基于动力学方法的特高压输电线微风振动研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
输电线微风振动是一个国内外普遍关心的问题,由于振动的高频性和持续性,日益成为输电线路重要的安全隐患,严重妨碍着输电线路的正常运营和成本降低。随着我国“十一五”重点项目1000kV交流特高压输电线路的开工建设,更高、更柔、更大容量的导地线的研制使用,使这个矛盾愈发的尖锐起来,对输电线的微风防振提出了更高的要求。
     有别于传统的能量平衡法,本文基于动力学方法研究输电线的微风振动和防振策略。主要包括:基于计算流体动力学的输电线微风振动数值仿真;安装防振锤前后输电线受迫振动的室内模拟实验;基于结构动力学的输电线-防振锤体系数学模型的建立与求解和基于风速、风向概率分布的输电线微风振动疲劳寿命研究等四个部分。旨在建立一套以疲劳寿命为评价标准的,基于动力学方法的输电线微风振动计算方法。
     首先利用计算流体动力学理论对输电线微风振动现象进行了数值风洞模拟。不仅通过流体动力学计算再现了经典风洞实验结果,而且对微风振动的自限性机理进行了深入探讨。其次,基于振幅先验性假设,利用微风振动流体动力学模型得到了单根输电线在不同紊流强度下的风功率输入曲线,并拟合了解析表达式,为动力学模型提供了参数化的激励力输入。
     参照IEEE标准独立设计实施了输电线振动实验。通过数据分析定性的对比了安装FR-3或是FR-4防振锤后输电线的振动强度,比较了不同防振方案的优劣,研究了张力对输电线振动强度的影响。并研究了防振锤数目、安装位置和混合安装方式对防振效果的影响。通过实验研究为输电线-防振锤动力学模型的建立与求解提供了数据支撑。
     在数值风洞和室内实验的基础上,推导了微风激励力函数、输电线等效自阻尼系数和防振锤阻抗表达式,建立了一套直接求解输电线-防振锤体系动力方程的微风振动计算方法。使用四阶精度有限差分格式和迭代算法求解体系动力方程得到输电线各点的稳定振幅和动弯应变值,编制了Fortran计算程序,与实验和经典算例对比验证了程序的可靠性。使用该程序对输电线-防振锤体系动力特性和微风振动影响因素进行了分析。
     基于Miner线性损伤累积理论,推导了输电线微风振动疲劳寿命计算公式,将输电线振幅与疲劳寿命联系在一起,并能够考虑风速、风向的概率分布和材料的疲劳特性。以疲劳寿命为评价指标研究了各个影响因素的参数敏感性,特别针对防振锤给出了较优的安装位置,借以经济合理地指导输电线的防振设计。
     输电线微风振动由于其复杂性和疲劳破坏的严重性,多年来一直吸引广大学者的关注与研究,但是距离完全解决这个问题仍然任重道远。希望本文的成果能够为输电线微风振动机理、分析计算和抑振策略研究提供参考,为减少微风振动危害提供更有效的解决之道。
Transmission line aeolian vibration is a general concern problem around the world. Because the vibration is high-frequency and durative, it becomes an important security risks for transmission line, and limits to reduce conductor costs. With the construction of 1000kV Ultra High Voltage in China, the conductor is higher, more flexible and larger capacity, which is not conducive to aeolian vibration resistance, and put forward higher requirements for design.
     Different from the energy balance method traditionally, dynamics method is employed to research on the transmission line aeolian vibration and vibration control. The dissertation includes the following main content. Numerical simulation of aeolian vibration based on computational fluid dynamics; dynamic model of transmission line-dampers system is modeled and solved by finite difference method; the forced vibration experiment for transmission line with and without dampers attached; study on fatigue life of transmission line aeolian vibration based on the probability distribution of wind speed and direction. It aims at establishing a set of analysis method for transmission line aeolian vibration based on dynamics method and fatigue life.
     The numerical simulation on aeolian vibration phenomenon of the transmission line is implemented by using computational fluid dynamics (CFD) method. The classical results of wind tunnel experiment are reproduced by CFD, and self-limit phenomenon is discussed. Then based on priori hypothesis of amplitude, wind power input in different wind fields which have different turbulence intensity has been obtained for a single two-dimensional transmission line model.
     Transmission line vibration test are designed independently reference to IEEE standards. Vibration intensity about conductor with FR-3 damper is compared with FR-4 damper attached through data analysis. The impact of vibration intensity by tension is asol studied by the test. In the final experiment, a set of experiment are designed for investigating the effect of anti-vibration by damper number, damper location and mixed installation.
     Based on CFD numerical simulation and vibration test, aeolian excitation, equivalent self-damping ratio and damper impedance are deducted, and conductor-dampers dynamic equations are modeled. The fourth-order finite difference method and the iterative algorithm are employed to solving the aeolian vibration dynamic equations, and then the steady amplitude & dynamic benting strain can be obtained for ervery point. The calculation software named AVFDP is programed using fortran90. Compared with test and classical date, present result is correct and accurate enough. By using AVFDP program, the system dynamics charactors, the response of transmission line aeolian vibration and the parameter sensitivity can be analysed.
     In the last part of dissertation, formula of fatigue life of transmission line aeolian vibration is deduced. The vibration displacement amplitude is related with fatigue life by this formula which can consider the probability distribution of wind speed and direction. Take fatigue life as an evaluation index, the sensitivity of a series of parameters is researched, and optimal dampers location can be obtained.
     Becase of complexity of aeolian vibration and ponderance of fatigue failure, transmission line aeolian vibration has been to attract the majority of the attention of scholars. But there is a long road to completely solving the problem. This dissertation presents a new approach, and provides the reference to the study of vibration mechanism, analysis method and control strategy.
引文
[1]胡劲松,黎岚,吴安平,et al.特高压直流输电工程可行性研究主要技术原则.中国电力.2007,40(8):36-39.
    [2]张会韬.架空输电线路微风振动危害的实例及现场测振的重要性.电力建设.1997,18(9):38-40.
    [3]郑玉琪.架空输电线微风振动.北京:水利出版社,1987.
    [4]邵天晓.架空送电线路的电线力学计算.北京:中国电力出版社,2003.
    [5]Blevins R D.流体诱发振动.吴恕三.北京:机械工业出版社,1981.
    [6]Ervik M,Berg A,Boelle A,et al.Report on aeolian vibration of power overhead lines.Electra.1989(124):41-77.
    [7]Meynen S,Verma H,Hagedorn P,et al.On the numerical simulation of vortex-inducedvibrations of oscillating conductors.Journal of Fluids and Structures.2005,21(I SPEC ISS):41-48.
    [8]Diana G,Falco M.On the forces transmitted to a vibrating cylinder by a blowing fluid.Mechanica.1971,6(1):9-22.
    [9]Rawlins C.Model of power imparted to a vibrating conductor by turbulent wind.Alcoa Conductor Products Company,1983.
    [10]Macdonald R,Pon C J,Havard D G,et al.Aeolian vibration excitation of bundle conductors.In:Tech.Report,Canadian Electrical Association (1989) 177 T 510.
    [11]Brika D,Laneville A.A laboratory investigation of the aeolian power imparted to a conductor using a flexible circular cylinder.IEEE Transactions on Power Delivery.1996,11(2):1145-1152.
    [12]Kraus M,Hagedorn P.Aeolian vibrations:Wind energy input evaluated from measurements on an energized transmission line.IEEE Transactions on Power Delivery.1991,6(3):1264-1270.
    [13]Collaboration.Guide on conductor self-damping measurements.Electra.1979(62):79-90.
    [14]IEEE Guide on Conductor Self-damping Measurements.1978.
    [15]孔祥志.架空线自阻尼的测试方法.中国民航学院学报.1992,10(3):34-41.
    [16]徐乃管,王景朝.导线自阻尼的测量及实用归算方法.中国电力.1995,28(2):17-20.
    [17]徐乃管,王景朝.500KV线路大跨越分裂导线防振试验研究.电力建设.1994,15(11):2-5.
    [18]陈嘉麟,李金奎.光纤复合架空地线的防振.电力系统通信.2006,27(9):6-9.
    [19]杨玉金.500kV线路大跨越微风振动在线监测.安徽电力.2006,23(2):29-32.
    [20]谢昌举,张正均,李敏.浔江大跨越输电线微风振动消振设计试验研究及现场测量.世界地震工程.2003,1 9(2):82-86.
    [2l]何晓雄,季凌飞.500kV平洛送电线大跨越微风振动测试.合肥工业大学学报:自然科学版.2001,24(4):555-558.
    [22]Mocks L,Schmidt J.Dimensioning and arrangement of self damping spacer-dampers in bundled power lines.Elektrizitaetswirtschaft.1988,87(21):1044-1048.
    [23]王福军.计算流体动力学分析——CFD软件原理及应用.北京:清华大学出版社,2001.
    [24]Huang Z Y,Pan Z Y,Cui W C.Numerical simulation of VIV of a circular cylinder with two degrees of freedom and low mass-ratio.Journal of Ship Mechanics.2007,11 (1):1-9.
    [25]陈文礼,李惠.基于RANS的圆柱风致涡激振动的CFD数值模拟.西安建筑科技大学学报.2006,38(4):509-5 1 3.
    [26]陈文曲,任安禄,李广望.串列双圆柱绕流下游圆柱两自由度涡致振动研究.力学学报.2004,36(6):732-738.
    [27]王志东,周林慧.均匀流中横向振荡圆柱绕流场的数值分析.水动力学研究与进展:A辑.2005,20(2):146-151.
    [28]Williamson C H,Govardhan R.Vortex-induced vibrations.Annual Review of Fluid Mechanics.2004,36:413-455.
    [29]Gabbai R D,Benaroya H.An overview of modeling and experiments of vortex-induced vibration of circular cylinders.Journal of Sound and Vibration.2005,282(3-5):575-616.
    [30]Belloli M.,Cigada,A.,Diana,G.,et al.Wind tunnel investigation on vortex induced vibration of a long flexible cylinder,in:Santa Margherita,Italy:2003.
    [31]Hagedorn P.On the computation of damped wind-excited vibrations of overhead transmission lines.Joumal of Sound and Vibration.1982,83(2):253-271.
    [32]Claren R,Diana G.Mathematical analysis of transmission line vibration.IEEE Transactions on Power Apparatus and Systems.1969,PAS-88(12):1741-1771.
    [33]Hagedorn P,Kraus M.On the performance of spacer dampers in bundled conductors.European Transactions on Electrical Power Engineering/ETEP.1993,3(4):305-311.
    [34]Simmons J M,Cleary P M.Measurement of aerodynamic power associated with vortex induced vibration of electrical transmission lines.IEEE Transactions on Power Apparatus and Systems.1980,PAS-99(1):158-164.
    [35]Noiseux D U.Similarity laws of the internal damping of stranded cables in transverse vibrations. Dallas,TX,USA:Publ by IEEE,Piscataway,NJ,USA,1992.
    [36]Lu M L,Chan J K.An efficient algorithm for Aeolian vibration of single conductor with multiple dampers.IEEE Transactions on Power Delivery.2007,22(3):1822-1829.
    [37]王肇民.高耸结构振动控制.上海:同济大学出版社,1997:322.
    [38]Sauter D,Hagedom P.On the hysteresis of wire cables in Stockbridge dampers.International Journal of Non-Linear Mechanics.2002,37(8):1453-1459.
    [39]Wagner H,Ramamurti V,Sastry R V,et al.Dynamics of Stockbridge dampers.Journal of Sound and Vibration.1973,30(2):207-220.
    [40]Rawlins C B.Fundamental concepts in the analysis of wake-induced oscillation of bundled conductors.IEEE Transactions on Power Apparatus and Systems.1976,PAS-95(4):1377-1393.
    [41]Tompkins J S,merril L L,jones B L.Quantitative Relationships in conductor vibration damping.AIEE Transactions on Power Apparatus and Systems.1956,75(3):879-894.
    [42]Markiewicz M.Optimum dynamic characteristics of Stockbridge dampers for dead-end spans.Journal of Sound and Vibration.1995,188(2):243-256.
    [43]Allnutt J G,Rowbottom M D.Damping of aeolian vibration on overhead lines by vibration dampers.Proceedings of the Institution of Electrical Engineers.1974,121 (10):1175-1179.
    [44]徐乃管,王景朝.关于防振锤力学性能的探讨.电力建设.2001,22(3):8-11.
    [45]卢明良.防振锤功率特性的计算机仿真.东北电力技术.1994,10(2):1-4.
    [46]李效韩,徐乃管.防振锤非线性参数识别.中国电机工程学报.1996,16(2):142-144.
    [47]孙林,何晓雄.防振锤功率特性两种测试方法的比较.华东电力.2003,31(5):37-39.
    [48]季凌飞.架空输电线防振器性能研究:[硕士学位论文].合肥:合肥工业大学图书馆,2001.
    [49]杨日胜.高压架空线缆的防振锤设计理论(下).网络电信.2003(10):69-73.
    [50]张旗,张玲.架空线防振锤设计中的几个问题.电力学报.2005,20(2):169-171.
    [51]王德峰,夏德森.防振金具在架空线路上的应用.电力金具.2003(1):6-17.
    [52]樊社新.防振锤的动力响应及能量消耗.电力建设.1996,17(1):36-37.
    [53]Dhotarad M S,Ganesan N,Rao B V.Transmission line vibrations.Journal of Sound and Vibration.1978,60(2):217-237.
    [54]Simpson A.Aerodynamic instability of long span transmission lines.1965,112:315-324.
    [55]Simpson A.Determination of the inplane natural frequencies ofmultispan transmission lines by a transfer matrix method.Proceedings of the Institute of Electrical Engineers.1966,113:870~878.
    [56]Simpson A,Sembi P S.On the use of modal analysis techniques in the design of damping devices for multi-conductor overhead power lines,Part I:the control of aeolian vibration..Journal of Sound and Vibration.1984,97(3):357-385.
    [57]Simpson A,Salmon N J,Taylor C N.Computational comparison of efficacies of aeolian vibration damping devices for multiconductor overhead power lines,IEE Proceedings C (Generation,Transmission and Distribution).1990,137(3):225-232.
    [58]Diana G,Cheli F,Fossati F,et al.Aeolian vibrations of overhead transmission lines:Computation in turbulence conditions.Journal of Wind Engineering and Industrial Aerodynamics.1993,46-47:639-648.
    [59]王松平,陈笃.均匀和风作用下输电线振动分析.武汉汽车工业大学学报.1997,19(3):70-74.
    [60]方开翔,刘炳霞,赵琦.拖缆涡激振动计算及分析.江苏科技大学学报:自然科学版.2005,19(6):70-74.
    [61]李立,廖锦翔.涡激振动问题的有限元计算研究.工程力学.2003,20(5):200-203.
    [62]Vecchiarelli J,Currie I G,Havard D G.Computational analysis of aeolian conductor vibration with a stockbridge-type damper.Journal of Fluids and Structures.2000,14(4):489-509.
    [63]Matteoluca F.;Emmanuel D.L.Coupling of structure and wake oscillators in vortex-induced vibrations.Journal of Fluids and Structures.2004,1 (1):116-133.
    [64]Bishop,R.,Hassan A.The lift and drag forces on a circular cylinder in a flowing fluid.1964.
    [65]Hartlen R T,Currie I G.Lift oscillation model for vortex-induced vibration.Engineering Mechanics.1970,96(2):577-591.
    [66]Iwan W D,Blevins R D.A model for vortex-induced oscillation of structures.Journal of Appl.Mech.1974,41(2):581-586.
    [67]Griffin O M,Skop R A,Koopman G H.The vortex-excited resonant vibration of circular cylinders.Journal of Sound and Vibration.1973,31 (2):235-249.
    [68]Skop R A,Griffin O M.A model for the vortex-excited response of bluff cylinders.J.of Sound and Vibration.1973,27(2):225-233.
    [69]Balasubramanian S,Skop R A.A new twist on an old model for vortex-excited vibrations.Journal of Fluids and Structures.1997,11(3):395-412.
    [70]Krenk S,Nielsen S R K.Energy balanced double oscillator model for vortex-induced vibrations.ASCE Journal of Engineering Mechanics.1999,125(2):263-271.
    [71]Mureithi N W,Kanki H,Nakamura T.Bifurcation and perturbation analysis of some vortex shedding models.Proceedings of the Seventh International Conference on Flow-Induced Vibrations.2000:61-68.
    [72]王景朝,徐乃管.复合交变应力条件下的导线疲劳试验方法.电力建设.2001,22(2):18-20.
    [73]朱斌.输电线路导线的疲劳破坏及防治.农村电气化.2005(5):12-13.
    [74]余建星,俞永清,李红涛,et al.海底管跨涡激振动疲劳可靠性研究.船舶力学.2005,9(2):109-114.
    [75]谢彬,段梦兰,秦太验,et al.海洋深水立管的疲劳断裂与可靠性评估研究进展.石油学报.2004,25(3):95-100.
    [76]郭海燕,傅强,娄敏.海洋输液立管涡激振动响应及其疲劳寿命研究.工程力学.2005,22(4):220-224.
    [77]卢伟,强士中,等.斜拉索抖振疲劳可靠度分析.中国公路学报.200l,14(4):63-66.
    [78]杨美良,李波,黄立浦.部分斜拉桥拉索疲劳可靠度分析.长沙交通学院学报.2007,23(1):6-9.
    [79]王一飞,潘志远,黄小平,et al.深海立管涡激振动疲劳损伤影响因素分析.船舶力学.2006,10(5):76-83.
    [80]党志杰.斜拉索的疲劳抗力.桥梁建设.1999(4):18-21.
    [81]IEEE.Standardization of conductor vibration measurment.1966.
    [82]CIGRE.W20.Recommendations for the evaluation of the livetime of transmission line conductors.Electra.1969,63(3).
    [83]Braga G E,Nakamura R,Furtado T A.Aeolian vibration of overhead transmission line cables:Endurance limits.Sao Paulo,Brazil:Institute of Electrical and Electronics Engineers Inc.,New York,NY 10016-5997,United States,2004.
    [84]Brunair R M,Ramey G E,Duncan R R.Experimental evaluation of S-N curves and validity of Miner's cumulative damage hypothesis for an ACSR conductor.IEEE Transactions on Power Delivery.1988,3(3):1131-1140.
    [85]Leblond A,Hardy C.Assessment of safe design tension with regard to Aeolian vibrations of single overhead conductors.Montreal,Que.,Canada:IEEE,2000.
    [86]ALara-lopez,Jcolin-venegas.Endurance of dampers for electric conductors.International Journal of Fatigue.2001,23(1):870-878.
    [87]Zhou Z R,Goudreau S,Fiset M,et al.Single wire fretting fatigue tests for electrical conductor bending fatigue evaluation.Wear.1995,181-183(2):537-543.
    [88]Sinha N K,Hagedorn P.Wind-excited overhead transmission lines:Estimation of connection stresses at junctions.Journal of Sound and Vibration.2007,301(1-2):400-409.
    [89]Diana G,Falco M.On the forces transmitted to a vibrating cylinder by a blowing fluid.Mechanica.1971,6(1):9 - 22.
    [90]曹丰产,项海帆.圆柱非定常绕流及涡致振动数值计算.水动力学研究与进展.2001,16(1):112-118.
    [91]李黎,孔德怡,龙晓鸿,et al.输电线微风振动的CFD数值仿真.武汉:《工程力学》杂志社,2008.
    [92]叶春明,吴文权.数值模拟圆柱绕流旋涡运动及尾流不稳定性分析.工程热物理学报.1997,18(2):169-172.
    [93]Leblond A,Hardy C.Assessment of safe design tension with regard to aeolian vibrations of single overhead conductors.Montreal,Que,Can:IEEE,2000.
    [94]Quarteroni A,Salefi F.Matlab科学计算.北京:清华大学出版社,2005.
    [95]国家电力公司东北电力设计院.电力工程高压送电线路设计手册[S].2003.
    [96]Kong D Y,Li L,Long X H,et al.Analysis of aeolian vibration of UHV transmission conductor by finite element method.Zhendong yu Chongji/Journal of Vibration and Shock.2007,26(8):64-67.
    [97]Biggsjohn.M著.结构动力学.姚玲森,程翔云译.北京:人民交通出版社,1982.
    [98]何晓雄.新型FR型防振锤固有频率研究.合肥工业大学学报:自然科学版.2000,23(1):140-143.
    [99]铁摩辛柯.,工程中的振动问题.胡人礼译.北京:人民铁道出版社,1978.
    [100]刘万勋,刘长学,华伯浩.大型稀疏线性方程组的解法.北京:国防工业出版社,1981.
    [101]Meirovitch.Analytical Methods in Vibrations.New York:The Macmillan Company,1967.
    [102]Bishop R E D,Johnson D C.The Mechanics of Vibration.England:Cambridge University Press,1960.
    [103]Timoshenko S,Young D H,Weaver J W.Vibration Programs in Engineering.4th Edition ed.New York:John Wiley & Sons,1974.
    [104]岳赢,尤传永.大容量导线的振动特性.电力技术.1992,18(1):12-16.
    [105]卢明良,徐乃管.自阻尼条件下架空导地线风振强度计算分析.电力建设.1995,16(6):2-4.
    [106]Poffenberger J C,swart R L.Differential displacement and dynamic conductor strain.IEEE Transaction Paper.1965,Vol.Pas-85(4):564-587.
    [107]潘忠华.线夹出口处导线动弯应变值计算系数论析.电力建设.1993,14(10):10-14.
    [108]孙林.架空输电线防振器性能研究及安装位置的精确计算.合肥:合肥工业大学,2003.
    [109]董吉谔.电力金具手册.北京:中国电力出版社,2001.
    [110]徐中年.架空输电线微风振动测量与寿命预报.电力建设.1991,12(10):6-9.
    [111]叶志雄,李黎,龙晓鸿,et al.考虑安装位置的防振锤功率特性计算及其应用.电力建设.2008(05).
    [112]徐大海.风向,风速,稳定度类别联合概率分布及混合层深度的诊断估计初探.环境科学.1990,11(1):11-17.
    [113]姚卫星.结构疲劳寿命分析.北京:国防工业出版社,2003.
    [114]Miner M A.Cumulative damage in fatigue.Journal of Applied Mechanics.1945,25(12):159-164.
    [115]Palmgren A.Die Lebensdauer von Kugellagern.Zeitschrift des Vereins Deutscher Ingenieure.1924,68(4):339-341.
    [116]Coffin L F.A study of the effects of cyclic thermal stresses on a ductile metal.Transactions of the American Society of Mechanical Engineers.1954,76(4):931-950.
    [117]Manson S S.Behaviour of materials under condition of thermal stress.1954,TN-2933:NACA.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700