全光通信网中基于FBG的OADM与OXC的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,以IP为代表的数据业务井喷式增长和新型业务的不断涌现以及联网用户急剧增长,使得网络带宽需求量成指数级增长。面对上述形势的变化,“十五”规划通信主题围绕新一代信息网、自动交换光网络等部署了一批重大课题。以IP数据为支配业务的流量具有突发性,它要求光传送网能迅速响应、动态配置,自动交换光网络的概念应运而生并被作为通信863主题的研究重点,研制具有T比特交换容量、多种类型业务接入、动态资源分配、自动连接控制和网络保护恢复等功能的自动交换光网络(ASON:Automatic Switched Optical Network)节点设备。
     在全光通信网中,最重要的网络设备是光分/插复用器(OADM:OpticalAdd/Drop Multiplexing)和光交叉连接器(OXC:Optical Cross-Connect),它们能完成全光网络中节点业务的分/插复用、直通以及节点之间的交换功能,而且OADM和OXC还具有解决网络交换过程中的“电子瓶颈”难题,它们具有灵活疏导业务量的能力,减轻业务层节点处理的业务量。OADM以及OXC还具有对网络客户层信号制式和速率的透明性,简化和加快高速业务的指配和业务供给速度。
     本论文研究了全光通信网中的OADM与OXC的关键技术。研究了基于光纤布喇格光栅的光分插复用器OADM和光交叉连接器OXC的结构设计,分析研究了多波长的光分插复用器OADM的结构、损耗,串扰等、光交叉连接器OXC的结构、损耗、双向OXC特性、多粒度OXC的结构设计及其路由及波长/波带/光纤分配算法、以及基于全光网络抗毁性等问题。
     第一章从国内、国外全光通信网络研究进展出发,综述目前全光通信网络在世界最新发展情况,以及全光通信网络中的关键设备OADM和OXC的最新研究现状。我国的“十五规划”,“十一五规划”均将“全光网络的基础研究”作为了国家重点基础研究项目。同时众多光网络公司投资与研发新型全光网络设备,因此研究全光网络OADM与OXC的关键技术是全光通信网关注的焦点。
     第二章对基于光纤布喇格光栅和环形器的OADM进行了深入的研究。提出了新型的固定波长的OADM以及可重构的OADM结构,并对其进行了仿真实验研究;对OADM的串扰进行了理论分析,分析了OADM的主要特性及性能指标。
     第三章对基于光纤布喇格光栅和环行器的OXC进行了研究。提出新型静态固定的OXC、动态可调的OXC结构、以及提出了新型双向OXC新型结构,并对其插入损耗、串扰、功率均衡以及管理技术进行了研究,将新型结构与目前其它的两种新型结构进行了对比分析,分析得出本文提出的结构具有插入损耗较小、可重构性较好等优点。对OXC的主要特性、性能指标进行了深入的研究,并对可重构的OXC进行了仿真实验研究。
     第四章对多粒度OXC(MG-OXC)进行了深入的研究,分析研究了三层MG-OXC交换结构、二层MG-OXC结构以及单层的MG-OXC交换结构。研究了MG-OXC内部交换矩阵规模与业务交换能力以及业务汇聚能力。提出了一种路由及波长/波带/光纤分配算法,并对其进行了仿真实验。
     第五章对基于光网络抗毁性进行了深入的研究。提出了一种新型的网络保护方案的设计,并对其性能进行了深入地研究。网络的抗毁性是网络设计的主要内容之一,网络的抗毁性技术有两种:保护与恢复。保护通常是以分布的方式执行,而不需要在网络中进行中央控制。恢复是利用节点间可用的任何容量,包括预留的空闲备用容量、网络专用的容量乃至低优先级业务可释放的额外容量,为网络中失效的工作通路寻找替代路由,可大大节约网络资源。
     第六章对全文进行了总结,对下一步需要研究的问题进行了探讨。
In recent years, network bandwidth is exponentially expanding to meet the demandin the explosive growth trend of Internet data traffic and the emerging new traffic.All-Optical Networks can efficiently increase network bandwidth and meet people'sneed in network bandwidth. In order to address the issue in IP traffic, newall-optical-networks key technology is expected to be obtained. In theall-optical-networks, the most importance equipments are OADM and OXC. They canaccomplish the optical signal add and drop multiplexing, and all of the incoming signalscan pass through the nodes. The OADM and OXC can also solve the“electronicbottleneck”problems in the network switching. Optical switches have capability ofcross connection in the optical domain without using optical-electrical andelectrical-optical conversion. It also has agility leading the traffic, lightens the networknode traffic. Both OADM and OXC have transparence to the network traffic; it canpredigest and speed up the traffic grooming. The multi-granularity opticalCross-Connect can reduce the number of the ports, the networks built cost and itsmaintenance cost. It can realize the optical layer reconfiguration, especially in wave,waveband, and fiber level reconfiguration, and quickly comply with network trafficprotection and restoration. This paper investigates the OADM and OXC based on FBGand OC, multi-wave OADM physics characteristic (such as, structure design, insert-loss,crosstalk and so on) and OXC structure design, insert-loss, bidirectional OXCcharacteristic, multi-granularity OXC structure design, etc. In addition, the opticalnetworks protection and restoration are also investigated.
     In chapter 1, the latest development in optical networks evolution and the OADMand OXC have been introduced. In China, the optical network has been regarded as animportant research issue in“10th Five Year Program”and“11th Five Year Program”.Many network enterprises are paying more attentions to the OADM and OXCequipments and a number of investments are going to be put into the development ofthose new facilities.
     In chapter 2, OADM is investigated based on FBG, OC, especially in the primary characteristics of OADM and its performance. Fixation wave OADM andreconfigurable OADM structure are proposed, and some simulation experiments havebeen done. The cross-talk of OADM was also investigated.
     In chapter 3, OXC is investigated based on FBG and OC. The main characteristicsand performance of OXC are also under investigation. A new static fixation OXC, newdynamic reconfigurable OXC structure, and new directional OXC are proposed. Theoptical switch scale of the OXC can be expandable from 2×2 to 32×32 in units of 2×2 according to the traffic demand. The insert loss, cross-talk, power proportion andmanagement of new structure are studied. Contrast with other OXCs, the new structurehas small inserts loss and reconfigurable characteristics, and some experiments havebeen done with it and experimental results are given.
     In chapter 4, the MG-OXC is investigated. We study three layer MG-OXC switchstructure and two layer MG-OXC switch structure and single layer MG-OXC switchstructure. The MG-OXC inside matrix scale and switch ability and assemble ability, isinvestigated. We proposed novel wavelength/waveband/fiber assign arithmetic, andsome experiments have been done.
     In chapter 5, all-optical-networks survivability based OADM and OXC areinvestigated. The networks survivability is an important issue. It has two technologies,namely, protection and restoration. Protection usually performs in distributing, and therestoration makes use of capacity of node, including work fiber and spare fiber and lowlevel of priority capacity. It can search another route and save networks resource. Inthis section, a new networks protection and restoration scheme is proposed, and itsscheme performance has been investigated.
     In chapter 6, the summary is made and some future research issues are given.
引文
[1]http://tech.sina.com.cn/focus/cnnic 18/index.html
    [2]Perrier A, Sotom M, et al.Fully-engineered optical add/drop multiplexers in a survivable DWDM ring network demonstrator.Workshop on Optical Networking.CA, 1996, 3: 1-5
    [3]Masaki Fukui, Kazuhiro Oda, et al.Field experiment of all-optical DWDM ring network up to 70Gb/s capacity employing 198km installed dispersion shifted fiber.ECOC-96, Olso, Norway,1996, 5: 33-36
    [4]Hofmeister R T, Gemelos S M, et al.Project Learn-light exchangeable add/drop ring network.ECOC 96, Olso, Norway, 1996,25:1-4
    [5]Ori Gerstel.On the future of wavelength routing networks.IEEE networks, 1996,11(12):14-25
    [6]Bert Hui.Progress of optical networking and technology in the USA, OFC,96, Technical Digest, 1996: 239-240
    [7]Hill A M, Houghton A J N.Optical networking in European ACTS programme.OFC 196, Technical Digest, 1996: 238-239
    [8]Gof Hill.The emerging shape of optical networks: A European perspective.ECOC'96, Olso,Norway, 1996,1: 3-6
    [9]L.Y.Lin, E.L.Goldstein.Opportunities and Challenges for MEMS in Lightwave Communications.IEEE Journal on Selected topics in Quantum Electronics, Janu.2002,8(1):163-172
    [10]C: F.Lam, N.J.Frigo, M.D.Feuer.A Taxonomical Consideration of Optical Add/Drop Multiplexers.Photonic Network Communications, 2001,3 (4):327-333
    [11]徐荣.龚倩译Multiwavelength Optical Networks,北京:人民邮电出版社,2001, 8-11
    [12]K.S.Kim, On the evolution of PON-based FTTH solutions, Information Sciences 2003,149: 21-30
    [13]J.Comellas, R.Martinez, J.Prat, et al.Integrated IP/DWDM Routing in GMPLS-Based Optical Networks IEEE Network, March, 2003: 22-27
    [14]LP Kaminow, C.R.Doerr, C.Dragone, et al.A wideband all-optical DWDM network.IEEE 1.Select.Areas Commun.,1996,14 (5): 780-799
    [15]Daikoku, M.Otani, T and Suzuki.M, 160Gb/s four WDM quasi-linear transmission over 225-km NZ-DSF with 75-km spacing.IEEE Photon.Technol.Lett.2003, 15(8):1165-1167
    [16]B.Mukherjee, WDM optical communication networks:progress and challenges, IEEE Journal on Selected Areas in Communications,Oct.2000,vol.18,Issue 10,pp.1810-1824.
    [17]Brandon E, Blondel J.P, Grandpierre G et.al, 461-km WDM 8×2.5 Gb/s repeaterless transmission using launch signal power in excess of 1 W.IEEE Photon.Technol.Lett.1998,10(1): 168-170
    [18]Zhu B, Nelson, Leng L, et al., Transmission of 1.6Tb/s (40 × 2.7Gb/s) over transoceanic distance with terrestrial 100-km amplifier spans.OFC 2003, FN: 742-743
    [19]Gupta G C, Wang L L, Mizuhara O et al., 3.2Tb/s (40 × 80Gb/s) transmission with spectral efficiency of 0.8b/s/Hz over 21 × 100 km of dispersion-managed high local dispersion fiber using all-Raman amplified spans.IEEE Photon.Technol.Lett.2003, 15(7):996-998
    [20]Daikoku, M.Otani, T and Suzuki.M, 160Gb/s four WDM quasi-linear transmission over 225-km NZ-DSF with 75-km spacing.IEEE Photon.Technol.Lett.2003, 15(8):1165-1167
    [21]Vareille G., Jukien B, Pitel F, et al., 3.65Tbit/s (365 × 11.6Gbps) transmission experiment over 6850 km using 22.2 GHz channel spacing in NRZ format.ECOC 2001, 6: 14-15
    [22]Takuya Ohara,HidehikoTakara,TakashiYamamoto,etal.,“Over1000 channel,6.25 GHz-spaced ultra-DWDM transmission with supercontinuum multi-carrier source,”in Proc.Optical Fiber Commun.Conf.(OFC), 2005, OWA6:768-782
    [23]Tsuitani T, Agata A, Morita I, et al., 21.4 Gbps × 56 WDM 9170 km transmission using symmetrically dispersion-managed fibre span.Electron, Lett.2001, 37(25):1536-1538
    [24][]P.E.Green, Optical Networking Update.IEEE Journal on Selected Areas in Communications, 1996,14(5):764-779
    [25]Charles A.Brackett, Is There an Emerging Consensus on WDM Networking.Journal of Lightwave Technology, 1996,14(6):936-941
    [26]张成良,韦乐平.WDM技术的现状与发展规律趋势.电信科学,1998,14(9):23-28
    [27]A.I.Siahlo,J.Seoane,A.T.Clausen,et al.,“320 Gb/s single-polanzation OTDM transmission over 80 km standard transmission fiber,”in Proc.Optical Fiber Commun.Conf.(OFC),2005,OFF3.
    [28]S.Johansson.A transport network involving a reconfigurable DWDM network layer-A European demonstration.IEEE/OSA 1.Lightwave Technology, 1996, 14(6):1341-1348
    [29]G.R.Hill, PJ.Chidgey, F Kauftiold, et al.Multi-wavelength transport network A transport network layer based on optical network elements.IEEE/OSA J.Lightwave Technology,1993,11(5):667-679
    [30]http://telecom.chinabyte.com/215/1799215.shtml
    [31]G.R.Hill, P.J.Chidgey, J.Ingers, et al.A Transport Network Layer Based on Optical Elements.IEEE/OSA Journal of Lightwave Technology.1993,11(5/6):667-679
    [32]bttp://www.chinanp.gov.cn/cpzs/cpzsl-41.htm
    [33]Rajiv Ramaswami & Kumar N.Sivarajan: Optical Networks:A Practical Perspective, Second edition, Morgan Kaufmann Publisher, 2002,119-120
    [34]S.K.Liaw, K.P.Ho, and S.Chi, Multichannel add/drop and cross-connect using fiber bragg gratings and optical switches.Electron.Lett., 1998, 34:1601-1602
    [35]Kuznetsov M., Cascaded coupler Mach-Zehnder channel dropping filters for wavelength division multiplexed optical systems, J.Lightwave Technol, 1994, 12: 226-230
    [36]Dragong C.,Optical multiplexer using a planar arrangement of two star couplers.IEEE Photon.Technol.Let., 1991,3: 812-815
    [37]Smith D.A.,Baran J.E., Johnson J.J.et al., Integrated optic acoustically tunable filters for DWDM networks, IEEE J.Select Areas Commun., 1990,8(1): 151-152
    [38]Stulz L.W., Stone J., Pigtailed high-fines tunable fiber Fabry-Perot interferometer with large, medium and small free spectral ranges.Electron.Let., 1987, Vol.23:781-786
    [39]http://wwwjdsuniphase.com/home.fcm
    [40]http://www.corvis.com/products/add.htm
    [41]http://www.o-eland.com/passive/DWDM/OADM-double.htm
    [42]Mntgomery J D, Mongomery S, L ightwaveFeb.1999,100-102
    [43]K.O.Hill, Y.Fuji, D.C.Jonson and B.S.Kawasaki, Photosensitivity in optical fiber waveguide: application to reflection filter fabrication, Appl.Phys.Let., 1978, Vol.32 :647-649
    [44]R.Kashyap, Fiber Bragg Gratings, Academic Press, London, 1999,230-233
    [45]Othonos,K.Kalli,FiberBraggGratings:Fundamentalsandapplicationsin telecommunications and sensing, Artech House, London, 1999,78-80
    [46]C.R.Giles, Lightwave applications of fiber Bragg gratings.Lightwave Technol.,1997, 15(8): 1391-1404
    [47]Meltz G., Morey W.W.,Glenn W.H., Formation of Bragg gratings in optical fiber by a transverse holographic method, Opt.Let., 1989,14: 823-824
    [48]Bilodeau F.,Hill K.O.,Maio B.et al., High-return-loss narrowband all-fiber bandpassBragg transmission filters, IEEE Photon.Technol.Lett, 1994,6: 80-82
    [49]Cullen T.J.,Rourke H.N., Chew C.P.et al.,Compact all-fiber wavelength drop and insert filter, Electron. Lett, 1994, 30(2): 160-162
    [50] Bilodeau F.? John D. C. Theriault S. et al, An all-fiber dense wavelength division multiplexer/demultiplexer using photoimprinted Bragg gratings, IEEE Photon. Technol.Let.,1995,7: 388-392
    [51] J. E. Midwinter and P. W. Smith, Special issue on photonic switching, IEEE JSAC, Aug. 1998,6 :35-39
    [52] J. Minowa and Y. Fujii, Dielectric multilayer thin-film filters for DWDM transmission systems, J. Lightwave. Tech. ,Mar. 1983,1: 116-121
    [53] C. Dragone, An N×N optical multiplexer using a planar arrangement of two star couplers,IEEE Photon. Technol. Let. 1991,3 : 812-819
    [54] B. Glance, Wavelength -tunable add/drop optical filter, IEEE Photon. Technol. Let., Feb.1996, 8:245-247
    [55] Yoshiaki Tachikawa and Yasuyuki Inoue, AWG multiplexer with loop-back optical paths and its applications, [J]. Lightwave. Tech. Jun.1996,14 : 977-983
    [56] Mcgreer, Kenneth A. , Arrayed waveguide gratings for wavelength routing, IEEE Communication Magazine, 1998, 36(12): 62-68
    [57] A. Birks, J. Russell and D. O. Culverhouse, The acousto-optical effect in single-mode fiber tapers and couplers, J. Lightwave. Tech., 1996, 14(5): 2519-2529
    [58] J. L. Jackel, J. E. Baran and A. D. Alessandro, A passband -flattened acousto-optic filter, J. Lightwave. Tech. Let., 1995,7:308-320
    [59] F. Tian and H. Herrmann, Interchannel interference in multiwavelength operation of integrated acoustic-optical filters and switches, J. Lightwave. Tech., Jun. 1995,13: 1146-1154
    [60] Hector E. Escobar, Fujitsu, Network Communication: Acoudtic-optical tunable filter enables dynamic add/drop multiplexing, Lightwave Sep. 1998,10,97-102
    [61] Ryan.J.P ,DWDM:North American deployment trends, IEEE Communication Magazine, 1998,36: 40-44
    [62] C. R. Giles and V. Mizrahi, Low-loss add/drop multiplexers for DWDM lightwave networks,in Proc. IOOC-95, 66-67
    [63] W. Bo, W. Xiaoping, W. Hui, S. Chengcheng, and X. Shizhong, Fiber gratings based optical add/drop multiplexers with low interferometric crosstalk, in Proc. ICCT98, 167-172
    [64] A. V. Tran, W. D. Zhong, R. S. Tucker, and R. Lauder, Compact optical add-drop multiplexers with low homodyne crosstalk using a single optical circulator and fiber Bragg gratings, in Proc.OFC-2000,326-328
    [65]A.V.Tian, W.D.Zhong, R.S.Tucker, and R.Lauder, Optical add-drop multiplexers with low crosstalk, IEEE Photon.Technol.Len., 2001, 13(6) :582-584
    [66]Okayama H., Ozeki Y., Dynamic wavelength add/drop node comprising fiber gratings and optical switches, Electron.Let, 1997, 33(5):403-404
    [67]Zhang Baicheng, Chen Zhangyun et al., Experimental study of four-channel tunable optical add/drop multiplexer based on fiber Bragg gratings, Proceeding of SPIE, 1998, 352:193-197
    [68]S.Rotolo, A.Tanzi, Integrated optic tunable add-drop filters for WDM ring networks, Lightwave Technol., 2000, 18: 569-577
    [69]W.Warzanski, F.Heismann, Polarization-independent electrooptically tunable narrow-band wavelength filter, Appl.Phys.Lett., 1988, 53: 13-15
    [70]Kashyap R, Maxwell G D, Ainslie B 1, Laser-trimmed four-port bandpass filter fabricated in single-modephotosensitiveGe-dopedplanarwaveguide,IEEEPhoton.Technol.Let.1993,5(2): 1991-1994
    [71]Johnson D C, Hill K O, Bilodeau.F et al.New design concept for a narrowband wavelength-selective optical tap and comviner, Electron.Let.1987, 23 :668-669
    [72]Hand D P, Russell P, Kobe, Single-mode fiber grating written into Sagnac loop using photosensitive fiber transmission filters, 1989,1:3-4
    [73]A.C.Jacob-Poulin, R.Vailee et al., Channel-dropping filter based on a grating-frustrated two-core fiber, J.Lightwave Technol., 2000, 18(5):715-720
    [74]R.J.S.Pedersen and B.F.Jorgensen, Impact of Coherent Crosstalk on Usable Bandwidth of a Grating-MZI Based OADM, IEEE PHOTO.TECHNO.LEFFERS, 1998,10(4):558-560
    [75]S.Y.Kim, S.B.Lee, Channel-switching active add/drop multiplexer with tunable gratings, Electron.Lett, 1998, 34:104-105
    [76]王建忠,刘永智.全光网中基于FBG的OADM设计研究,应用光学,2004,25(4):26-28
    [77]L .A .B uckman,L .P.C hen,K .Y .La u, Crosstalk penalty in all-optical distributed switching networks, IEEE Photon.Technol.Let., 1997,9 (2):250-252
    [78]E.L.G oldstein,L.Es kildsen,A F.El refaie,P erformanceim plicationso fc omponent crosst alk in transparent lightwave networks, IEEE Photon.Technol.Let., 1994,6 (5):657-660
    [79]Lars Giilner, Claus Popp Larsen, Mats Gustavsson, Scalability of optical multiwave lengths witching networks: Crosstalk analysis,[J].Lightwave Technol., 1999,17 (1) :58-67
    [80]Tim Gyselings, Geert Morthier, Roel Baets, Crosstalk analysis of multiwavelength optical cross connects,[J].Lightwave Technol.[J].Lightwave Technol., 1999,17(8):1273-1283
    [81]Zhou Jingyu, Roberto Cadeddu, Emillio Casaccia, Carlo Cavazzoni, Michael J.Q M a hony,Crosstalk in multiwavelength optical cross-connect networks,[J].Lightwave Technol .1996,14(6):1423-1435
    [82]A.V.Tran, W.D.Zhong, R.S.Tucker, Reconfigurable Multichannel Optical Add-Drop Multiplexers Incorporationg Eight-Port Optical Circulators and Fiber Bragg Gratings, IEEE Photonics Technology lett., 2001, 13(10):1100~1102
    [83]Hai Yuan, Wen-De Zhong, Partially reconfigurable optical add-drop multiplexers for dense WDM networks, Optical Communications.2003,219: 165-170
    [84]Yu-Lung Lo, His-Chang Chow, Reconfigurable OADM and OXC designed by a new optical switch.Optical Fiber Technology, 2004,10:187-200
    [85]王建忠,刘永智.一种新型动态可调的OADM的设计研究,光通信技术,2005,29(2):61-62
    [86]顾畹仪等,全光通信网北京邮电大学出版社1991:44-46
    [87]X.N.Wu, Y.F.Shen, Fiber Bragg Grating-Based Rearrangeable Nonblocking Optical Cross Connects Using Multiport Optical Circulators, IEEE,Photo.Tech.Lett, 2000,12(6):696-698
    [88]王建忠,张萍,刘永智.一种新型TD-OXC设计研究光通信技术,2005, 29(5):56-57
    [89]Wang Jian_zhong, JiangZe, ZhangPing, LiuYongzhi.New Scalable Bidirectional tunable BOXC for Next-Generation Optical Internet [J].光电工程,2006, 33(4) : 81-84
    [90]W.D.Zhong, H.Yuan, W.H.Hu, Crosstalk analysis of FBG-based bidirectional optical cross-connects.Optics Communications ,2004, 238: 91-103
    [91]O.Frazao, I.Terroso, Optical cross-connect based on tunable FBG-OC with full scalability and bi-directionality.Optics Communications ,2003, 220:105-109
    [92]P.H.Ho, H.T.Mouftah, J.Wu, A Scalable Design of Multigranularity Optical Cross-Connect for the Next-Generation Optical Internet.IEEE Journal on Selected in communications.2003,21(7):1133-1142
    [93]Wang Jian_zhong, ZhangPing,JiangZe, LiuYongzhi.Analyses on Crosstalk of a bidirectional OXC in optical Internet[J]光电工程,2007,34(5):113-116
    [94]X.D.Qin, Y.Y.Yang, Optical cross-connect architectures for wavelength-routed DWDM networks, Optical networks Magazine, 2003 ,7:50-61
    [95]X.N.Wu, C.Lu, Evaluation of Intra-band Crosstalk in an FBG-OC-Based Optical Cross connect, IEEE Photonics Technology Letters, February 2002,Vol.14,No.2: 212~214
    [96]X.P.Zheng, F.Zhang, Optical multi-granularity cross-connect and its comparison with optical cross-connect, Optics Communications ,2004, 232:151-158
    [97]S.K.Park, J.W.Park, Multi-wavelength Bidirectional Optical Cross-connect Using Fiber Bragg Gratings and Polarization Beam Splitter.IEEE Photonics Technology Letters, ,July 2000, 12(7):888-890
    [98]Wang jianzhong, jiangze et al.The Study of a New Scalable Bidirectional tunable BOXC for Next-Generation Optical Internet.光电工程,2006,33(4) : 81-84
    [99]K Fukuchi, et al.10.92Tb/ s (273 × 40Gb/s) triple-band/ ultra-dense WDM optical-repeated transmission experiment [A].Proc.OFC2001 [C].Anaheim, CA: IEEE, 2001,4.PD24-1-PD242-1-3
    [100]O.Gerstel, et al.Making use of a two-stage multiplexing scheme in a WDM network [A].Proc.OFC2000[C].Baltimore, MD: IEEE, 2000.3.44-46 ,ThD 1
    [101]DotaroE,PapadimitriouD,NoirleL,et al.,“Opticalmulti-granularity architecture framework,” draft-dotaro-ipomulti-granularity-00.txt,2001-07
    [102]P.H.Ho, H.T.Moufitah, J.Wu, A Scalable Design of Multigranularity Optical Cross-Connects for the Next-Generation Optical Internet.IEEE Journal on Selected Areas in Communications.Sept.2003, 21(7): 1133-1142
    [103]X.P.Zheng, F.Zhang, E.Feng et al.Optical Multi-granularity Cross-connect and its comparison with Optical Cross-connect.Optical Communications.2004,232(11):151-158
    [104]E.Ciaramella.Introducing Wavelength Granularity to Reduce the Complexity of Optical Cross Connects.IEEE Photonics Technology Letters, 2000, 12(6): 699-701
    [105]张宇,徐安士,吴德明,光网络中的多粒度交换节点研究北京大学学报(自然科学版),2007, 43(1) 72-77
    [106]张宇,李正斌,徐安士,等.多粒度交换光网络路由和波长分配算法研究.电子学报,2004,32(12A):93-98.
    [107]X.Cao, V.Anand, Y.Xiong, and C.Qiao, A study of waveband switching with multi-layer multi-granular optical cross-connects, IEEE J.Select.Areas Commun.2003,1(21):1081-1095
    [108]Y.F.Xin, G.N.Rouskas.A study of Path Protection in Large-scale Optical Networks.Photonic Network Communications, 2004, 6(3):267-278
    [109]P.F.Fonseca,Pan-European multi-wavelength transport network design, architecture, survivability and SDH networking, in: DRCN'98: 3
    [110]韩一石,丁金妃,何赛灵一种新型光分插复用器及其在WDM自愈环网中的应用[J].光 子学报2003, 32(12): 1479-1482
    [111]王建忠,张萍,刘永智.光互联网的抗毁性设计研究,应用光学,2006,27(2): 92-95

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700