220kV单回输电线路过山段雷击电磁暂态计算和耐雷水平研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
输电线路是电力系统的大动脉,它将巨大的电能输送到四面八方,是连接各电源、各变电站、各负荷的纽带。输电线路的安全运行,直接影响到了电网的稳定和向负荷的可靠供电。因此,输电线路的安全运行在电网中占据举足轻重的地位。输电线路长度大,分布面广,地处旷野,易受雷击。由于线路雷害事故引起的跳闸,导致电力系统的中断供电,增加线路绝缘及开关设备的维修工作量,同时威胁电网的稳定运行,雷击线路时雷电波沿着线路入侵变电站,就是威胁变电站的主要因素及其所引起电量损失的关键。良好的输电线路防雷是减少电力系统雷害事故。
     本文目的是研究220kV单回输电线路过山段雷击电磁暂态计算和耐雷水平。以220kV福贡—兰坪雪山段送电线路工程116#~120#共5基杆塔(位于杆塔116#~120#之间的线路全长1.038km)为实际背景,本段线路具有高海拔重覆冰的地理气象条件影响的特点。探讨了多种输电线路防雷措施,提出本段线路防雷改造的初步建议,在PSCAD/EMTDC电磁暂态仿真平台下构建本段线路在仅带双避雷线、仅带单耦合地线和既带单避雷线又带单耦合地线这三种不同防雷措施下的精细电磁暂态仿真模型,进行雷直击杆塔及线路档距中央的仿真计算,比较线路耐雷水平。在此基础上,对架设旁路屏蔽地线对提高本段线路耐雷性能的作用进行了理论分析与仿真计算,最后提出了本段线路合理的防雷措施,以对输电线路抗冰防雷起到一定的指导作用。
The transmission line is the main artery of the power system. It is a huge power transmission to all directions, connecting the power supply, substations, load, the safe operation of the transmission line, direct influence of the grid stable and reliable power supply to the load. So the safe operation of the transmission line occupies an important position in the grid. The length of the transmission line is large, and wide distribution, is located in the wilderness, easy for lightning stroke. The breaker line due to lightning damage, lead to interrupt of the power supply system, increasing the workload of the switching equipment and line insulation maintenance, and threatening the stable operation of the grid, when lightning line, lightning wave intrusion substations along the line, and the threatening main factors of the substation, caused the key of the power loss. Good transmission line lightning protection is to reduce lightning damage in the power system.
     The purpose of this thesis is study on lightning withstand level and lightning electromagnetic transient calculation for220kV single circuit transmission line over the mountain section. Base on220kV Fugong-Lanping transmission line across the snow mountain, from tower116#to tower over120#, total tower is five towers (full-length of the line is1.038km), this transmission line is influenced by the heavy ice loading conditions and high altitude geographical environment, and research on variety of transmission line lightning protection, put forward a preliminary proposal of lightning protection, application PSCAD/EMTDC electromagnetic transient simulation platform to build the line in this segment with a dual lightning shielding wires; single lightning shielding wires and coupling ground wire; only single coupling ground wire, the Fine electromagnetic transient simulation model of these three different lightning protection, calculations simulate lightning stroke at the top of tower and mid-span line, and compare lightning withstand level. Based on this, installation of side shielding ground wire to improve lightning protection performance of this line, then calculations simulate and theoretical analysis. Finally, it gave a reasonable lightning protection method for this line, the effects certain indications for anti-ice clinging of transmission lines.
引文
[1]施围.电力系统过电压计算.北京:高等教育出版社,2006.
    [2]王春杰,祝令瑜,汲胜昌,张乔根.高压输电线路和变电站雷电防护的现状与发展[期刊论文]-电瓷避雷器2010_文章编号:1003—8337(2010)03-0035—12
    [3]中华人民共和国电力行业标准DL/T 620/1997:交流电气装置的过电压保护和绝缘配合.中国:电力出版社,1998.
    [4]黄炜纲.对线路防雷计算中绝缘闪络判据的研讨.中国电力.1999,(11):59-63.
    [5]M.A.Sargent and M.Darveniza,The Calculation of the Double Circuit Outage Rate ofTransmission Line,IEEE Trans.on PA&S,Vol.86,No.6,June 1967,pp.665-6783.7
    [6]C.F.Wagner.The Relation Between Stroke Current And The Velocity Of The Return Current, AIEE TRANS, ptⅢ,1963, Vol.82:609-617
    [7]主伟,屠幼萍.高电压技术.北京:机械工业出版社,2011.
    [8]谷定燮.500kV输变电工程设计中雷电过电压问题.高电压技术,2000,26(6):60-62.
    [9]T.Hara and O.Yamamoto, Modelling of a transmission tower for lightningsurge analysis, IEEE Proc.-Gener. Tramsm, Distrib., Vol 143, No.3, May 1996, pp. 283-289.
    [10]张景林,崔国璋.安全系统工程.北京:煤炭工业出版社,2002.
    [11]王秉钧.数理统计在高电压技术中的应用[M].北京:水利电力出版社,1990.
    [12]张纬钹.电力系统过电压及绝缘配合[M].北京:清华大学出版社,1988.
    [13]H.W.DOMMEL电力系统电磁暂态计算理论[M].李永庄,林集明译,曾昭华.北京:水利电力出版社,1991.
    [14]马仁明.电磁暂态过程计算程序-EMTP简介.高压技术.出版地:湖北省武汉市1985:72-75.
    [15]李如虎.建议用屏蔽效率作为杆塔和输电线路防雷电绕击的指标[J].广西电力,2008,31(4):52-55.
    [16]王惠忱.耦合地线防雷效果的计算与分析.东北电力技术,1994.
    [17]胡毅,叶廷路,汪峰,王力农,刘凯OPGW断股的微观检测及机理分析[J].高电压技术,2005年10期.
    [18]李海泉.新型光纤复合架空地线(OPGW)电线电缆,2001.
    [19]茹文功OPGW光缆结构及设计原则的探讨.广东通信技术,2001.
    [20]胡红春.光缆复合地线在普通直线塔接续的探讨.电力建设,2000.
    [21]高志勇,何甜.耦合地线在输电线路的应用.湖北电力,2010.
    [22]郑江.耦合地线与导线间的距离取值问题研究.中国电机工程学报,1989.
    [23]郑江.具有避雷线及耦合地线的送电线路耐雷水平计算方法的商榷.高电压技术,1989.
    [24]郑江.耦合地线在防雷中的作用分析.广西大学学报,1989.
    [25]丁美新,苏中义,侯志俭Bergeron法在电力系统过电压计算中的应用.电力系统及其自动化学报,2000.
    [26]张重诚.运用《故障树》法分析观察超高压山区线路的防雷性能,过电压学术讨论会论文集,1997.
    [27]王秉钧.数理统计在高电压技术中的应用.北京,水利电力出版社,第一版,1990.10.
    [28]Golde R H.雷电.北京:水利电力出版社,1983.
    [29]Chowdhuri P. Analysis of Lightning Induced Voltages on Overhead Lines. IEEE Transactions on PWRD,1989,4(1):479-492.
    [30]唐兴祚.高电压技术.重庆大学出版社,2007.
    [31]赵永生,王富荣,赵德奎,等.我国南方地区电网覆冰事故分析及应对措施研究[J].电力勘测设计,2009(1):52-56.
    [32]朱昌成,汪涛,何清.架空输电线路防脱冰跳跃事故技术研究[J].湖北电力,2009,33(1):11-13.
    [33]孙晓光,安利强,王璋奇.覆冰导线脱冰振荡的危害及对策[J].电力安全技术,2008(6):37-38.
    [34]周丹羽,吴建生.电力线路防冰雪灾害的设计思考[J].供用电,2008,25(4):13-16.
    [35]夏松,夏云忠,杨丽,朱宁辉,赵磊.雷击输电线路杆塔的仿真研究.研究与分析,2010.
    [36]李凡,施嗣.线路型避雷器的绝缘配合[J].高电压技术,2005(8):18-20.
    [37]弥璞.目前线路避雷器存在问题的分析和一种新型线路避雷器的研究[J].电瓷避雷器,2004(4):21-24.
    [38]IEEE Working Group on Estimating Lightning Performalice of Transmission Lines. ASimplified Method for Estimating Lightning Performance of Transmission Lines
    [39]培国.国外对特高压输电线路雷击跳闸原因的一个观点[J].电网技术,2000,24(7):63-65.
    [40]吴克谦,刘卫红.负角保护针在降低220kV线路雷电绕击方面的应用[J].江西电力,2007,31(3):21-24.
    [41]Yamada T, Mochizuki A, Sawada J, el al. Experimental evaluotion of a UHA tower model for lightning surge analysis [J]. IEEE Trans PD,1995,10(1):393~ 402.
    [42]PChowdhuri. Analysis of Lightning Induced Voltages on Overhead Lines. IEEE Transactions on PW RD.1989,4(1):479~492

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700