石英基稀土掺杂单频窄线宽光纤激光器及其关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单频窄线宽掺Er3+、掺Tm3+光纤激光器在军用、民用领域具有极大的应用价值。掺Er3+窄线宽光纤激光器在相干光通信、光载无线通信系统、长距离及超长距离光纤传感系统等领域有着广泛的应用,而掺Tm3+窄线宽光纤激光器则在激光医学、空间光通信、空间遥感、激光雷达以及光参量振荡放大等领域有着广泛的应用。本论文基于自制石英基稀土掺杂光纤与超窄带光纤光栅滤波器件,采用多种腔形结构对掺Er3+光纤激光器和掺Tm3+光纤激光器展开理论与实验研究,取得的主要研究成果与创新点为:
     1.提出并搭建了一种单偏振、单频线形腔石英基掺Er3+光纤激光器,利用自制布拉格光纤光栅(FBG)F-P窄带滤波器与饱和吸收体共同对激光纵模进行选择,通过在谐振腔内置入起偏器使得激光器在腔内无偏振保持器件条件下实现了稳定单偏振、单频输出。激光器在室温下的稳定输出波长为1544.45nm,输出激光信噪比为65dB,偏振度大于99%。通过延迟自外差法对输出激光进行测量得到Lorentz拟合线宽为6.95kHz。
     2.提出并搭建了一种用于光子微波生成的双波长单频环形腔石英基掺Er3+光纤激光器,利用自制双通道FBG F-P滤波器作为双波长振荡的选频器件,未泵浦的掺Er3+光纤作为可饱和吸收体结合高反FBG共同作用确保激光器两个波长均为单纵模运行,通过调节腔内的偏振控制器可以实现双波长激光的可切换输出。在室温条件下,激光器的两个稳定输出波长分别为1544.67nm和1544.73nm,其消光比均大于40dB,且均为单纵模运行。在稳定双波长激光输出时,经过光电转换可得7.129GHz的微波拍频信号,信号的信噪比(SNR)大于30dB,3dB带宽约为12kHz。
     3.利用相位掩膜法在自制的石英基高浓度掺杂Er3+光纤中写制长为13cm的相移光栅,以此构成DFB激光谐振腔。激光器在室温下的稳定输出波长为1544.77nm,最高输出功率达43.5mW,斜率效率为11.5%。通过延迟自外差法对输出激光进行测量得到Lorentz拟合线宽为9.39kHz。
     4.提出并搭建了一种石英基D型双包层掺Tm3+光纤DBR激光器,激光腔由直接写入自制掺Tm3+光纤纤芯中的一对FBG构成,通过控制写制FBG的曝光量实现激光腔两端FBG反射率R1和R2的调节。该激光腔内无熔接点,克服了D型有源光纤作为增益介质在光纤激光器搭建时容易引起巨大接续损耗的缺陷。激光输出中心波长为1946.4nm,光信噪比(OSNR)约为65dB,3dB带宽为0.16mn。最大输出功率为2.56W,斜率效率为38.4%,光光转换效率为36.2%。
     5.提出并搭建了线形腔和环形腔结构的单频石英基掺Tm3+光纤激光器,利用自制相移光纤光栅超窄带滤波器作为纵模选择器件,通过腔内偏振控制器抑制空间烧孔和偏振烧孔效应使得激光器在单纵模状态下稳定运行。这两种激光器的输出波长分别为1941.98nm和1941.61nm,在光谱仪分辨率为0.05nm时测得光信噪比分别为45dB和60dB,斜率效率分别为3%和30.5%,最高输出功率分别为65mW和385mW。通过自零差法验证,该两种激光器均为单频输出,且线宽分别小于6.4MHz和10MHz。
     6.基于自制啁啾莫尔FBG超窄带滤波器,提出并搭建了一种波长可调谐环形腔单频石英基掺Tm3+光纤激光器。通过应力对输出端选频器件FBG进行调节,当FBG的布拉格波长与啁啾莫尔FBG的谐振峰重叠时,激光器内的腔损达到最低,激光腔内即可实现激光振荡。激光器在室温下实现稳定的激光输出,其可调输出波长分别为1942.75nm,1943.28nm,1943.99nm,1944.35nm,1944.76nm,1945.08nm,1945.44nm,1945.83nm,此8个波长的光信噪比均大于40dB。通过零差法测量验证该激光器在每个波长输出时均为单纵模运转。
Single frequency, narrow linewidth Er3+/Tm3+-doped fiber laser has great applications in millitary-civil fields. The mainly applications of the Er3+-doped narrow linewidth fiber laser are in the fields of coherent optical communication, radio over fiber and ultra-long range optical fiber sensors. What's more, the Tm3+-doped fiber laser is mainly used in the fields of laser medicine, space optical communication, space remote sensing, lidar and optcial parametric oscillator. This thesis is mainly devoted to the detailed theoretical and expterimental researches on fabrication of rare-earth-doped silca fiber, fabrication of ultra-narrow bandwidth fiber filters, and design of laser cavity. The main achievements of this thesis are listed as follows:
     1. A stable single polarization, single frequency linear cavity silica based Er3+-doped fiber laser using a saturable absorber is proposed and demonstrated. The F-P filter, polarizer, and saturable absorber are used together to ensure stable single frequency, single polarization operation, and the linewidth of the laser has been measured by the delayed self-heterodyne method. The optical signal to noise rate of the lasing is approximately65dB, and the Lorentz fitting3dB linewidth is6.95kHz.
     2. A switchable dual-wavelength ring cavity silica based Er3+-doped fiber laser is proposed and demonstrated. When the laser operates with single wavelength, the optical signal to noise rate of each wavelength will be larger than40dB, and each wavelength is certified as single frequency operation. Stable dual-wavelength SLM fiber laser operation is obtained with a wavelength seperation of approximately0.057nm, which is good agreement with the detected generated microwave frequency of7.129GHz. The3dB bandwidth and signal-to-noise rate of the generated microwave signal are approximately12kHz and more than30dB, respectively.
     3. A π phase shifted distributed feedback laser based on single mode large effective area heavy concentration silica based Er3+-doped fiber is proposed and demonstrated. The homemade Er3+-doped fiber was fabrecated by the MCVD technique, and the13cm long phase shifted fiber grating was written in the intracore of the Er3+-doped fiber. The measured maximum output power is43.5mW, the slope efficiency is11.5%, and the Lorentz fitting3dB linewidth is9.8kHz.
     4. A fiber laser with central wavelength of1946.4nm based on homemade D-shape single-transverse-mode double-cladding silica based Tm3+-doped fiber is proposed and demonstrated. The distributed-Bragg reflector laser was fabricated by a pair of fiber Bragg gratings, which is directly writting in the intracore of this fiber. The threshold of the laser is1.15W, and a stable maximum output power of2.56W is chieved while pumping with input launched power of6.9W, corresponding to a slope efficiency of38.4%and light-to-light conversion efficiency of36.2%. When operating at the maximum output power, the laser has a3dB bandwidth of0.16nm, and a signal-to-noise of approximately65dB.
     5. A ring cavity and a linear cavity silica based Tm3+-doped fiber laser based on phase shifted grating filter are proposed and demonstrated. The single longitude mode operation of the proposed lasers is confirmed by method of self-homodyne, and the linewidth of each laser was narrower than10MHz. The central wavelength of the two laser are1941.98nm and1941.61nm, and the optical signal-to-noise rate are45dB and60dB, the slope efficiency are3%and30.5%, the maximum output are65mW and385mW, respectively.
     6. A tunable ring cavity silica based Tm3+-doped fiber laser based on chirped moire fiber grating filter is proposed and demonstrated. As the central wavelength of the tunable fiber Bragg grating matches with each resonance peak of the chirped moire fiber grating, the Q-value of the laser reaches a maximum and single frequency laser oscillation could be realized. Ultimately, the eight wavelengths of the laser are1942.75nm,1943.28nm,1943.99nm,1944.35nm,1944.76nm,1945.08nm,1945.44nm,1945.83nm, respectively. What's more, the optical signal-to-noise rate of the each output lasing wavelength is larger than40dB.
引文
[1]A. L. Schawlow and C. H. Townes, "Infrared and Optical Masers," Physical Review,1958,112(6): 1940-1949.
    [2]T. H. Maiman, "Stimulated Optical Radiation in Ruby," Nature,1960,187:493-494.
    [3]C. K. Kao and G. A. Hockham, "Dielectric-fiber surface waveguide for optical frequencies," Proc. Inst. Elect. Eng.,1966,113(7):1151-1158.
    [4]E. Snitzer, "Proposed Fiber Cavities for Optical Masers," Journal of Applied Physics,1961,32(1): 36-39.
    [5]A. J. Freeman and R. E. Watson, "Theoretical Investigation of Some Magnetic and Spectroscopic Properties of Rare-Earth Ions," Physical Review,1962,127(6):2058-2075.
    [6]B. R. Judd, "Optical Absorption Intensities of Rare-Earth Ions," Physical Review,1962,127(3): 750-761.
    [7]G. S. Ofelt, "Intensities of Crystal Spectra of Rare-Earth Ions," The Journal of Chemical Physics, 1962,37(3):511-520.
    [8]L. G. Van Uitert and S. Iida, "Quenching Interactions between Rare-Earth Ions," The Journal of Chemical Physics,1962,37(5):986-992.
    [9]L. F. Johnson, "Optical Maser Characteristics of Rare Earth Ions in Crystals," Journal of Applied Physics,1963,34(4):897-909.
    [10]C. J. Koester and E. Snitzer, "Amplification in a Fiber Laser," Appl. Opt.,1964,3(10):1182-1186.
    [11]S. B. Poole, D. N. Payne, and M. E. Fermann, "Fabrication of low-loss optical fibres containing rare-earth ions," Electronics Letters,1985,21(17):737-738.
    [12]S. Poole, D. Payne, R. Mears, M. Fermann, and R. Laming, "Fabrication and characterization of low-loss optical fibers containing rare-earth ions," Lightwave Technology, Journal of,1986,4(7): 870-876.
    [13]I. M. Jauncey, J. T. Lin, L. Reekie, and R. J. Mears, "Efficient diode-pumped CW and Q-switched single-mode fibre laser," Electronics Letters,1986,22(4),198-199.
    [14]I. M. Jauncey, L. Reekie, R. J. Mears, D. N. Payne, C. J. Rowe, D. C. J. Reid, I. Bennion, and C. Edge, "Narrow-linewidth fibre laser with integral fibre grating," Electronics Letters,1986,22(19), 987-988.
    [15]L. Reekie, R. J. Mears, S. B. Poole, and D. N. Payne, "Tunable single-mode fiber lasers," Lightwave Technology, Journal of,1986,4(7):956-960.
    [16]J. Boullet, D. Sabourdy, A. Desfarges-Berthelemot, V. Kermene, D. Pagnoux, P. Roy, B. Dussardier, and W. Blanc, "Coherent combining in an Yb-doped double-core fiber laser," Opt. Lett.,2005, 30(15):1962-1964.
    [17]L. J. Cooper, P. Wang, R. B. Williams, J. K. Sahu, W. A. Clarkson, A. M. Scott, and D. Jones, "High-power Yb-doped multicore ribbon fiber laser," Opt. Lett.,2005,30(21):2906-2908.
    [18]P. Jelger and F. Laurell, "Efficient skew-angle cladding-pumped tunable narrow-linewidth Yb-doped fiber laser," Opt. Lett.,2007,32(24):3501-3503.
    [19]R. Herda and O. G. Okhotnikov, "Mode-locked Yb-doped fiber laser with external compression to 89 fs in normal dispersion fiber," Appl. Opt,2008,47(9):1182-1186.
    [20]T. Chubachi, Y. Kozawa, and S. Sato, "Amplification of a radially polarized laser beam using an Yb-doped double-clad fiber," Opt. Lett.,2009,34(6):716-718.
    [21]Q. Hao, W. Li, and H. Zeng, "High-power Yb-doped fiber amplification synchronized with a few-cycle Ti:sapphire laser," Opt. Express,2009,17(7):5815-5821.
    [22]C. Lecaplain, A. Hideur, S. F6vrier, and P. Roy, "Mode-locked Yb-doped Bragg fiber laser," Opt. Lett.,2009,34(18):2879-2881.
    [23]J. Zhu, P. Zhou, Y. Ma, X. Xu, and Z. Liu, "Power scaling analysis of tandem-pumped Yb-doped fiber lasers and amplifiers," Opt. Express,2011,19(19):18645-18654.
    [24]S. I. Kablukov, E. A. Zlobina, E. V. Podivilov, and S. A. Babin, "Output spectrum of Yb-doped fiber lasers," Opt. Lett.,2012,37(13):2508-2510.
    [25]X. Li, Y. Wang, W. Zhao, X. Liu, Y. Wang, Y. H. Tsang, W. Zhang, X. Hu, Z. Yang, C. Gao, C. Li, and D. Shen, "All-Fiber Dissipative Solitons Evolution in a Compact Passively Yb-Doped Mode-Locked Fiber Laser," J. Lightwave Technol.,2012,30(15):2502-2507.
    [26]X. Shen, W. Li, M. Yan, and H. Zeng, "Electronic control of nonlinear-polarization-rotation mode locking in Yb-doped fiber lasers," Opt. Lett.,2012,37(16):3426-3428.
    [27]J. Wang, J. Hu, L. Zhang, X. Gu, J. Chen, and Y. Feng, "A 100 W all-fiber linearly-polarized Yb-doped single-mode fiber laser at 1120 nm," Opt. Express,2012,20(27):28373-28378.
    [28]K. Iwatsuki, H. Okamura, and M. Saruwatari, "Optical homodyne detection with an injection-locked Er-doped-fiber ring laser," Opt. Lett.,1990,15(24):1437-1439.
    [29]M. Margalit, M. Orenstein, and G Eisenstein, "High-repetition-rate mode-locked Er-doped fiber lasers by harmonic injection locking," Opt. Lett.,1995,20(17):1791-1793.
    [30]N. Nishizawa, Y. Seno, K. Sumimura, Y. Sakakibara, E. Itoga, H. Kataura, and K. Itoh, "All-polarization-maintaining Er-doped ultrashort-pulse fiber laser using carbon nanotube saturable absorber," Opt. Express,2008,16(13):9429-9435.
    [31]M. Dubinskii, J. Zhang, and V. Ter-Mikirtychev, "Highly scalable, resonantly cladding-pumped, Er-doped fiber laser with record efficiency," Opt. Lett.,2009,34(10):1507-1509.
    [32]N. Lizarraga, N. P. Puente, E. I. Chaikina, T. A. Leskova, and E. R. Mendez, "Single-mode Er-doped fiber random laser with distributed Bragg gratingfeedback," Opt. Express,2009,17(2): 395-404.
    [33]M. P. Nikodem, E. Kluzniak, and K. Abramski, "Wavelength tunability and pulse duration control in frequency shifted feedback Er-doped fiber lasers," Opt. Express,2009,17(5):3299-3304.
    [34]K. Kieu, R. J. Jones, and N. Peyghambarian, "High power femtosecond source near 1 micron based on an all-fiber Er-doped mode-locked laser," Opt. Express,2010,18(20):21350-21355.
    [35]N. Nishizawa, Y. Nozaki, E. Itoga, H. Kataura, and Y. Sakakibara, "Dispersion-managed, high-power, Er-doped ultrashort-pulse fiber laser using carbon-nanotube polyimide film," Opt. Express,2011,19(22):21874-21879.
    [36]Y. Nozaki, N. Nishizawa, E. Omoda, H. Kataura, and Y. Sakakibara, "Power scaling of dispersion-managed Er-doped ultrashort pulse fiber laser with single wall carbon nanotubes," Opt. Lett.,2012,37(24):5079-5081.
    [37]S. D. Jackson and T. King, "High-power diode-cladding-pumped Tm-doped silica fiber laser," Opt. Lett.,1998,23(18):1462-1464.
    [38]S. D. Jackson and T. A. King, "Dynamics of the output of heavily Tm-doped double-clad silica fiber lasers," J. Opt. Soc. Am. B,1999,16(12):2178-2188.
    [39]S. D. Jackson and T. A. King, "Theoretical Modeling of Tm-Doped Silica Fiber Lasers," J. Lightwave Technol.,1999,17(5):948.
    [40]D. Y. Shen, W. A. Clarkson, L. J. Cooper, and R. B. Williams, "Efficient single-axial-mode operation of a Ho:YAG ring laserpumped by a Tm-doped silica fiber laser," Opt. Lett.,2004, 29(20):2396-2398.
    [41]M. Eichhorn, "Development of a high-pulse-energy Q-switched Tm-doped double-clad fluoride fiber laser and its application to the pumping of mid-IR lasers," Opt. Lett.,2007,32(9):1056-1058.
    [42]D. Creeden, P. A. Ketteridge, P. A. Budni, S. D. Setzler, Y. E. Young, J. C. McCarthy, K. Zawilski, P. G. Schunemann, T. M. Pollak, E. P. Chicklis, and M. Jiang, "Mid-infrared ZnGeP2 parametric oscillator directly pumped by a pulsed 2?m Tm-doped fiber laser," Opt. Lett.,2008,33(4): 315-317.
    [43]Z. Zhang, D. Y. Shen, A. J. Boyland, J. K. Sahu, W. A. Clarkson, and M. Ibsen, "High-power Tm-doped fiber distributed-feedback laser at 1943 nm," Opt. Lett.,2008,33(18):2059-2061.
    [44]J. Geng, Q. Wang, T. Luo, S. Jiang, and F. Amzajerdian, "Single-frequency narrow-linewidth Tm-doped fiber laser using silicate glass fiber," Opt. Lett.,2009,34(22):3493-3495.
    [45]J. Geng, Q. Wang, J. Smith, T. Luo, F. Amzajerdian, and S. Jiang, "All-fiber Q-switched single-frequency Tm-doped laser near 2 um," Opt. Lett.,2009,34(23):3713-3715.
    [46]H. Sakata, M. Ichikawa, and H. Nakagami, "Tunable Tm-doped fiber ring laser operating at 1.9 um band using force-induced fiber grating as wavelength tuner," Appl. Opt.,2011,50(3):291-295.
    [47]M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, "Tm-doped fiber laser mode-locked by graphene-polymer composite," Opt. Express,2012,20(22):25077-25084.
    [48]G. Agrawal, "Nonlinear Fiber Optics," in Nonlinear Science at the Dawn of the 21st Century, vol. 542, P. L. Christiansen, et al., Eds., ed:Springer Berlin Heidelberg,2000, pp.195-211.
    [49]L. G. Kazovsky, "Multichannel coherent optical communications systems," Lightwave Technology, Journal of,1987,5(8):1095-1102.
    [50]G. Heydt, "Coherent optical communication," in Digital Communications,1990. Electronic Circuits and Systems for Communications. Proceedings,1990 International Zurich Seminar on, 1990,39-46.
    [51]D. Psaltis, "Coherent Optical Information Systems," Science,2002,298(5597):1359-1363.
    [52]X. Wang, K. Matsushima, A. Nishiki, N. Wada, and K.-i. Kitayama, "High reflectivity superstructured FBG for coherent optical code generation and recognition," Opt. Express,2004, 12(22):5457-5468.
    [53]K. Shimizu, T. Horiguchi, and Y. Koyamada, "Measurement of Rayleigh backscattering in single-mode fibers based on coherent OFDR employing a DFB laser diode," Photonics Technology Letters, IEEE,1991,3(11):1039-1041.
    [54]K. Takada, "High-resolution OFDR with incorporated fiber-optic frequency encoder," Photonics Technology Letters, IEEE,1992,4(9):1069-1072.
    [55]H. Kao-Yang and G. M. Carter, "Coherent optical frequency domain reflectometry (OFDR) using a fiber grating external cavity laser," Photonics Technology Letters, IEEE,1994,6(12):1466-1468.
    [56]M. Yoshida, T. Miyamoto, N. Zou, K. Nakamura, and H. Ito, "Novel PMD measurement method based on OFDR using a frequency-shifted feedback fiber laser," Opt. Express,2001,9(4):207-211.
    [57]Y. Jianping, "Microwave Photonics," Lightwave Technology, Journal of,2009,27(3):314-335.
    [58]J. L. Zhou, L. Xia, X. P. Cheng, X. P. Dong, and P. Shum, "Photonic generation of tunable microwave signals by beating a dual-wavelength single longitudinal mode fiber ring laser," Appl. Phys.B,2008,91(1):99-103.
    [59]W. Zhijing, S. Qishun, Z. Li, L. Jinmei, Y. Wen, and W. Yuxing, "Optical Generation of Stable Microwave Signal Using a Dual-Wavelength Brillouin Fiber Laser," Photonics Technology Letters, IEEE,2010,22(8):568-570.
    [60]X. Kun, S. Xiaoqiang, Y. Jie, H. Hao, W. Jian, H. Xiaobin, and L. Jintong, "Enabling ROF Technologies and Integration Architectures for In-Building Optical Wireless Access Networks," Photonics Journal, IEEE,2010,2(2):102-112.
    [61]Y. Yeh and H. Z. Cummins, "Localized fluid flow measurments with an He-Ne laser spectrometer," Applied Physics Letters,1964,4(10):176-178.
    [62]J. J. W. Foreman, E. W. George, and R. D. Lewis, "Measurment of localized flow velocities in gases with a laser doppler flowmeter," Applied Physics Letters,1965,7(4):77-78.
    [63]J. Foremen, E. W. George, J. Jetton, R. D. Lewis, J. R. Thornton, and H. Watson, "8C2-Fluid flow measurements with a laser Doppler velocimeter," Quantum Electronics, IEEE Journal of,1966, 2(8):260-266.
    [64]K. M. Sasaki, A. Aoki, S. Ichinose, T. Yoshino, S. Yamada, and I. Ishikawa, "Scanning Electron Microscopy and Fourier Transformed Infrared Spectroscopy Analysis of Bone Removal Using Er.YAG and CO2 Lasers," Journal of Periodontology,2002,73(6):643-652.
    [65]J. F. C. De Lucia, R. S. Harmon, K. L. McNesby, J. R. J. Winkel, and A. W. Miziolek, "Laser-Induced Breakdown Spectroscopy Analysis of Energetic Materials," Appl. Opt.,2003, 42(30):6148-6152.
    [66]P. L. Scrivener, E. J. Tarbox, and P. D. Maton, "Narrow linewidth tunable operation of Er3+-doped single-mode fibre laser," Electronics Letters,1989,25(8):549-550.
    [67]K. Iwatsuki, H. Okamura, and M. Saruwatari, "Wavelength-tunable single-frequency and single-polarisation Er-doped fibre ring-laser with 1.4 kHz linewidth," Electronics Letters,1990, 26(24):2033-2035.
    [68]G. A. Ball, W. W. Morey, and W. H. Glenn, "Standing-wave monomode erbium fiber laser," Photonics Technology Letters, IEEE,1991,3(7):613-615.
    [69]J. L. Zyskind, J. W. Sulhoff, Y. Sun, J. Stone, L. W. Stulz, G. T. Harvey, D. J. Digiovanni, H. M. Presby, A. Piccirilli, U. Koren, and R. M. Jopson, "Singlemode diode-pumped tunable erbium-doped fibre laser with linewidth less than 5.5 kHz," Electronics Letters,1991,27(23): 2148-2149.
    [70]J. L. Zyskind, V. Mizrahi, D. J. DiGiovanni, and J. W. Sulhoff. (1992, Short single frequency erbium-doped fibre laser. Electronics Letters 28(15),1385-1387.
    [71]J. T. Kringlebotn, P. R. Morkel, L. Reekie, J. L. Archambault, and D. N. Payne, "Efficient diode-pumped single-frequency erbium:ytterbium fiber laser," Photonics Technology Letters, IEEE, 1993,5(10):1162-1164.
    [72]V. Mizrahi, D. J. DiGiovanni, R. M. Atkins, S. G. Grubb, P. Yong-Kwan, and J. M. P. Delavaux, "Stable single-mode erbium fiber-grating laser for digital communication," Lightwave Technology, Journal of,1993,11(12):2021-2025.
    [73]J. T. Kringlebotn, J. L. Archambault, L. Reekie, and D. N. Payne, "Er3+:Yb3+-codoped fiber distributed-feedback laser," Opt. Lett.,1994,19(24):2101-2103.
    [74]M. Horowitz, R. Daisy, B. Fischer, and J. Zyskind, "Narrow-linewidth, singlemode erbium-doped fibre laser with intracavity wave mixing in saturable absorber," Electronics Letters,1994,30(8): 648-649.
    [75]Y. Cheng, J. T. Kringlebotn, W. H. Loh, R. I. Laming, and D. N. Payne, "Stable single-frequency traveling-wave fiber loop laser with integral saturable-absorber-based tracking narrow-band filter," Opt. Lett.,1995,20(8):875-877.
    [76]M. J. Guy, J. R. Taylor, and R. Kashyap, "Single-frequency erbium fibre ring laser with intracavity phase-shifted fibre Bragg grating narrowband filter," Electronics Letters,1995,31(22):1924-1925.
    [77]W. H. Loh and R. I. Laming, "1.55 um phase-shifted distributed feedback fibre laser," Electronics Letters,1995,31(17):1440-1442.
    [78]M. Sejka, P. Vanning, J. Hubner, and M. Kristensen, "Distributed feedback Er3+-doped fibre laser," Electronics Letters,1995,31(17):1445-1446.
    [79]D. I. Chang, M. J. Guy, S. V. Chernikov, J. R. Taylor, and H. J. Kong, "Single-frequency erbium fibre laser using the twisted-mode technique," Electronics Letters,1996,32(19):1786-1787.
    [80]W. H. Loh, B. N. Samson, L. Dong, G. J. Cowle, and K. Hsu, "High Performance Single Frequency Fiber Grating-Based Erbium:Ytterbium-Codoped Fiber Lasers," J. Lightwave Technol.,1998, 16(1):114.
    [81]V. C. Lauridsen, J. Povlsen, and P. Varming, "Design of DFB fibre lasers," Electronics Letters, 1998,34(21):2028-2030.
    [82]Y. Takushima, S. Yamashita, K. Kikuchi, and K. Hotate, "Polarization-stable and single-frequency fiber lasers," Lightwave Technology, Journal of,1998,16(4):661-669.
    [83]D. Taverner, D. J. Richardson, L. Dong, J. E. Caplen, K. Williams, and R. V. Penty, "158-uJ pulses from a single-transverse-mode, large-mode-area erbium-doped fiber amplifier," Opt. Lett.,1997, 22(6):378-380.
    [84]H. L. Offerhaus, N. G. Broderick, D. J. Richardson, R. Sammut, J. Caplen, and L. Dong, "High-energy single-transverse-mode Q-switched fiber laser based on a multimode large-mode-area erbium-doped fiber," Opt. Lett.,1998,23(21):1683-1685.
    [85]N.G. R. Broderick, H. L. Offerhaus, D. J. Richardson, R. A. Sammut, J. Caplen, and L. Dong, "Large Mode Area Fibers for High Power Applications," Optical Fiber Technology,1999,5(2): 185-196.
    [86]T. A. S. Strasser, P. J. Chandonnet, J. DeMarco, C. E. Soccolich, J. R. Pedrazzani, D. J. DiGiovanni, M. J. Andrejco, and D. S. Shenk, "UV-induced Fiber Grating OADM Devices for Efficient Bandwidth Utilization," Optical Society of America,1996, PD8.
    [87]J. L. Archambault and S. G Grubb, "Fiber gratings in lasers and amplifiers," Lightwave Technology, Journal of,1997,15(8):1378-1390.
    [88]S. R. Baker, H. N. Rourke, V. Baker, and D. Goodchild, "Thermal decay of fiber Bragg gratings written in boron and germanium codoped silica fiber," Lightwave Technology, Journal of,1997, 15(8):1470-1477.
    [89]C. R. Giles, "Lightwave applications of fiber Bragg gratings," Lightwave Technology, Journal of, 1997,15(8):1391-1404.
    [90]K. O. Hill and G. Meltz, "Fiber Bragg grating technology fundamentals and overview," Lightwave Technology, Journal of,1997,15(8):1263-1276.
    [91]A. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," Lightwave Technology, Journal of,1997,15(8):1442-1463.
    [92]S. M. Norton, T. Erdogan, and G. M. Morris, "Coupled-mode theory of resonant-grating filters," J. Opt. Soc. Am. A,1997,14(3):629-639.
    [93]A.Othonos, "Fiber Bragg gratings," Review of Scientific Instruments,1997,68(12):4309-4341.
    [94]M. Svalgaard and M. Kristensen, "Directly UV written silica-on-silicon planar waveguides with low loss," Electronics Letters,1997,33(10):861-863.
    [95]M. J. Holmes, R. Kashyap, R. Wyatt, and R. P. Smith, "Ultra narrow-band optical fibre sidetap filters," in Optical Communication,1998.24th European Conference on,1998,137-138 vol.1.
    [96]J. E. Roman, M. Y. Frankel, and R. D. Esman, "Spectral characterization of fiber gratings with high resolution," Opt. Lett.,1998,23(12):939-941.
    [97]A. Carballar, M. A. Muriel, and J. Azafi, "Fiber grating filter for WDM systems:an improved design," Photonics Technology Letters, IEEE,1999,11(6):694-696.
    [98]Y. Qiu, Y. Sheng, and C. Beaulieu, "Optimal Phase Mask for Fiber Bragg Grating Fabrication," J. Lightwave Technol.,1999,17(11):2366.
    [99]关柏鸥,余有龙,葛春风,董孝义,”光纤光栅法布里-珀罗腔透射特性的理论研究,”光学学报,2000,20(1):5.
    [100]W. Zhanxione, Y. Yongsen, X. Hua, Z. Zhongchuang, W. Yuanda, Z. Liang, Z. Wei, and Z. Yushu, "Fabrication of chirped fiber grating with adjustable chirp and fixed central wavelength," Photonics Technology Letters, IEEE,2001,13(8):821-823.
    [101]G. Brambilla and H. Rutt, "Fiber Bragg gratings with enhanced thermal stability," Applied Physics Letters,2002,80(18):3259-3261.
    [102]K. P. Chen, P. R. Herman, and R. Tam, "Strong fiber Bragg grating fabrication by hybrid 157-and 248-nm laser exposure," Photonics Technology Letters, IEEE,2002,14(2):170-172.
    [103]C.-C. Lee and S. Chi, "Single-longitudinal-mode operation of a grating-based fiber-ring laser using self-injection feedback," Opt. Lett.,2000,25(24):1774-1776.
    [104]C. Xiangfei, Y. Jianping, Z. Fei, and D. Zhichao, "Single-longitudinal-mode fiber ring laser employing an equivalent phase-shifted fiber Bragg grating," Photonics Technology Letters, IEEE, 2005,17(7):1390-1392.
    [105]Z. Meng, G. Stewart, and G. Whitenett, "Stable Single-Mode Operation of a Narrow-Linewidth, Linearly Polarized, Erbium-Fiber Ring Laser Using a Saturable Absorber," J. Lightwave Technol., 2006,24(5):2179.
    [106]J. Sun, X. Yuan, X. Zhang, and D. Huang, "Single-longitudinal-mode fiber ring laser using fiber grating-based Fabry-Perot filters and variable saturable absorbers," Optics Communications,2006, 267(1):177-181.
    [107]X. He, X. Fang, C. Liao, D. N. Wang, and J. Sun, "A tunable and switchable single-longitudinal-mode dual-wavelength fiber laser with a simple linear cavity," Opt. Express, 2009,17(24):21773-21781.
    [108]G. Yin, B. Saxena, and X. Bao, "Tunable Er-doped fiber ring laser with single longitudinal mode operation based on Rayleigh backscattering in single mode fiber," Opt. Express,2011,19(27): 25981-25989.
    [109]C. H. Yeh, T. T. Huang, H. C. Chien, C. H. Ko, and S. Chi, "Tunable S-band erbium-doped triple-ring laser with single-longitudinal-mode operation," Opt. Express,2007,15(2):382-386.
    [110]X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, "Single-Longitudinal-Mode Erbium-Doped Fiber Ring Laser Based on High Finesse Fiber Bragg Grating Fabry Perot Etalon," Photonics Technology Letters, IEEE,2008,20(12):976-978.
    [111]C. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang, and N. Peyghambarian, "Low-Noise Narrow-Linewidth Fiber Laser at 1550 nm (June 2003)," J. Lightwave Technol.,2004,22(1):57.
    [112]Z. J. Chaboyer, P. J. Moore, and G. Das, "Medium power single-mode single-wavelength fiber laser," Optics Communications,2009,282(15):3100-3103.
    [113]S. H. Xu, Z. M. Yang, T. Liu, W. N. Zhang, Z. M. Feng, Q. Y. Zhang, and Z. H. Jiang, "An efficient compact 300 mW narrow-linewidth single frequency fiber laser at 1.5 um," Opt. Express,2010, 18(2):1249-1254.
    [114]J. B. Gruber and J. G. Conway, "Electronic Energy Levels and Crystal Quantum States of Tm (IV)," The Journal of Chemical Physics,1960,32(4):1178-1182.
    [115]L. F. Johnson, J. E. Geusic, and L. G Van Uitert, "Coherent oscillations from Tm3+, Ho3+, Yb3+and Er3+ ions in Yttrium aluminum," Applied Physics Letters,1965,7(5):127-129.
    [116]B. H. Soffer and R. H. Hoskins, "Energy transfer and CW laser action in Tm+3:Er2O3," Applied Physics Letters,1965,6(10):200-201.
    [117]H. W. Gandy, R. J. Ginther, and J. F. Weller, "Stimulated Emission of Tm3+Radiation in Silicate Glass," Journal of Applied Physics,1967,38(7):3030-3031.
    [118]D. C. Hanna, I. M. Jauncey, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, "Continuous-wave oscillation of a monomode thulium-doped fibre laser," Electronics Letters,1988,24(19):1222-1223.
    [119]W. L. Barnes and J. E. Townsend, "Highly tunable and efficient diode pumped operation of Tm3+ doped fibre lasers," Electronics Letters,1990,26(11):746-747.
    [120]S. D. Jackson and T. A. King, "Theoretical modeling of Tm-doped silica fiber lasers," Lightwave Technology, Journal of,1999,17(5):948-956.
    [121]G. Frith, D. G. Lancaster, and S. D. Jackson, "85 W Tm3+-doped silica fibre laser," Electronics Letters,2005,41(12):687-688.
    [122]E. Slobodtchikov, P. F. Moulton, and G. Frith, "Efficient, High-Power, Tm-Doped Silica Fiber Laser," Optical Society of America,2007, MF2.
    [123]W. A. Clarkson, N. P. Barnes, P. W. Turner, J. Nilsson, and D. C. Hanna, "High-power cladding-pumped Tm-doped silica fiber laser with wavelength tuning from 1860 to 2090 nm," Opt. Lett.,2002,27(22):1989-1991.
    [124]T. McComb, V. Sudesh, and M. Richardson, "Volume Bragg grating stabilized spectrally narrow Tm fiber laser," Opt. Lett.,2008,33(8):881-883.
    [125]F. Wang, D. Shen, D. Fan, and Q. Lu, "Widely tunable dual-wavelength operation of a high-power Tm:fiber laser using volume Bragg gratings," Opt. Lett.,2010,35(14):2388-2390.
    [126]Y. Tian, J. Q. Zhao, W. Gao, W. Wang, and Y. Z. Wang, "Narrow line-width Tm3+ doped double-clad silica fiber laser based on in-line cascade biconical tapers filter," Laser Physics Letters, 2010,7(4):298-302.
    [127]Y. J. Zhang, W. Wang, S. F. Song, and Z. G Wang, "Ultra-narrow linewidth Tm3+-doped fiber laser based on intra-core fiber Bragg gratings," Laser Physics Letters,2009,6(10):723-726.
    [128]Y. Tang, C. Huang, S. Wang, H. Li, and J. Xu, "High-power narrow-bandwidth thulium fiber laser with an all-fiber cavity," Opt. Express,2012,20(16):17539-17544.
    [129]N. Y. Voo, J. K. Sahu, and M. Ibsen, "345-mW 1836-nm single-frequency DFB fiber laser MOPA," Photonics Technology Letters, IEEE,2005,17(12):2550-2552.
    [130]D. Gapontsev, N. Platonov, M. Meleshkevich, O. Mishechkin, O. Shkurikhin, S. Agger, P. Vanning, and J. H. Poylsen, "20W single-frequency fiber laser operating at 1.93 um," in Lasers and Electro-Optics,2007. CLEO 2007. Conference on,2007,1-2.
    [131]G. D. Goodno, L. D. Book, and J. E. Rothenberg, "Low-phase-noise, single-frequency, single-mode 608 W thulium fiber amplifier," Opt. Lett.,2009,34(8):1204-1206.
    [132]L. Pearson, J. W. Kim, Z. Zhang, M. Ibsen, J. K. Sahu, and W. A. Clarkson, "High-power linearly-polarized single-frequency thulium-doped fiber master-oscillator power-amplifier," Opt. Express,2010,18(2):1607-1612.
    [1]K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, "Photosensitivity in optical fiber waveguides:Application to reflection filter fabrication," Applied Physics Letters,1978,32(10): 647-649.
    [2]G Meltz, W. W. Morey, and W. H. Glenn, "Formation of Bragg gratings in optical fibers by a transverse holographic method," Opt. Lett.,1989,14(15):823-825.
    [3]K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, "Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask," Applied Physics Letters,1993,62(10):1035-1037.
    [4]G. P. Agrawal and S. Radic, "Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing," Photonics Technology Letters, IEEE,1994,6(8):995-997.
    [5]A. Carballar, M. A. Muriel, and J. Azafi, "Fiber grating filter for WDM systems:an improved design," Photonics Technology Letters, IEEE,1999,11(6):694-696.
    [6]A. D. Kersey, T. A. Berkoff, and W. W. Morey, "Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry?Perot wavelength filter," Opt. Lett.,1993,18(16):1370-1372.
    [7]A. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," Lightwave Technology, Journal of,1997,15(8):1442-1463.
    [8]W. Liang, Y. Huang, X. Yong, R. K. Lee, and A. Yariv, "Highly sensitive fiber Bragg grating refractive index sensors," Applied Physics Letters,2005,86(15):151122-151122-3.
    [9]K. Kojima and K. Kyuma, "Analysis of the spectral linewidth of distributed feedback laser diodes," Electronics Letters,1984,20(21):869-871.
    [10]K. Sekartedjo, N. Eda, K. Furuya, Y. Suematsu, F. Koyama, and T. Tanbun-Ek, "1.5 μm phase-shifted DFB lasers for single-mode operation," Electronics Letters,1984,20(2):80-81.
    [11]J. L. Archambault and S. G. Grubb, "Fiber gratings in lasers and amplifiers," Lightwave Technology, Journal of,1997,15(8):1378-1390.
    [12]C. R. Giles, "Lightwave applications of fiber Bragg gratings," Lightwave Technology, Journal of, 1997,15(8):1391-1404.
    [13]M. J. Guy, J. R. Taylor, and R. Kashyap, "Single-frequency erbium fibre ring laser with intracavity phase-shifted fibre Bragg grating narrowband filter," Electronics Letters,1995,31(22):1924-1925.
    [14]C. Xiangfet, Y. Jianping, Z. Fei, and D. Zhichao, "Single-longitudinal-mode fiber ring laser employing an equivalent phase-shifted fiber Bragg grating," Photonics Technology Letters, IEEE, 2005,17(7):1390-1392.
    [15]X. Chen, J. Yao, and Z. Deng, "Ultranarrow dual-transmission-band fiber Bragg grating filter and its application in a dual-wavelength single-longitudinal-mode fiber ring laser," Opt. Lett.,2005, 30(16):2068-2070.
    [16]T. Erdogan, "Fiber grating spectra," Lightwave Technology, Journal of,1997,15(8):1277-1294.
    [17]H. Kogelnik and C. V. Shank, "Coupled-Wave Theory of Distributed Feedback Lasers," Journal of Applied Physics,1972,43(5):2327-2335.
    [18]M. Yamada and K. Sakuda, "Analysis of almost-periodic distributed feedback slab waveguides via a fundamental matrix approach," Appl. Opt.,1987,26(16):3474-3478.
    [19]A. Othonos, "Fiber Bragg gratings," Review of Scientific Instruments,1997,68(12):4309-4341.
    [20]S. Radic, N. George, and G. P. Agrawal, "Analysis of nonuniform nonlinear distributed feedback structures:generalized transfer matrix method," Quantum Electronics, IEEE Journal of,1995, 31(7):1326-1336.
    [1]S. B. Poole, D. N. Payne, and M. E. Fermann, "Fabrication of low-loss optical fibres containing rare-earth ions," Electronics Letters,1985,21(17):737-738.
    [2]S. Poole, D. Payne, R. Mears, M. Fermann, and R. Laming, "Fabrication and characterization of low-loss optical fibers containing rare-earth ions," Lightwave Technology, Journal of,1986, 4(7):870-876.
    [3]J. E. Townsend, S. B. Poole, and D. N. Payne, "Solution-doping technique for fabrication of rare-earth-doped optical fibres," Electronics Letters,1987,23(7):329-331.
    [4]D. Pureur, M. Douay, P. Bernage, P. Niay, and J. F. Bayon, "Single-polarization fiber lasers using Bragg gratings in Hi-Bi fibers," Lightwave Technology, Journal of,1995,13(3):350-355.
    [5]V. M. Paramonov, A. S. Kurkov, O. I. Medvedkov, and V. B. Tsvetkov, "Single-polarization cladding-pumped Yb-doped fiber laser," Laser Physics Letters,2007,4(10):740-742.
    [6]Y. Takushima, S. Yamashita, K. Kikuchi, and K. Hotate, "Polarization-stable and single-frequency fiber lasers," Lightwave Technology, Journal of,1998,16(4):661-669.
    [7]Z. Meng, G. Stewart, and G. Whitenett, "Stable Single-Mode Operation of a Narrow-Linewidth, Linearly Polarized, Erbium-Fiber Ring Laser Using a Saturable Absorber," J. Lightwave Technol.,2006,24(5):2179.
    [8]Y. Jianping, "Microwave Photonics," Lightwave Technology, Journal of,2009,27(3):314-335.
    [9]X. He, X. Fang, C. Liao, D. N. Wang, and J. Sun, "A tunable and switchable single-longitudinal-mode dual-wavelength fiber laser with a simple linear cavity," Opt. Express, 2009,17(24):21773-21781.
    [10]F. Wang, E.-M. Xu, J.-J. Dong, and X.-L. Zhang, "A tunable and switchable single-longitudinal-mode dual-wavelength fiber laser incorporating a reconfigurable dual-pass Mach-Zehnder interferometer and its application in microwave generation," Optics Communications,2011,284(9):2337-2340.
    [11]W. Zhijing, S. Qishun, Z. Li, L. Jinmei, Y. Wen, and W. Yuxing, "Optical Generation of Stable Microwave Signal Using a Dual-Wavelength Brillouin Fiber Laser," Photonics Technology Letters, IEEE,2010,22(8):568-570.
    [12]M. S. Kang, M. S. Lee, J. C. Yong, and B. Y. Kim, "Characterization of Wavelength-Tunable Single-Frequency Fiber Laser Employing Acoustooptic Tunable Filter," J. Lightwave Technol., 2006,24(4):1812.
    [13]W. Liu, M. Jiang, D. Chen, and S. He, "Dual-Wavelength Single-Longitudinal-Mode Polarization-Maintaining Fiber Laser and Its Application in Microwave Generation," J. Lightwave Technol.,2009,27(20):4455-4459.
    [14]T. Okoshi, K. Kikuchi, and A. Nakayama, "Novel method for high resolution measurement of laser output spectrum," Electronics Letters,1980,16(16):630-631.
    [15]P. B. Gallion and G. Debarge, "Quantum phase noise and field correlation in single frequency semiconductor laser systems," Quantum Electronics, IEEE Journal of,1984,20(4):343-349.
    [1]M. J. Guy, J. R. Taylor, and R. Kashyap, "Single-frequency erbium fibre ring laser with intracavity phase-shifted fibre Bragg grating narrowband filter," Electronics Letters,1995, 31(22):1924-1925.
    [2]C. Xiangfei, Y. Jianping, Z. Fei, and D. Zhichao, "Single-longitudinal-mode fiber ring laser employing an equivalent phase-shifted fiber Bragg grating," Photonics Technology Letters, IEEE,2005,17(7):1390-1392.
    [3]N. Park, J. W. Dawson, K. J. Vahala, and C. Miller, "All fiber, low threshold, widely tunable single-frequency, erbium-doped fiber ring laser with a tandem fiber Fabry-Perot filter," Applied Physics Letters,1991,59(19):2369-2371.
    [4]Z. Meng, G. Stewart, and G. Whitenett, "Stable Single-Mode Operation of a Narrow-Linewidth, Linearly Polarized, Erbium-Fiber Ring Laser Using a Saturable Absorber," J. Lightwave Technol.,2006,24(5):2179.
    [5]G. A. Ball and W. H. Glenn, "Design of a single-mode linear-cavity erbium fiber laser utilizing Bragg reflectors," Lightwave Technology, Journal of,1992,10(10):1338-1343.
    [6]J. L. Zyskind, V. Mizrahi, D. J. DiGiovanni, and J. W. Sulhoff, "Short single frequency erbium-doped fibre laser," Electronics Letters,1992,28(15):1385-1387.
    [7]G. A. Ball, W. W. Morey, and W. H. Glenn, "Standing-wave monomode erbium fiber laser," Photonics Technology Letters, IEEE,1991,3(7):613-615.
    [8]C. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang, and N. Peyghambarian, "Low-Noise Narrow-Linewidth Fiber Laser at 1550 nm (June 2003)," J. Lightwave Technol.,2004,22(1): 57.
    [9]S. H. Xu, Z. M. Yang, T. Liu, W. N. Zhang, Z. M. Feng, Q. Y. Zhang, and Z. H. Jiang, "An efficient compact 300 mW narrow-linewidth single frequency fiber laser at 1.5 μm," Opt. Express,2010,18(2):1249-1254.
    [10]M. Sejka, P. Varming, J. Hubner, and M. Kristensen, "Distributed feedback Er^-doped fibre laser," Electronics Letters,1995,31(17):1445-1446.
    [11]J. T. Kringlebotn, J. L. Archambault, L. Reekie, and D. N. Payne, "Er3+:Yb3+-codoped fiber distributed-feedback laser," Opt. Lett.,1994,19(24):2101-2103.
    [12]A. Schulzgen, L. Li, D. Nguyen, C. Spiegelberg, R. M. Rogojan, A. Laronche, J. Albert, and N. Peyghambarian, "Distributed feedback fiber laser pumped by multimode laser diodes," Opt. Lett.,2008,33(6):614-616.
    [13]V. C. Lauridsen, J. Povlsen, and P. Varming, "Design of DFB fibre lasers," Electronics Letters, 1998,34(21):2028-2030.
    [14]M. Yamada and K. Sakuda, "Analysis of almost-periodic distributed feedback slab waveguides via a fundamental matrix approach," Appl. Opt.,1987,26(16):3474-3478.
    [15]S. P. Craig-Ryan, B. J. Ainslie, and C. A. Millar, "Fabrication of long lengths of low excess loss erbium-doped optical fibre," Electronics Letters,1990,26(3):185-186.
    [16]P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, "High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres," Electronics Letters,1993,29(13):1191-1193.
    [17]N. Y. Voo, P. Horak, M. Ibsen, and W. H. Loh, "Anomalous linewidth behavior in short-cavity single-frequency fiber lasers," Photonics Technology Letters, IEEE,2005,17(3):546-548.
    [18]K. Yelen, L. M. B. Hickey, and M. N. Zervas, "A new design approach for fiber DFB lasers with improved efficiency," Quantum Electronics, IEEE Journal of,2004,40(6):711-720.
    [19]L. B. Mercer, "1/f frequency noise effects on self-heterodyne linewidth measurements," Lightwave Technology, Journal of,1991,9(4):485-493.
    [1]F. M. P. Leclere, M. Schoofs, B. Buys, and S. R. Mordon, "1.91 μm diode laser assisted vascular microanastomoses:Experience in 40 clinical procedures," Lasers in Surgery and Medicine,2011,43(4):293-297.
    [2]F. M. P. Leclere, M. Schoofs, F. Auger, B. Buys, and S. R. Mordon, "Blood flow assessment with magnetic resonance imaging after 1.9 μm diode laser-assisted microvascular anastomosis," Lasers in Surgery and Medicine,2010,42(4):299-305.
    [3]T. Komukai, Y. Yamamoto, T. Sugawa, and Y. Miyajima, "Upconversion pumped thulium-doped fluoride fiber amplifier and laser operating at 1.47 μm," Quantum Electronics, IEEE Journal of,1995,31(11):1880-1889.
    [4]R. M. Percival and J. R. Williams, "Highly efficient 1.064 μm upconversion pumped 1.47 μm thulium doped fluoride fibre amplifier," Electronics Letters,1994,30(20):1684-1685.
    [5]R. G. Smart, J. N. Carter, A. C. Tropper, and D. C. Hanna, "Continuous-wave oscillation of Tm3+-doped fluorozirconate fibre lasers at around 1.47 μm,1.9 μm and 2.3 μm when pumped at 790 nm," Optics Communications,1991,82(5-6):563-570.
    [6]T. Komukai, T. Yamamoto, T. Sugawa, and Y. Miyajima, "Efficient upconversion pumping at 1.064 μm Tm3+-doped fluoride fibre laser operating around 1.47 μm," Electronics Letters,1992, 28(9):830-832.
    [7]Y. Miyajima, T. Komukai, and T. Sugawa, " 1-W CW Tm-doped fluoride fibre laser at 1.47 μm," Electronics Letters,1993,29(8):660-661.
    [8]R. M. El-Agmy, W. Luthy, T. Graf, and H. P. Weber, "1.47 μm Tm3+:ZBLAN fibre laser pumped at 1.064 μm," Electronics Letters,2003,39(6):507-508.
    [9]G. Androz, M. Bernier, D. Faucher, and R. Valiee, "2.3 W single transverse mode thulium-doped ZBLAN fiber laser at 1480 μm," Opt. Express,2008,16(20):16019-16031.
    [10]P. Peterka, I. Kasik, A. Dhar, B. Dussardier, and W. Blanc, "Theoretical modeling of fiber laser at 810 nm based on thulium-doped silica fibers with enhanced 3H4 level lifetime," Opt. Express, 2011,19(3):2773-2781.
    [11]S. D. Jackson and T. King, "High-power diode-cladding-pumped Tm-doped silica fiber laser," Opt. Lett.,1998,23(18):1462-1464.
    [12]Z. Yunjun, Y. Baoquan, J. Youlun, Z. Hui, and W. Yuezhu, "LD-cladding-pumped 50 pm linewidth Tm3+-doped silica fiber laser," Opt. Express,2008,16(11):7715-7719.
    [13]嵇叶楠,延凤平,王琳,龚桃荣,刘鹏,陶沛琳,王文杰,“石英基掺Tm3+光纤激光器特性 的理论分析,”物理学报,2010,59(11):7899-7905.
    [14]D. C. Hanna, I. R. Perry, J. R. Lincoln, and J. E. Townsend, "A 1-Watt thulium-doped cw fibre laser operating at 2 μm," Optics Communications,1990,80(1):52-56.
    [15]Y. H. Tsang, D. J. Coleman, and T. A. King, "High power 1.9 μm Tm3+-silica fibre laser pumped at 1.09 μm by a Yb3+-silica fibre laser," Optics Communications,2004,231(1-6): 357-364.
    [16]A. Pal, A. Dhar, S. Das, S. Y. Chen, T. Sun, R. Sen, and K. T. V. Grattan, "Ytterbium-sensitized Thulium-doped fiber laser in the near-IR with 980 nm pumping," Opt. Express,2010,18(5): 5068-5074.
    [17]T. Yamamoto, Y. Miyajima, and T. Komukai, "1.9 μm Tm-doped silica fibre laser pumped at 1.57 μm," Electronics Letters,1994,30(3):220-221.
    [18]J. K. Sahu, C. A. Codemard, R. Selvas, J. Nilsson, M. Laroche, and W. A. Clarkson, "Tunable Tm-doped silica fibre laser," in Lasers and Electro-Optics Europe,2003. CLEO/Europe.2003 Conference on,2003,621-622.
    [19]D. Y. Shen, J. K. Sahu, and W. A. Clarkson, "High-power widely tunable Tm:fibre lasers pumped by an Er/Yb co-doped fibre laser at 1.6 μm," Opt. Express,2006,14(13):6084-6090.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700