅传感器近年来在复合材料及混凝土结构状态检测、电力工业、医学以及能源化工等实际应用领域都取得了长足的进展。
     本论文是在国家科技部863计划项目、天津市科技重大攻关项目、天津市科委重点基金项目等的支持下完成的,主要研究内容有:
     1对传感技术进行了概要叙述,重点介绍了光纤传感技术和光纤光栅传感技术的现状和发展。对光纤光栅的发展、光纤光栅的分类和当前的一些光纤光栅的写入技术以及光纤光栅在光通信领域和传感领域的应用,作了简单介绍。
     2介绍了光纤光栅的理论特性分析,并分别利用耦合模理论、传输矩阵法和傅立叶变换法对各类型光纤光栅(布拉格光栅、长周期光栅、啁啾光栅)的光谱特性进行了分析。并详细介绍了光纤光栅传感中的解调技术以及复用技术。
     3在研究光纤光栅传感技术的基础上,针对工程化实际应用要求,初步设计制作了适合工程化应用的光纤光栅温度、应变传感器。对温度、应变传感器的传感原理和封装结构及工艺研究分别做了详细介绍。对大量实验数据的分析结果表明,我们所研制的温度、应变传感器基本达到了工程化实用的要求。
     4利用光纤光栅作为基本传感元件,设计研制了一种基于轮辐式压力盒装置的光纤光栅压力传感器。我们将两根不同波长的光栅粘贴在传感器同一轮辐的正反面上,提高了测量精度,减少了波长随温度漂移带来的影响。在0~30KN的范围内,其测量线性度达到99.98%,灵敏度达到13.89N,且响应速度快。与其它类型的光纤光栅压力传感器相比,轮辐式光纤光栅压力传感器具有更大的测量范围、更高的稳定性,更好的抗干扰能力。并且由于光纤光栅本身
As a new-type sensing element,fiber grating has gained abroad attention from it’s appearance and achieved high-speed development in the last 20 years. With the development of fiber grating technology, study on the application of FBG sensor has got more recognition.
     As a new component of sensor , fiber grating have many instinctive advantages, such as light in weight, anti-cauterization, anti-interference in electromagnetism, high-sensitivity and compaction in construction. It is very easy to be coupled with fibers and the coupling-loss is slight. Using fiber grating’s character of sensitivity for stress; people have done some envelope experiments on structural systems (such as storied buildings, bridge, railway and dam). Real-time detection and monitoring to stress (or strain) of structural systems have been put into effect. Martial researches in fiber grating hydrophone have also been developed.
     With the subjects supported by National Nature Science Fund Committee, Tianjin Science Committee, the main contents of this paper are as following:
     1 Depict generally on the sensor technique, and put emphases on the present situation and development of fiber and fiber Bragg grating sensor technique. Introduced briefly the developments, classification and the recent fabrication technology of fiber gratings. The application of fiber gratings in the fields of optical communication and the sensing are presented simply in this dissertation.
     2 Several theory analysis methods for properties of fiber gratings are presented including the coupled-mode theory, transfer matrix approach, multi-film method and Fourier transfer method. These methods have their own characteristics and scope of application. The methods of demodulation and multiplex technique used in fiber grating sensor are introduced in this dissertation.
     3 Using the FBG as the basic sensor unit, designed and fabricated fiber grating temperature and strain sensors which can be used for engineering application.
引文
[1] 刘波. 光纤光栅传感系统的研究与实现. [理学博士学位论文]. 天津:南开大学. 2004.
    [2] 刘迎春, 叶湘滨著. 现代新型传感器原理与应用. 北京:国防工业出版社, 1998.1
    [3] 于凌宇, 国内外传感器技术市场和发展状况. 传感器世界, 2000.7: 1~5
    [4] 孙传友 孙晓斌著,感测技术基础,北京:电子工业出版社,2001.8 123~124
    [5] 安毓英, 曾小东著. 光学传感与测量. 北京:电子工业出版社, 2001.3:168
    [6] 刘志国,张艺兵,开桂云等,新型光纤光栅线性调谐方法. 光学学报,1999,18(12):1731~1734
    [7] Weigang Zhang, Xiaoyi Dong, Dejun Geng et al. Linearly fiber grating-type sensing tuning by applying torsion stress. Electron Letters, 2000, 36(20): 1686~1688
    [8] 廖帮全,冯德军,赵启大等. 布拉格光纤光栅电流传感器的理论和实验研究. 光学学报,2002,22(9):1092~1095
    [9] Ying Zhang, Dejun Feng, Zhiguo Liu et al. High-Sensitivity Pressure Sensor Using A Shielded Polymer-Coated Fiver Bragg Grating, IEEE, Photonic Technology Letters, 13(6), 618~619
    [10] 姜德生,何伟. 光纤光栅传感器的应用概况. 光电子激光,2002,3(4): 420~430
    [11] Othonos and K.Kslli. Fiber Bragg Gratings fundamentals and Applications in Telecommuniccations and Sensing. Artech House, Boston, 1999
    [12] H.J.Patrick, C.C.Chang, S.T. Vohhra. Long period fiber gratings for structural bend sensing. Electron. Lett. 1998,34(18): 1773~1775
    [13] R.Kashyap, R.Wyatt and R.J.Campbell. Wideband gain flattened erbium fiber amplifier using a photosensitive fiber blazed grating. Electron. Lett. 1993, 29(2): 154~156
    [14] J. A. R. Williams. et al. Fiber dispersion compensation using a chirped in-fiber Bragg grating Electron. Lett. 1994, 30(12): 985~987
    [15] R.Zengerle and O.Leminger. Phase-shifted Bragg Filters with improved transmission characteristics. IEEE Journal of Lightwave Tech. 1995,13:2354~2358
    [16] M.A.Putnam, G.M.Williams and R.J.Friebele. Fabrication of tapered, strain-gradient chirped fiber Bragg gratings. Electron. Lett. 1995,31(4):309~310
    [17] B.J.Eggleton, P.A.Krug, L.Poladian and F.Ouellette. Long periodic superstructure Bragg gratings in optical fibers. Electron.Lett. 1994,30(19):1620~1622
    [18] I.Bennion, J.A.R.Williams, L.Zhang et al. UV-written in-fiber Bragg grating. Optical and Quantum Electronics,1996,28: 93~135
    [19] M.Ibsen, B.J.Eggleton, M.G.Sceats et al.. Broadly tunable DBR fiber laser using sampled fiber Bragg gratings. Electron.Lett. 1995,31: 37~38
    [20] H.Storoy, H.E.Engan, B.Sahlgren et al. Position weighting of fiber Bragg gratings for bandpass filtering. Opt.Lett. 1997,22(11):784~786
    [21] K. O. Hill, Y. Fuji, et al. Photo-sensitivity in optical fiber waveguildes: Application to reflection filter fabrication, Appl. Phys. Lett., 1978,32: 647~649
    [22] G. Meltz, W. W. Morey, and N. J. Doran. Formation og Bragg gratings in optical fibers by a transverse holographic method, Opt. Lett.1989, 14: 823~825
    [23] K. O. Hill, B. Malo, et al, Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask, Appl. Phys. Lett., 1993, 62: 1035~1037
    [24] H. N. Rourke, S. R. Baker, K. C. Byron, et al, Fabrication and characterization of long, narrowband fibre gratings by phase mask scanning. Electron Lett. 1994,30(16):1341~1342
    [25] Cole M. J., Loh W. H., Laming R. I., et al, Moving fiber/phase mask-scanning beam technique for enhanced flexibility in producing fiber gratings with a uniform phase mask. Electron. Lett. 1995,31(17): 92~94
    [26] Hill K. O., Bilodeau F., Malo B., et al, Efficient mode conversion in telecommunication fiber using externally written gratings, Electron. Lett. 1990, 26:1270~1272
    [27] Narayanan C, et al, Band-rejection fiber filter using period core deformation, Electron. Lett. 1997,33(4): 280~281
    [28] Davis D. D., Gaylord J. K., Glytsts E. N, et al, Long-period fiber grating fabrication with focused CO2 laser pulses, Electron. Lett. 1998, 34:302~303
    [29] B. Malo, K. O. Hill, F. Bilodeau, et al, Point-by-point fabrication of micro-Bragg grating in photosensitive fiber using single exciter pulse refractive index modification techniques, Electron. Lett. 1993,29(18):1668~1669
    [30] A.D. Kersey, et al., Fiber grating sensors, J. Lightwave Technol., 1997,15:1442
    [31] Friebele P,et al. Fibre Bragg grating strain sensors:present and future applications in smart structures. [J]. Optics and Photonics News, 1998, 9: 33~37
    [32] Slow ik V, et al. Fiber Bragg Grating Sensors in Concrete Technology. [J]. LACER, 1998, 8: 109~119
    [33] Internet reference:bssm.org/Conference Page008.html.
    [34] Vohra S T, et al. Quasi-Static Monitoring During the ‘Push’ Phase of a Box-Girder Bridge Using Fiber Bragg Grating Sensors. [A].European Workshop on Optical Fibre Sensors[C].Scotland, UK,1998
    [35] Nellen P, et al. Application of fiber optical and resistance strain gauges for long-term surveillance of civil engineering structures. [A]. Proc. SPIE[C]. 1997, 3043:77~86
    [36] Internet reference: gfz-potsdam. de/pb5/pb51/hrml/conny3.cn.htm.
    [37] Internet reference: gfz-potsdam. de/pb5/pb51/hrml/conny5.cn.htm.
    [38] Schulz, W L, et al. Internet reference: bluer.com/images/advFOS.pdf.
    [39] Internet reference: inventive fiber.com.sg.
    [40] Foote P D. Fiber Bragg grating strain sensors for aerospace smart structure. [A]. Proc.SPIE [C]. 1994, 2361: 162~166
    [41] Internet reference: nasatech.com/Briefs/Jun98/0698PTB1.html.
    [42] Internet reference: bluer.com/images/adhesive.pdf.
    [43] Ferdinand P, et al. Application of Bragg gratin sensors in Europe. [A]. Proc. Of the Optical Fiber Sensors Conf. (OFS-12) [C]. William sburg, VA, USA, 1997, 14~19
    [44] Hammon T E, et al. Optical fiber Bragg grating temperature sensor measurement in an electrical power transformer using a temperature compensated fiber Bragg grating as a reference. [A]. Proc. Of the 11th International Conf. On Optical Fibre Sensors [C]. Sapporo, Japan, 1996,566~569
    [45] Theune N M, et al. Applications of Fiber Optical Sensors in Power Generators: Current and Temperature Sensors. [A]. Proc. OPTO 2000 Conf.2000, 22~25
    [46] Kersey A D. Downhole monitoring in oil reservoirs, IEICE Trans. Electron. 2000, E83-C: 400~404
    [47] Internet reference: oil-offshore.com/companies/optoplan.html.
    [48] Weis W, et al. MWD telemetry system for coil-tubing drilling using optical fiber grating modulators downhole. [A]. Proc. Of the Optical Fiber Sensors Conf. (OFS-12) [C]. William sburg, VA, USA, 1997,416~419
    [49] Internet reference:Kvaerner.com/oilgas/pr/feature/january2000/composit.pdf
    [50] Internet reference: cidra.com/opticalsensingsystems/technology/bragg.grating. html
    [51] Meltz G, et al. Fiber grating evanescent-wave sensors. [A]. Proc. SPIE [C]. 1996, 2836: 342~350
    [52] Ecke W, et al. chemical Bragg grating sensor network basing on side-polished optical fibre. [A]. Proc. SPIE [C]. 1998, 3555: 457~466
    [53] Internet reference: optics.kth.se/fysik2/RIO97/pdf/RIO97B.PDF.
    [54] Peng Y T, et al. The characterization of hydrogen sensor based on palladium electroplated fiber Bragg gratings (FBG). [A]. Proc. SPIE [C].1999, 3670: 42~53
    [55] Internet reference: enme.umd.edu/smsrc/research.html.
    [56] Rao Y J, et al. In-fibre Bragg grating temperature sensor system for medical application. [J]. J. Lightwave Technol, 1997, 15: 779~785
    [57] Rao Y J, et al. In-situ temperature monitoring in NMP machines with a prototype in-fiber Bragg grating sensor system. [A]. Proc. of the Optical Fiber Sensors Conf. (OFS-12) [C]. Williamsburg, VA, USA, 1997, 646~649
    [58] Stephanus J S, et al. Temperature insensitive fiber optic accelerometer using a chirped Bragg grating. [J]. Opt. Eng., 2000, 38(8): 2177~2181
    [59] Nobuaki Takahashi, et al. characteristics of Fiber Bragg Grating Hydrophone. [J]. IEICE Trans. Electron, 2000, E83-C(3): 275~281
    [60] Internet reference: batmankjist.ac.kr/~laser/Englaser/bk/paper/fibre%20grating. pdf.
    [61] Internet reference: nttc.edu/resources/funding/awards/dod/dodsbir96/phasel/962 plosd.asp.
    [62] Internet reference: nasatech.com/Briefs/Mar00/ARC12092.html.
    [63] Internet reference: hades.sckcen.be/people/aggernandez/ra.fs.html.
    [64] V. Mizrahi, et al., Optical properties of photosensitive fiber phase gratings, IEEE J. Lightwave. Techn. 1993, 11: 1513~1517
    [65] A.Yariv. Coupled-mode theory for guided-wave optics. IEEE J. of Quantum Electron. 1973,QE-9:919~933
    [66] 董孝义编著,光波电子学. 天津:南开大学出版社,1987 年 11 月版
    [67] H. Kogelnik. Filter response of non uniform almost-periodic structures. Bell syst. Tech. J., 1976, 55(1): 109~126
    [68] G.P.Agrawal and A.H.Bobeck. Modeling of distributed feedback semiconductor lasers with axially-varying parameters. IEEE J.of Quantum Electron. 1988,24: 2407~2414
    [69] M.P. Rouard. Etudes desproprietes optiques des lames metalliques treminces. Annal. Phys. II 1973, 7(20)
    [70] G. Meltz, W.W.Moreyyy, and W.H.Glenn, Formation of Bragg Gratings in Optical Fibers byransverse holographic method, Optics Letters, 1989, Vol.14, No.15, pp. 823~825
    [71] K. O. Hill et al., Bragg grating fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask, Applied Physics Letters, 1993,62(10):1035~1037
    [72] P. J. Lemaire, R. M. Atkins, V. Mizrahi et al. High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibers. Electronics Letters, 1993,29(13):1191~1193
    [73] R. Kashyap et al. All-fiber narrow band reflection grating at 1500nm, Electronics Letters, 1990,26:730~732
    [74] K.C.Byron, K.Sugden, T. Bircheno, et al. Fabrication of chirped Bragg gratings in photosensitive fiber. Electron. Lett. 1993, 29(18):1659
    [75] B.Eggleton, P.A.Krug, and L.Poladin. Dispersion compensation by using Bragg grating filters with self induced chirp. Tech. Digest of Opt. Fib. Comm. Conf., OFC’94, 227
    [76] A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing, Artech House, Boston London, 1999.
    [77] 陈莹. 分布式光纤光栅传感器在建筑物中的应变测量研究. [硕士学位论文]. 天津:南开大学. 2003
    [78] Y. J. Rao, D. A. Jackson, L. Zhang et al. Combined spatial- and time- division-multiplexing scheme for fiber grating sensors with drift-compensated phase-sensitive detection. Opt. Lett. 1995,20(20):2149~2151
    [79] 余有龙、谭华耀、锺永康. 基于干涉解调技术的光纤光栅传感系统,光学学报,2001,21(8):987~989
    [80] Kersey A D et al. Fiber-grating based strain sensor with phase sensitive detection(J), 1st European Conf on Smart Structures and Materials, 1992,(2):61~66
    [81] A.D.Kersey, T.A.Berkoff and W.W.Morey. High-resolution fiber-grating based strain sensor with interferometric wavelength-shift detection. Electron. Lett. 1992, 28(3): 236~238
    [82] A.D.Kersey and T.A.Berkoff. Dual wavelength fiber interferometer with wavelength selection via fiber Bragg grating elements. Electron. Lett. 1992,28, (13):1215~1216
    [83] R.S.Weis, Member, IEEE, A.D.Kersey and T.A.Berkoff. A four-element fiber grating sensor array with phase-sensitive detection. IEEE Photo. Tech. Lett. 1994,6(12): 1469~1472
    [84] David B, Mortimore, Fiber Loop Reflectors [J], J Lightwave Technology, 1998, 6(7): 1217~1224
    [85] Seunghwan Chung, Jungho Kim, Bong-Ahn Yu, etc. A Fiber Bragg Grating Sensor Demodulation Technique Using a Polarization Marinating Fiber Loop Mirror, IEEE Photo Tech. Lett. 2001, 13(12):1343~1345
    [86] Ferreira L A et al. Pseudoheterodyne demodulation technique for fiber Bragg grating sensors using two matched gratings (J), IEEE Photon Technol Lett., 1997,9(4):487~489
    [87] M.A. Davis and A.D.Kersy. Matched-filter interrogation technique for fiber Bragg grating arrays. Electron. Lett. 1995,31(10):822~823
    [88] M.A.Davis and A.D.kersey. All-fiber Bragg grating strain-sensor demodulation technique using a wavelength division coupler. Electron. Lett. 1994,30(1):75~77
    [89] A.B.Lobo Riberiro, L.A.Ferreira, M.tsvetkov and J.L.Santos.. All-fiber interrogation technique for fiber Bragg sensors using a biconical fiber filter. Electron.Lett.. 1996,32(4): 382~383
    [90] Kersey A D et al. Multiplexed fiber Bragg grating strain-sensor system with a fiber F-P wavelength filter (J), Opt Lett, 1993, 18(16):1370~1372
    [91] Y.N.Ning, A.Meldrum, J. Shiw. Bragg Grating sensing instrument using a tunable Fary-perot filter to detect wavelength variations. Meas. Sci.& Teechnol. 1998,9(6): 599~606
    [92] Volanthen M, Geiger H, Cole M J et al. Measurement of arbitrary strain profiles within fiber gratings. Elect ron. Lett. , 1996, 23 (11):1028~1029
    [93] Xu M G, Geiger H , Dakin J P. Fiber grating pressure sensor with enhanced sensitivity using a glass-bubble housing. Elect ron. Lett. 1996, 32 (2) :128~129
    [94] Ball G A , Morey W W, Cheo P K. Fiber laser source/analyzer for Bragg grating sensor array interrogation. J . Lightwave Technol, 1994 , 12 (4) :700~703
    [95] Yu Youlong , Tam Hwayaw , Chung Wenghong et al . .Fiber Bragg grating sensor for simultaneous measurement of displacement and temperature. Opt. Lett. , 2000, 25(16): 1141~1143
    [96] 余有龙,刘志国,耿淑伟等. 光纤光栅力传感器的无源温漂补偿技术. 光学学报, 2000, 20 (3) :400~404
    [97] 余有龙,谭华耀,何海律等. 高分辨率单信道输出的光纤光栅传感系统时域地址查询技术. 光学学报,2001 , 21(7) :874~877
    [98] Davis M A , Bellemore D G, Putnam M A et al . .Interrogation of 60 fiber Bragg grating sensors with microstrain resolution capability. Electron. Lett. , 1996, 32 (15) :1393~1394
    [99] G.A.Ball, et al.. Fiber laser source/analyzer for Bragg grating sensor array interrogation. J.of Lightwave Tech. 1994,12(4):700~703.
    [100] BERKOFF T. A, KERSEY A. D. Fiber Bragg grating array sensor system using a bandpass wavelength division multiplexer and interferometric detection IEEE Photon Technol Lett, 1996, 8(11):1552~1524
    [101] Mizrahl V, Erdogan T. D, Digiovanni D. J,et al. Four channel fiber grating demultiplex[J], Electronics Letters, 1994,30(10):780~781
    [102] T.A.Berkoff and A.D.Kersey. Eight element time-division multiplexed fiber grating sensor array with integrated-optic wavelength discriminator. Proc. of SPIE. 1994,2316: 350~353
    [103] Y.J.Rao, K.K.Kalli, G.Brady, D.J.Webb, D.A.Jackson, L.Zhang and I.Bennion. Spatially multiplexed fiber-optic Bragg grating strain and temperature sensor system based on interferometric wavelength-shift detection. Electron. Lett. 1995,31(12):1009~1010
    [104] Y.J.Rao, A.B.L.Ribeiro, D. A. Jackson et al. Simultaneous spatial, time and wavelength division multiplexed in-fiber grating sensing network. Opt. Commun. 1996,125:53~58
    [105] P.Oberson, B.Huttner, O.Guinnard, et al. Optical frequency domain reflectometry with a narrow linewidth fiber laser[J], IEEE Photo. Tech. Lett., 2000, 12(7):867~869
    [106] W.W.Morey et al.. Bragg-grating temperature and strain sensors. Proc. OFS’89, Paris, France, 1989,526
    [107] M.G.Xu, L.Reekie, Y.T.Chow, J.P.Dakin. Optical in-fiber grating high pressure sensor. Electron. Lett., 1993,29(4):398~399
    [108] Yunqi Liu, Zhuanyun Guo, Ying Zhang et al. Simultaneous pressure and temperature measurement with a polymer-coated fibre Bragg grating. Electronics Letters, 2000, 36 (6): 564~566
    [109] 马卫东,施伟,付浩军等. 光纤光栅传感器的工作原理及研究进展,光通信研究,2001,NO.106: 58~62
    [110] 张伟刚. 纤栅式传感系列器件的设计与技术研究. [博士学位论文]. 天津:南开大学,2002
    [111] 曾剑. 光纤光栅传感网络解调系统及其在水听探测技术中的实验研究,[硕士学位论文]. 天津:南开大学,2004
    [112] ZHAO Wei-feng, SHENG Qiu-qin, DONG Xiao-yi, et al. A magnetic field sensor based on a fiber Bragg grating with a cantilever beam [J]. Journal of Optoelectronics · Laser(光电子·激光), 2001, 12 (1): 7~9
    [113] 胡曙阳,何士雅,赵启大等. 一种新颖的高灵敏度光纤光栅压力传感器. 光电子·激光,2004,15(4): 410~412
    [114] 高飞鹞. 轮辐式传感器的几种应用方式. 上海计量测试, 1995,22(3):13~15
    [115] 刘云启,郭转运,刘志国等. 光纤光栅的压力传感特性研究,光子学报,1999,28(5):443~445
    [116] 朱晔,周伯伟,顾荣等. 关于轮辐式剪切力传感器的研制与设计. 机械设计与制造工程,2002,31(4):87~89
    [117] D. Kersey, T. A. Berkoff, W. W. Morey. Fiber-optic Bragg grating strain sensor with driftcompensated high-resolution interferometric wavelength-shift detection. Opt. Lett., 1993, 18(1): 72~74
    [118] G. W. Yoffe, P. A. Krug, F. Ouellette, et al. Passive temperature-compensating package for optical fiber gratings. Appl. Optics, 1995, 34 (30): 6859~6861
    [119] M. G. Xu, J. L. Archambault, L. Reekie et al. Discrimination between strain and temperature effects using dual-wavelength fibre grating sensors. Electron. Lett. , 1994, 30(13):1085~1087
    [120] 张兴周,光纤光栅传感器与 3S 系统,传感器技术,1998,17(2):54~56
    [121] Vohra S T,et al. Quasi-Static Strain Monitoring During the "Push" Phase of a Box-Girder Bridge Using Fiber Bragg Grating Sensors[A] European Workshop on Optical FibreSensors[c] Scotland, UK, 1998
    [122] Foote P D, Fiber Bragg grating strain sensors for aerospace smart structure[A], Proc.SPIE[c] 1994, 2361:162~166
    [123] Stephanus J S, et al. Temperature insensitive fiber optic accelerometer using a chirped Bragg grating[J], Opt.Eng.,2000, 38(8):2177~2181
    [124] 梁龙彬,张伟刚,赵启大等,基于光纤光栅的标准梁应变分析与测量,光电子.激光,2001,12(11):1152~1155
    [125] 秦子雄,曾庆科等,大调谐范围的等强度梁光纤光栅波长调节器,光学学报,2001,Vol.21, No.12:1420~1425

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700