钢丝绳捻制成形数值模拟与制品力学强度分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢丝绳是一种重要的空间螺旋结构制品,具有高强度、柔软性和稳定可靠的特点,因而被广泛地应用于机械、建筑、交通、通讯和航空航天等领域。到目前为止,大量文献研究了钢丝绳承受拉伸、弯曲和扭转载荷时的变形情况,但很少有对钢丝绳成形过程进行数值模拟的研究,特别是没有考虑自扭转系数和接触摩擦对捻制成形影响。捻制成形过程中变形复杂,必须同时考虑材料非线性和接触非线性。钢丝绳的加工应力不仅影响成形性,而且由其引起的残余应力对钢丝绳结构强度有很大影响。因此,本文进行了钢丝绳成形过程数值模拟和制品力学强度分析的研究工作。
    本文首先建立了考虑自扭转系数时的钢丝绳空间几何模型,该模型是捻制成形过程有限元计算模型的重要组成部分;根据钢丝绳捻制成形原理,考虑捻制成形中的材料非线性,以虚功原理为基础,建立了捻制成形数值模拟中弹塑性增量分析的有限元方程。
    接触摩擦模型是捻制成形过程有限元计算模型的另外一个重要组成部分。接触摩擦与钢丝绳变形之间是复杂的非线性关系,直接影响着钢丝绳的成形性。接触摩擦问题的处理包括接触单元的搜索和接触力的计算两个方面。本文采用捻制成形中三维Splitting-pinball接触搜索计算模型,该算法大大提高了搜索接触单元的精确性。
    采用罚函数法,讨论了接触界面本构关系的增量形式和接触单元技术,用径向回映算法处理接触摩擦中的粘着/滑动状态;在罚函数法的基础上,进一步给出了采用Augmented Lagrangian法处理法向接触力和切向接触力的计算模型。该方法的优点是可以得到问题的精确解,且节约CPU消耗时间和减少控制方程出现病态。
    为了考虑捻制成形工艺对钢丝绳结构强度的影响,本文建立了钢丝绳制品力学强度分析计算模型,对载荷作用下简单直股和IWRC 7×7独立绳芯中钢丝的受力情况进行分析,并对钢丝截面危险点采用第三强度理论进行强度校核计算。
    考虑钢丝绳的捻制过程的双重非线性,根据所建立的捻制成形过程有限元计算模型,在分析钢丝绳捻制成形数值模拟和制品力学强度校核程序系统的设计原则和功能需求的基础上,建立了系统的各个功能模块;运用图形用户界面(GUI),利用通用有限元软件ANSYS的开放性结构,用VC++ 二次开发了钢丝绳捻制成形过程数值模拟
    
    
    和力学强度分析程序系统(LayingWireRope)。该系统生成ANSYS参数设计语言(APDL)格式的数据文件,数据文件可以被ANSYS直接调用,进行捻制成形的材料非线性和接触非线性分析,且可以进行制品的力学强度分析;讨论了系统开发中涉及到的ANSYS封装、注册表编程、多进程编程和进程的终止等关键技术,以保证在接口程序中正常启动、运行和关闭ANSYS应用程序。
    利用所开发的系统研究了自扭转系数、摩擦系数和捻向组合等捻制工艺参数对钢丝绳捻制成形的影响。研究结果表明:① 非零自扭转系数进行一次捻制成形时,加工形状冻结性好,且整绳在使用过程中扭转应力小,故使用安全性好;② 钢丝绳捻制成形过程中摩擦系数对剪应力的影响比对Von-Mises 应力和等效塑性应变的影响大。综合考虑钢丝绳的结构强度和摩擦系数的影响,合理的自扭转系数取略大于1.0;③ 二次捻制时侧股的侧线钢丝的应力应变呈现不均匀分布,且交互捻制钢丝绳不易松散,即形状冻结性好,但柔软性较差;而同向捻制钢丝绳的柔软性较好,但易松散;④ 通过对Augmented Lagrangian 法中计算结果和收敛性比较,合理的法向接触刚度因子的取值为0.01。
    另外,对IWRC 7×7独立绳芯制品进行了力学强度分析,具体讨论了绳股的受载分配和捻向组合对制品强度的影响。分析结果表明,侧股承受了整绳的主要载荷,但整绳的最危险点在芯股侧线钢丝与芯股中心钢丝的接触点处;交互捻制钢丝绳的相当应力要明显大于同向捻制钢丝绳的相当应力。
    最后,对钢丝捻制成形终了钢丝内轴向残余应力采用X射线法进行了测定。结果表明,在考虑摩擦的情况下,钢丝内的轴向残余应力计算结果与实验结果更接近,且说明本文提出的捻制成形有限元计算模型是有效的。
Metal wire rope is an important kind of space spiral product. Since it has the characteristic of high strength, flexibleness and stability, it is widely applied in many fields, such as mechanism, architecture, transport, communication, aviation and aerospace, etc. Up to now, although the behaviors of stranded rope under loads, including tension, shear, bending and torsion, have been studied in many literatures, little information is available to predict the simulation for the laying process of wire rope, especially without regard to the self-rotating ratio and friction contact condition. Material non-linearity and contact non-linearity must be considered for the complicated deformation of laying wire rope. The formation stress affects the formability of wire rope, and the resultant residual stress greatly affects the structural strength. So the research of numerical simulation on the laying process and strength analysis of wire rope has been carried out in this paper.
    The space geometric model of wire rope with self-rotating ratio has been described and the model is an important component of finite element computation model for laying wire rope. Taking the laying process theory of wire rope and material non-linearity into consideration, and based on the principle of virtual work, elasto-plastic incremental FE equations have been established for the numerical simulation for laying wire rope.
    Friction contact model is another important component of finite element computation model for laying wire rope. It is a complicated nonlinear relationship between friction contact and deformation of wire rope. And friction contact has direct effect on the formability of wire rope. Friction contact routines carry out two tasks: to search the contact elements being in contact and to compute the contact forces. 3D Splitting-pinball contact searching model for laying wire rope has been adopted, and the accuracy has been improved by the Splitting-pinball algorithm.
    Using penalty method, the incremental constitutive relationship and contact element technology of contact interface have been discussed. And Radial-Return Mapping algorithm has been employed to handle stick/slip phases of friction. Based on penalty method and using Augmented Lagrangian method, computation model has been presented to calculate both the normal contact force and friction contact force. The advantage of Augmented Lagrangian method is that the exact solution can be obtained and that considerable savings in the CPU-time can be realized and ill-condition of governing equations can be decreased.
    
    In order to consider the effect of laying formation on the structural strength, Strength analysis model of metal wire rope has been presented in this paper. The behaviors of wires in simple strand and IWRC 7×7 Independent Wire Rope Core under loads are analyzed. With the third strength theory, the strength on the dangerous point in the wire cross is checked.
    With dual non-linearity of the laying process, based on the finite element computation model for laying wire rope, and considering the design principle and function requirement of the program system for numerical simulation and strength analysis of metal wire rope, function modules of the system has been established. And with graphical user interface (GUI) and opening structure of the commercial finite element ANSYS software, the program system for numerical simulation on laying process and strength analysis of metal wire rope (LayingWireRope) has been redeveloped with VC ++. The system can create data files, which are in the format of ANSYS parametric design language (APDL). And the data files can be directly accessed by ANSYS for the analysis of material non-linearity and contact non-linearity. Also, the system can analyze strength of wire rope. The key technologies, such as encapsulating ANSYS, programming registry and multi-process, terminating thread, etc., have been discussed so that the interface program can activate, run and close ANSYS.
    Using the developed program system, the effects of self-rotating
引文
阮煦寰, 沈建军. 钢丝绳生产. 北京: 北京钢铁学院, 1988, 1~244
    李前桂. 钢丝绳生产. 北京: 冶金工业出版社, 1959, 1~203
    相泽龙彦, 王桂兰, 木原淳二. 钢丝绳成形过程模拟的弹塑性有限元法研究. 日本塑加春讲会论文集, 1998, 488~493
    王桂兰, 张海鸥. 钢丝绳成形过程共转坐标系弹塑性有限元分析. 华中科技大学学报, 2001, 29(8): 65~67
    王桂兰, 张海鸥. 金属捻线成形过程的弹塑性有限元模拟. 中国机械工程, 2001, 12(增刊):7~10
    王桂兰, 张海鸥. 钢丝绳成形力学行为的非线性有限元分析. 工程力学, 2002, 19(3): 166~170
    赵瑞敏. 钢丝绳几何结构CAD与力学分析. [硕士学位论文], 华中科技大学, 2003.
    邹林森. 光纤与光缆. 武汉: 武汉工业大学出版社, 2000, 1~198
    秦大甲. 国外航空航天用光缆发展动态. 光纤与电缆及其应用技术, 1997, 3: 3~9
    徐洪林. 线接触钢丝绳捻股设备. 金属制品, 1994, 21(2): 21~23
    周银山. 中心管式ADSS光缆一步法生产技术的研究. 光纤与电缆及其应用技术, 2001, 1: 28~30
    吴建伟. ADSS光缆的设计与制造. 光纤与电缆及其应用技术, 2001, 3: 39~42
    王国东. 光纤带SZ绞新技术. 光纤与电缆及其应用技术, 2000, 5: 29~30
    许定. 中心管式防蚁非金属光缆的研制. 光纤与电缆及其应用技术, 2000, 2: 39~42
    缑庆林. 编制防扭钢丝绳的技术开发. 金属制品, 1998, 24(1): 7~9
    赵忠海. 矿用钢丝绳的新结构. 金属制品, 1997, 23(4): 24~27
    常亚峰, 魏朝晖. 面接触钢丝绳生产的新方法. 金属制品, 2001, 24(1): 11~14
    朱燕杰, 苏立国, 付松年等. 新型光纤的技术发展及应用. 光机电信息, 2001, 5: 1~5
    秦万信. 浅谈石油钢丝绳制造. 石油机械, 1996, 27(1): 9~13
    李龙勤, 骆军, 罗中平. 光纤复合架空地线(OPGW)光缆与应用. 电信科学, 2001, 3: 73~74
    黄豪士, 谢书鸿. 国产光缆复合架空地线(OPGW)的进展. 电力建设, 1997, 1: 19~24
    刘卫华. 国产光缆复合架空地线 (opgw) 的设计应用. 山东电力技术, 1998, 100(2): 46~48
    汪立峰, 胡维维. 输电线路opgw的结构特点及设计选择. 浙江电力, 2000, 4: 27~30
    汪立峰. 输电线路opgw工程设计与探讨. 电力建设, 2001, 22(7): 63~67
    刘桂峰, 郎需军. 高压架空输电线路opgw的选型与设计. 山东电力技术, 2001, 117(1): 5~7
    高荣, 杨善水, 岩仰光. 电缆的计算机仿真研究. 江阴工学院学报, 2001, 1: 23~26
    李然山, 吴新凉. 室内光缆的探讨. 光纤与电缆及其应用技术, 2001, 2: 6~13
    秦大甲译. 蓝宝石光纤扩展了外科及传感器的应用. 光纤与电缆及其应用技术2000, 4: 48
    
    傅全臻. 国产与进口矿用钢丝绳的质量差异及改进意见. 金属制品, 2001, 5: 7~10
    R. Hill. Some basis principle in the mechanics of solids without a natural time. Journal of Mech. Phys. Solid, 1959, 7: 200~213
    P. V. Marcal and L. P. King. Elasto-plastic analysis of two-dimension stress system by the finite element method. International Journal of Mechanical Sciences, 1967, 9: 143~155
    Y. Yamada and H. Yoshimura. Plastic stress-strain matrix and its application for the solution of the elasto-plastic problems by the finite element method. International Journal of Mechanical Sciences, 1968, 10: 343~353
    H. D. Hibbitt, P. V. Marcal and J. R. Rice. A finite element formulation for problems of target strain and large displacement. International Journal of Solids Structures, 1970, 6: 1069~1087
    R. M. McMeeking and J. R. Rice. Finite-element formulations for problems of large elasto-plastic deformation. International Journal. of Solids Structures, 1975, 11: 601~616
    J. T. Oden, D. R. Bhandari and G. Yagewa, etc. A new approach to the finite element formulation and solution of a class of problems in coupled thermo-elastoviscoplasticity of solids. Nuclear Engineering and Design, 1973, 24: 420~429
    S. Kobayashi and C. H. Lee. New solution to rigid plastic deformation problems using matrix method. J. of Engineering for Industry, ASME, 1973, 95: 865~873
    O. C. Zienkiewicz and P. N. Godbole. Flow of plastic and visoplastic solids with special reference to extrusion and forming process. International Journal for Numerical Methods in Engineering, 1974, 8: 3~16
    单德彬, 吕炎, 王真. 金属体积成形过程三维刚塑性有限元模拟技术的研究. 塑性工程学报, 1997, 4(3): 98~102
    陈军, 阮雪榆 反挤工艺三维刚塑性有限元模拟及其局部网格细分技术的应用. 锻压技术, 1998, 1: 3~6, 15
    S. Wojciechowski. Finite-element simulation of large plastic deformation. Journal of Materials Processing Technology, 2000, 106(1-3): 223~229
    刘玉红, 李付国, 吴思惇. 体积成形数值模拟技术的研究现状及发展趋势. 航空学报, 2002, 23(6): 547~551
    B. Parson and E. A. Wilson. A method for determining the surface contact stress resulting from interference fits. ASME. Journal of Engineering. for Industry, 1970, 4: 208~218
    S. K. Chan and I. S. Tuba. A finite element method for contact problems of solid bodies-Part Ⅰ. Theory and Validation. International Journal of Mechanical Sciences, 1971, 13: 615~625
    S. Ohte. Finite element analysis of elastic contact problems. Bull JSME, 1973, 16: 797~804
    L. T. Campos, J. T. Oden and N. A. Kikuchi. A numerical analysis of a class of contact problems
    
    
    with friction in elastostatics. Computer. Methods in Appllied Mechanics and Engineering, 1982, 34: 821~846
    M. Mazurkiewicz and W. Ostachowicz. Theory of finite element method for elastic contact problems of solid bodies. Computers & Structures, 1983, 7(1): 51~59
    彭克俭, 王德平. 固体力学接触问题综述. 沈阳航空工业学院学报, 1989, 1: 95~101.
    温卫东, 高德平. 接触问题数值分析方法的研究现状与发展. 南京航空航天大学学报, 1994, 26(5): 664~675
    杨汾爱? 张志强, 龙小乐等. 基于精确模型的斜齿轮接触应力有限元分析. 机械科学与技术, 2003, 22(2): 206~208
    苏岚, 王先进, 唐荻等.有限元法处理金属塑性成型过程的接触问题. 塑性工程学报, 2000, 7(4): 12~15
    P. O. Fjallstrom, J. Petersson and L. Nilsson, etc. Evaluation of range searching methods for contact searching in mechanical engineering. International Journal of Computational Geometry and Application, 1998, 8(1): 67~83
    D. J. Berson and J. O. Hallquist. A single surface contact algorithm for the post-buckling analysis of shell structures. Computer. Methods in Appllied Mechanics and Engineering, 1990, 78: 141~163
    S. P. Wang and E. Nakamachi. The inside-outside contact search algorithm for finite element analysis. International Journal for Numerical Methods in Engineering, 1997, 40(9): 3665~3685
    K. Schweizerhof, L. Nilsson and J. O. Hallquist. Crashworthiness analysis in the automotive industry. International Journal of Computer Application in Technology, 1992, 52(2): 134~156
    K. J. Bathe, J. W. Walczak and O. Guilermin, etc. Advances in crush analysis. Computers & Structures, 1999, 72(1): 31~47
    M. Odenburg and L. Nilsson. The position code algorithm for contact searching. International Journal for Numerical Methods in Engineering, 1994, 37: 359~386
    Z. H. Zhong. And L. Nilsson. A contact searching algorithm for general contact problems. Computers & Structures, 1989, 33(2): 197~209
    Z. H. Zhong. And L. Nilsson. Unified contact algorithm based on the territory concept. Computer Methods in Applied Mechanics and Engineering, 1996,130(3): 1~16
    J. O. Hallquist, G. L. Goudreau and D. J. Bersion. Sliding interfaces with contact-impact in large-scale Lagrangian computation. Computer Methods in Applied Mechanics and Engineering, 1985,51: 107~137
    A. B. Chaudhary and K. J. Bath. A solution method for static and dynamic analysis of three-dimensional contact problems with friction. Computers & Structures, 1989, 24(6): 855~873
    J. G. Malone and N. L. Johnson. A parallel finite element contact/impact algorithm for nonlinear
    
    
    explicit transient analysis (Part Ⅰ): The search algorithm and contact mechanics. International Journal for Numerical Methods in Engineering, 1994, 37(4): 559~590
    Z. H. Zhong. Finite element procedures for contact-impact problems. London: Oxford University Press, 1993, 22~86
    T. Shimizu and T. Sano. Application of a penalty method contact and friction algorithm tool surface expressed by a B-spline patch. Journal of Materials Processing Technology, 1995, 48(1-4): 207~213
    J. O. Hallquist, B. Wainscott. And K. Schweizerhof. Improved simulation of thin-sheet metalforming using LS-DYNA3D on parallel computers. Journal of Materials Processing Technology, 1995, 50(1-4): 144~157
    S. H. Ju. Cubic-spline contact element for frictional contact problems. Journal of Chinese Institute of Engineers, 1998, 21(2): 119~128
    S. Ulaga, M. Ulbin and J. Flasker. Contact problems of gears using Overhauser splines. International Journal of Mechanical Sciences, 1999, 41: 385~395
    T. Belytschko and M. O. Neal. Contact –impact by pinball algorithm with penalty and Lagrangian methods. International Journal for Numerical Methods in Engineering, 1991, 31: 547~572
    R. G. Whirley and B. E. Engelmann. Automatic contact algorithm in DYNA3D for crashworthiness and impact problems. Nuclear Engineering and Design, 1994, 150(2): 225~233
    P. Papadopoulos and R. L. Taylor. Simple algorithm for three-dimensional finite element analysis of contact problems. . Computers & Structures, 1993, 46(6): 1107~1118
    T. Belytschko and I. S. Yeh. The spiltting pinball method for contact-impact problems. Computer Methods in Applied Mechanics and Engineering, 1993,105: 375~393
    李润方, 龚剑霞. 接触问题数值方法及其在机械设计中的应用. 重庆: 重庆大学出版社, 1991.2, 32~96
    孙林松? 王德信, 谢能刚. 接触问题有限元分析方法综述. 水利水电科技进展, 2001, 21(3): 18~20
    M. U. Rahman. An iterative procedure for finite element stress analysis of frictional contact problems. Computers & Structures, 1984, 18: 947~954
    陈军明, 吴代华. 三维梁单元的弹塑性切线刚度矩阵. 华中理工大学学报, 2000, 28(2): 11~13
    M. L. Ayari and V. E. Saouma. Static and dynamic contact/impact problems using fictitious forces. International Journal for Numerical Methods in Engineering, 1991, 32: 623~643
    K. Lee. An efficient solution method for frictional contact problems. Computers & Structures, 1989, 32: 1~11
    陈万吉. 用有限元混合法分析弹性接触问题. 大连工学院学报, 1979, 2: 16~23
    J. Tsang and M. D. Olson. The mixed finite element method to two-dimensional elastic contact
    
    
    problems. International Journal for Numerical Methods in Engineering, 1981, 17: 991~1014
    S. K. Pascoe and J. E. Mottershead. Linear elastic contact problems using curved elements and including dynamic friction. International Journal for Numerical Methods in Engineering, 1988, 26: 1631~1643
    S. K. Pascoe and J. E. Mottershead. Two new finite element method contact algorithms. Computers & Structures, 1989, 32: 137~144
    X. Y. Lei, G. Swobada and G. Zenz. New contact elements for the simulation of faults and cracks in arch dam. In: Practice and theory of arch dams – Proc. of the Int. Symp. on Arch Dams, Nanjing, China, 1992, 245~250
    雷晓燕. 三维接触问题新模型研究. 土木工程学报, 1996, 29(3): 24~32
    陈曼琪. 用拟弹性叠加双重迭代法解弹塑性接触问题. 固体力学学报, 1983, 3: 365~374
    W. R. L Underhill, M. A. Dokainis and G. E. Oravas. A method or contact problems using virtual elements. Computer Methods in Applied Mechanics and Engineering, 1997, 143: 229~247
    张汝清, 詹先义. 非线性有限元分析. 重庆: 重庆大学出版社, 1988, 200~203
    J. A. Garrido, A. Foces and F. Paris. An incremental procedure for three-dimensional contact problems with friction. Computers & Structures, 1994, 50(2): 201~215
    杨耀文, 刘正兴. 三维弹性接触问题的接触面单元法. 力学学报, 1996, 29(5): 613~619
    方华, 袁兆成, 李盛成等. 间隙元在活塞有限元分析中的应用. 兵工学报(坦克装甲车与发动机分册), 2000, 3: 28~32
    陈全令, 王家鹏, 杨志勇. 用间隙元求解树形叶根轮缘的接触问题. 上海汽轮机, 2001, 1: 29~37
    A. F. Carlos. Iterative procedures for improving penalty function solutions of algebraic system. International Journal for Numerical Methods in Engineering, 1978, 12: 821~836
    D. Peric and D. R. J. Owen. Computational model for three-dimensional contact problems with friction based on the penalty method. International Journal for Numerical Methods in Engineering, 1992, 35: 1289~1310
    N. J. Carpenter and R. L. Taylor. Lagrange constrains for transient finite element surface contact. International Journal for Numerical Methods in Engineering, 1991, 32: 103~128
    M.R. Hestenes. Multiplier and gradient method. J. Optimize. Theory Application, 1969, 4: 303~320
    M.J.D. Powell. A method for nonlinear constraints in minimization problem. In: Optimization (Edited by R.fletcher), Academic Press, New York, 1969, 48~109
    R. T. Rocherfellar. Augmented Lagrangian multiplier functions and dualty in non-convex programming. AIAMJ. Control, 1974, 12:268~285
    D. P. Bertsekas. Constrained optimization and Lagrange multiplier methods. Academic Press, New
    
    
    York, 1982, 57~125
    R. Fletcher. Practical methods of optimization. 2nd Ed. John Wiley, New Delhi, 1989, 23~117
    J.C. Simo and R. L. Taylor. Qusi-incompressible finite elasticity in principal stretches. Continuum basis and numerical algorithm. Computer Methods in Applied Mechanics and Engineering, 1991, 85: 273~310
    J. A. Landers and R. L. Taylor. An augmented Lagrangian formulation for the finite elemet solution of contact problems. NNCEL contract report, Naval Civil Engineering Laboratory, Port Hueneme, CA 1986, 35~46
    R. Glowiniski and P. L. Tallec. Augmented Lagrangian and operator-splitting methods in nonlinear mechanics. SIAM Studies in Applied Mathematics, Philadephia, 1989, 78~89
    J.C. Simo and T.A. Laursen. An augmented Lagrangian treament of contact problems involving friction. Computers and structures, 1992, 42(1): 97~116
    T.A. Laursen and J.C. Simo. Algorithm symmetrization of Coulomb friction problems using augmented Lagrangians. Computer Methods in Applied Mechanics and Engineering, 1993, 108: 133~146
    刘书, 刘晶波, 方鄂华. 动接触问题及其数值模拟的研究进展. 工程力学, 1999, 16(6): 14~28
    王水林, 邓建辉, 葛修润. 改进的拉氏乘子法在接触摩擦问题中的应用. 岩土工程学报, 1998, 20(5): 64~67
    D. Haug and G. Saxce. Frictionless contact of elastic bodies by finite element method and mathematical programming technique. Computers & Structures, 1980, 11: 55~67
    A. Klarbring. General contact boundary conditions and the analysis of frictional system. International Journal of Solids and Structures, 1986, 22: 1377~1398.
    钟万勰. 弹性接触问题的变分原理及参数二次规划求解. 计算结构力学及其应用. 1985, 2(2): 1~10
    朱昌铭. 基于虚工原理的弹性接触问题的线性互补方法. 力学学报, 1995, 27(2): 189~197
    钟万勰, 张洪武, 吴承伟. 参变量变分原理及其在工程中的应用. 北京: 科学出版社, 1997. 244~251
    Hongwu Zhang, Wanxie Zhong and Yuanxian Gu. A combined programming and iteration algorithm for finite element analysis of contact problems. ACTA Mech. Sinica, 1995, 11: 314~326.
    吕和祥, 马莉颖. 三维接触问题的拟二维序列解法. 固体力学学报, 1996, 17(1): 31~37
    陈万吉, 陈国庆. 接触问题的互补变分原理与非线性互补模型. 计算结构力学及其应用, 1996, 13(2): 138~146
    M. Li, D. Sha and K. K. Tamma. Linear complementary formulations involving frictional
    
    
    contact for elastoplastic deformabale bodies. Journal of .Applied Mechanics, 1997, 64: 80~89
    W. X. Zhong and S. M. Sun. A finite element method for elastoplastic structure and contact problem by parametric quadratic programming. International Journal for Numerical Methods in Engineering, 1998, 26: 2723~2738
    W. K. Lee and N. F. Casey. Helix geometry in wire rope. Wire Industry, 1987, 8: 461~468
    W. K. Lee. An insight into wire rope geometry. International Journal of Solids and Structures, 1991, 28(4): 471~490
    C. W. Richard, J. M. Anthony and M. M. William. Model for the structure of round strand wire ropes. Report of investigation, 1998, 1~32
    王世文, 冷继玲, 贾喜荣等. 钢丝绳模型比较研究. 力学与实践, 2000, 22(5): 8~13
    王世文, 冷继玲, 杨兆建. 弹性钢丝绳理论研究进展. 力学进展, 1999, 29(4): 486~490
    W. S. Utting, N. Jones. The response of wire rope strands to axial tensile loads:partⅠ.International Journal of Mechanical Science, 1987, 29(9): 605~619
    W. S. Utting, N. Jones. The response of wire rope strands to axial tensile loads:partⅡ.International Journal of Mechanical Science, 1987, 29(9): 621~636
    A. E. Love. A treatise on the mathematical theory of elasticity. New York Dover publications,1994.
    A. D. Carlson and R. G. Kasper. A structural analysis of multi-conductor cable. Applied Mechanics Reviews, 1997, 50: 1~14
    M. A. Cutchins, J. E. Cochran and S. Guest. etc. An investigation of the damping phenomena of wire rope isolators. Proceeding of the 1987 ASME Design Technology Conference, Boston, Massachusettes, 1987, 197~204
    Y. J. Chiang. Characterizing simple stranded wire cables under axial loading. Finite Element in Analysis and Design, 1996, 24: 49~66
    S. Machida and A. J. Dureclli. Response of a strand to axial and torsional displacements. Journal of Mechanical Engineering Science, 1973, 15: 241~251
    G. A. Costello Theory of wire rope. Berlin: Spring, 1990, 1~98
    J. W. Phillips and G. A. Costello. Contact Stresses in twisted wire cables. Journal of the Engineering Mechanics Division, ASCE 1974, 100: 1096~1099
    G. A. Costello and J. W. Phillips Effective modulus of twisted wire cables. J. Engng Mech. Div. Proc. Am. Soc. Civil Engrs., 1976, 102: 171~181
    G. A. Costello. Stress in multilayered cables. J. Energy Res. Tech., 1983,105: 337~340
    J. W. Phillips and G. A. Costello. Analysis of wire ropes with internal wire-rope cores. International Journal of Mechanical Sciences, 1985, 52: 510~516
    
    W. Jiang. A general formulation of the theory of wire ropes. Journal of .Applied Mechanics, 1995, 62: 747~755
    N. Anne and L. Michel. A finite element model for simple straight wire rope strands. Computers and Structures, 2000, 77: 345~359
    W. G. Jiang, M. S. Yao and J. M. Walton. Modeling of rope strand under axial and torsional loads by finite element method. Proceedings of the Application of Endurance Prediction for Wire Ropes’97, 17~35
    W .G. Jiang and J. L. Henshall. The development and application of the helically symmetric boundary conditions in finite element analysis. Communications in Numerical Methods in Engineering, 1999, 15(6): 435~444
    W. G. Jiang. The development of the helically symmetric boundary condition in finite element analysis and its applications to spiral strands. Ph.D, Thesis. Brunel University, UK, 1999, 58~103.
    W. G. Jiang, M. S. Yao and J. M. Walton. A concise finite element model for simple straight wire rope strand. International Journal of Mechanical Sciences, 1999, 41: 143~161
    W. G. Jiang and J. L. Henshall. A novel finite element model for helical springs. Finite Elements in Analysis and Design, 2000, 35: 367~377
    E. Suchir Fiber optics structural mechanics. In: Proceedings of the Electronic Components and Technology conference. IEEE, Piscataway, NJ, USA, 95CH35820. 1995, 937~948
    M. Roshan, G. McClure and M. Farzaneh. Application of ADINA to stress an optical ground wire. Computers and Structures, 2000, 72: 301~316
    苏步青. 一般空间的微分几何学. 北京: 科学出版社, 1958, 20~34
    王家彦. 微分几何. 辽宁: 辽宁人民出版社, 1984, 12~50
    潘云鹤. 计算机图形学—原理、方法及应用. 北京: 高等教育出版社, 2001, 80~86
    肖景容, 李尚健. 塑性成形模拟理论. 武汉: 华中理工大学出版社, 1994, 77~107
    J. L. Bassani. Yield characterization of metals with transversely isotropic plastic properties. International Journal of Mechanical Sciences, 1977(19): 651
    R.Hill. Constitutive modelling of orthotropic plasticity in sheet metals. J. Mech. Phys. Solids, 1990, 38: 405~417
    E.Chu. Generalization of Hill’s 1979 anisotropic yield criteria. Journal of Materials Processing Technology, 1995(50): 207~215
    谢贻权, 何福保. 弹性和塑性力学中的有限单元法. 北京: 机械工业出版社, 1981, 83~156
    王勖成, 邵敏. 有限单元法基本原理和数值方法. 北京: 清华大学出版社, 1997, 77~213
    C. Zhu. A finite element-mathematical programming method for elastoplastic contact problems with friction. Finite Elements in Analysis and Design, 1995, 20: 273~282
    
    J.T. Oden and E. B. Pires. Nonlocal and nolinear friction laws and variational principles for contact problems in elasticity. Transaction of the ASME Journal of Applied Mechanics, 1983, 50): 67~76
    J.O. Hallquist. NIKE2D an implicit finite deformation finite element code for analysis the static and dynamic response of two-dimension solid. Rept. UCRL-52678, Univeisity of California, Lawrence Liver-more National Laboratory. 1979, 126~134
    J.T. Oden. Exterior penalty methods for contact problems in elasticity. Nonlinear Finite Element Analysis in Structural Mechanics, Springer, Berlin, 1980, 24~186
    L.Hunek. On a penalty for contact-impact problems. Computers & Structures, 1993, 2: 193~203
    W.J. Zangwill. Nonlinear programming via penalty functions. Management Science, 1967, 13: 344~358
    R. Courant, K. Friedrichs and H. Lewy. On the partial difference equations mathematical physics. IBM J., 1967, 11: 215~234
    R. Courant. Variational methods for the solutions of problems of equilibrium and vibrations. Bull. Amer. Math. Soc., 1943, 49: 1~23
    S.K. Chan and L. S. Tuba. A finite element method for contact problems of solid bodies: 1. Theory and validation International Journal of Mechanical Sciences, 1971, 13: 627~639
    A. Francavilla and O. C. Zienkiewicz. A note on numerical computation of elastic contact problems. International Journal for Numerical Methods in Engineering, 1975, 9: 913~924
    T. J. R. Hughes, R. L. Taylor and J. L. Sackman, etc. A finite element method for a class of contact-impact problems. Computer Methods in Applied Mechanics and Engineering, 1976, 8: 249~276
    S. Valliappan, L. K. Lee and P. Boonlualohr. Nonliear analysis of contact problems. Numerical Methods in Coupled Systems, Wiley, New York, 1984, 200~233
    D. P. Bertsekas. Constrained optimization and lagrange multiplier methods. Academic Press, New York, 1982, 44~56
    B. Nouromid and P. Wriggers. A two-level iteration method for solution of contact problems. Computer Methods in Applied Mechanics and Engineering, 1986, 54: 131~144
    K. J. Bathe and A. Chaudhary. A solution method for planar and axisymmetric contact problems. International Journal for Numerical Methods in Engineering, 1985, 21: 65~88
    蔡中义,李明哲,李广权. 金属成形数值模拟中的接触单元法. 中国机械工程, 2000, 11(8): 933~935
    A.E. Giannakopoulos. The return mapping method for the integration of friction constitutive
    
    
    relations. Computers & Structures, 1989, 32(1): 157~167
    李祖钜. 港口起重机钢丝绳技术综述. 港口科技动态, 2000, 2: 5~9
    郑炜, 刘灿辉, 郑文萱等. 钢缆索节的有限元分析 工程机械, 2003, 34(1) : 15~16
    徐文娟, 李广录. 提升罐笼运行失稳原因分析及对策. 煤矿机械, 2001, 7: 33~37
    樽井敏三, 肖英龙. 高碳钢丝的生产及应用. 世界钢铁, 2001, 6(1): 36~38
    刘桂森, 衡俊华. 影响钢丝绳疲劳寿命的几种因素. 金属制品, 2002, 28(2): 44~47.
    殷淼. 高强度矿用钢丝绳的研制. 金属制品, 2002, 28(4): 9~12
    胡坚石. 钻井用三角股钢丝绳. 石油机械, 1997, 25(10): 48~50
    陈照业, 安基胜, 吴兴国. 采区巷道无极绳连续牵引车在矿井生产中的应用. 中州煤炭, 2002, 3: 7~13
    吴东明. 大截面导线用1×7-φ9.06mm钢绞线的研制. 金属制品, 2002, 28(2): 26~28
    赵荣瑶, 张德英. 我国三角股钢丝绳的生产与发展前景. 金属制品, 2003, 29(3): 1~5
    盛罗斌, 朱海峰, 贾玉等. 矿井钢丝绳卷绳机的设计及应用. 煤炭科技, 2002, 4:26~27
    张雅菊, 李建方, 安铁. 高强度钢丝绳用钢丝生产工艺研究. 金属制品, 2001, 27(6): 4~7
    郭占林, 刘佳民, 朱宝仓等. 镀锌密封钢丝绳的研制. 金属制品, 2003, 29(1): 20~22.
    刘其奎, 王强. 俄罗斯高强度微型不锈钢丝绳生产技术. 金属制品, 2001, 27(4): 54~56
    张德英, 李广宇, 向卫国. 斜井提升用钢丝绳的选择. 金属制品, 2001, 27(1): 45~48
    姜海峰, 刘其奎. 钢丝绳的正确选型与使用. 金属制品, 2003, 29(2): 36~37
    赵茹, 尚永春, 邢丽丽. 关于船用钢丝绳使用过程中容易被忽略的几个力学问题. 船舶, 2003, 1: 44~47
    初日德, 聂毓琴. 材料力学(下册). 长春: 吉林科学技术出版社, 1995, 10~38
    崔俊之, 梁俊. 现代有限元软件方法. 北京: 国防工业出版社, 1995, 76~152
    王秉愚. 有限元法程序设计. 北京: 北京理工大学出版社, 1991, 56~183
    蔡希尧, 陈平. 面向对象技术. 西安: 西安电子科技大学出版社, 1993, 87~145
    汪成为, 郑小军, 彭水昌. 面向对象分析、设计及应用. 北京: 国防工业出版社, 1992, 87~203
    张灵仙. 试论面向对象软件的开发与维护. 山西建筑, 2003, 29(5): 279~280
    R. J. Norman. 面向对象系统分析与设计. 北京: 清华大学出版社, 1998, 56~88
    W. R. Bruce, O Ricardo, and F. Siegfried. Object-oriented finite element analysis. Computers and Structure, 1990, 34(3): 355~374
    X. A. Kong. Data design approach for object-oriented FEM programs. Computers and Structures, 1996, 61(3): 503~513
    Chen Woo译. ANSYS线性和非线性结构静力分析指南. 2001, 1~246
    顾守丰, 连小珉, 丁能根等. 斜齿轮弯曲强度三维有限元分析模型的建立及其程序实现.
    
    
    机械科学与技术, 1996, 15(2): 167~171
    程进, 江见鲸, 肖汝诚等. 二次开发定索力. 公路交通科技, 2002, 19(3): 50~52
    白金泽, 孙秦, 郭英男. 应用ANSYS进行复杂结构应力分析. 机械科学与技术, 2003, 22(3): 441~443
    李军辉, 谭建平, 熊勇刚等. 基于ANSYS的可转位刀片有限元分析. 机械设计与研究, 2003, 19(2): 38~40
    龙靖宇, 吴小珍. 基于ANSYS的偏轨箱形主梁参数化建模. 武汉科技大学学报(自然科学版), 2003, 26(1): 58~59.
    孙玉国, 刘巡. 基于APDL的柔性结构动态特性智能设计研究. 噪声与震动控制, 2003, 1: 3~5
    O. A. Baba, B. Radi and J. C. Gelin. An augmented Lagrangian treatment of the metal forming process. Mathematical and Computer Modelling, 2000, 32: 1171~1179

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700