酸溶法光纤材料与传像束的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
用酸溶法工艺制备的光纤传像束具有单丝直径细、柔软性好、分辨率高、数值孔径大、成像清晰等优点,是目前光电功能材料和纤维光学研究领域最具有活力的研究课题之一,其产品在各类高清晰光纤成像仪器和工业自动化检测等领域有着广阔的应用前景。
     本文从纤维光学的基本理论出发,运用几何光学方法探讨了光射线在光纤传像束中的传光、传像机理,结合二维积分抽样定理从理论上全面、系统的分析了光纤传像束及其离散成像的传输规律,依据光波导效应和光传输的全内反射条件,确定了酸溶法单丝纤维的三层同轴结构。
     深入研究了材料组成对光纤基质玻璃结构的影响,分析了组成变化对于基质玻璃网络结构的演变以及各种性能的变化缘由,系统研究了光纤基质玻璃的形成规律及其光学特性、热力学特性、化学稳定性等与化学组成的关系。采用高温熔融法制备了纤芯、包层和酸溶层玻璃材料样品。通过DSC、红外光谱等现代分析测试手段对光纤基质玻璃材料样品予以表征,同时对三种基质玻璃材料进行了匹配性设计,确定了满足物化性能要求的高质量纤芯、包层和酸溶层玻璃材料的配方,并制备出了满足拉丝要求的光纤玻璃棒管组合体材料。
     采用棒管法开展了单丝、复丝的拉制,确定最佳拉丝温度为580±0.2℃。拉丝实验表明,只有在拉丝炉内的温度波动范围小于0.2℃,且拉丝温度低于析晶上限温度40℃-50℃以上时,才能保证拉丝作业不受析晶及分相问题的影响,才能保证单丝纤维几何结构均匀完整。
     集束工艺是制备高分辨率光纤传像束的重要环节,在静态取样的条件下,正六角形序排列传像束的填充系数和极限分辨率均比正方形序排列传像束提高1.15倍,所以本次实验的排丝方式采用正六角形排列方法,以此提高传像束的分辨率。
     深入分析了叠片胶粘法和热熔法制备大截面光纤传像束的工艺要素,通过对两种工艺参数和方案的改进与创新,以复丝为作业单元,以直径8um的光纤单丝为传像单元,采用复丝直接层叠胶粘技术和热熔技术成功制备出了分辨率大于50.0lp/mm的不同截面光纤传像束。
     通过开展酸的种类、浓度、酸溶温度以及酸溶时间等量化关系研究,确定了最适合硬质光纤传像束酸溶的一系列工艺参数,在时间效应和温度效应的共同作用下,采用低浓度的混合酸溶液(HCl+HNO3),在酸溶温度为35℃-40℃时,酸溶速率最快,酸溶效果最好,这对于降低传像束的断丝率和交扰率,提高传像束的成像质量有较大作用。
     进一步研究了影响柔性光纤传像束传像质量的主要因素,重点分析了暗丝的成因以及暗丝的变化规律,提出了改善传像束质量的解决方法和有效措施,在此研究基础上对柔性光纤传像束进行了检测和性能评价。实验得到了单丝直径为8±0.01μm,分辨率为50.0lp/mm~57.5lp/mm,可见光透过率大于39.7%/m,数值孔径大于0.60的不同截面柔性光纤传像束。
     本文通过大量的实验研究和理论分析,确定了诸多提高传像束光学性能的有效方法,探索出了各工艺参数之间的最佳匹配关系,形成了一套完整的酸溶法光纤传像束制备工艺及其理论研究体系,这对光纤传像束的广泛应用以及产品的科技创新具有一定的指导意义。
Optical fiber bundle prepared with the acid leaching method has many advantages, such as thin single fiber diameter, softness, high resolution, big numerical aperture, clear imaging, so it is one of activity research topics in the photo electricity function material and fiber optics research field and its products have broad application prospects in the varieties of high resolution fiber imaging devices and industry auto detection fields.
     The dissertation started with the fiber optics' basic theory, discussed the principles of the light and image transmission in the optical fiber bundle with the geometrical optics method, analyzed the transmitting rules of the fiber bundle and its discrete imaging generally and systemically combined with two-dimension integral sample theorem, determined the three-layer coaxial structure of the acidic single fiber based on the fiber waveguide effect and light-transfer total internal reflection condition.
     The dissertation carried out a thorough study on influences which the material composition has on the optical fiber host glass structure, analyzed the host glass network configuration evolution and various performance alteration reason which are caused by the ingredient alternations and researched systematically the fiber host glass formation regularities and the relationship between its optics characteristics, thermodynamics characteristics, chemistry stabilities and its chemistry ingredients. The glass material samples of fiber core, cladding and acidic layer are prepared with the hyperthermia fusion method.The optical fiber host glass material samples are attributed with the modern measurements of DSC and infrared spectrum and simultaneously the three host glass materials are matching designed to determine the recipes of high quality core, cladding and acidic layer which can meet the physic-chemical performances and the fiber glass rod and tube combination materials which can meet the coaxial requirements are prepared.
     The mono-filament and multi-filament are drawn with the rod-tube method to determine the optimal drawing temperature is 580±0.2℃. The drawing experiments showed that the temperature fluctuation of the drawing unit must be less than 0.2℃and the drawing temperature should be less than the crystallization upper temperature of above 40℃-50℃to make sure that the drawing operations will not be influenced by the crystallization and split-phase and the mono-filament fiber geometry is uniform and perfect.
     Beam concentration technology is one of the important parts for preparing the high resolution optical fiber imaging bundle. On the static sampling condition that packing factor and limit resolution of the regular hexagon arrangement imaging bundle are increased by 1.15 times than that of square arrangement bundle. So the regular hexagon arrangement is adopted to improve the resolution of the imaging bundle.
     In the dissertation, the technology factors for preparing the heavy-section fiber imaging bundle with the lamination adhesion method and hot-melting method were analyzed in depth. various sections fiber imaging bundles whose operation unit is multi-filament and whose image-carrying unit is 8μm-diametral fiber mono-filament with the resolution higher than 50.01p/mm are prepared successfully with multi-filament direct lamination adhesion technology and heat-melting technology through improving and innovating the two technology parameters and scheme.
     The dissertation determined series of technology parameters suitable for the hard fiber imaging acid through the research on the acid types, concentration, acid solution temperature and time. The acid solution rate is highest and the effect is best when the mixed acid solution (HCI+HNO3) of low concentration is employed and the acid solution temperature range is 35℃-40℃. Those played an important part in decreasing the wire-broken rate and cross rate of the imaging and improving the imaging quality.
     The dissertation carried out a further study on the main factors for influencing the imaging quality of the flexibility fiber imaging bundle, analyzed the dark silk genetic and variable regularity and proposed settle methods and effective measures for improving the imaging bundle quality. Then the flexibility fiber imaging bundle is detected and evaluated. The flexibility fiber imaging bundles of different sections are get by experiments whose mono-filament diameter is 8±0.01μm. resolution is 50.01p/mm-57.51p/mm, visible light penetrated rate is higher than 39.7%/m and numerical aperture is greater than 0.60.
     The dissertation proposed several effective methods for improving the imaging bundle optical performance and optimal matching relationship among the technology parameters through the amounts of experiments and theory analyses. The optical fiber imaging bundle preparing technology and its theory research system are formed and which will guide the wide application of the fiber imaging bundles and technology innovation of the products.
引文
[1]Nobuyuki S, Kazuhiko G. Manufacture of optical fiber bundle by acid dissolution:Japan,09067137[P].1997-3-11
    [2]杨建良,郭照华.光纤材料的研究进展[J].材料导报,1997,11(3):6-7
    [3]Jiang Yuan, Zou Ningning. Polymeric Fibre[M].Beijing:Chemical in dus Publishing House,2003:10-19
    [4]Ling X f, Xu Y Z, Weng S F, etal. Appl. Spectrosc.,2002.56(5):570
    [5]Kobayashi Katsuhiro, Yuichi Takenag. Image Fiber Imaging Apparatus[P]. U.S.Patent:6744957,2004-06-01
    [6]Arnold Daniels, Tifi W, Liepmann. Fiber optically coupled infrared focal plane array system for use in missile warning receiver applications [A]. SPIE.1999.3701
    [7]Ortigasta-Blanch A, Knight JC, Wadsworth WJ, et al. Highly birefringent photonic crystal fibers[J].Opt Lett,2000, 25 (18):1325-1327
    [8]Haumann J Seitzman JM, Hanson R K.Tow-photon digital imaging of CO in conbustion flows using laser-induced fluorscence[J].Opt Lett,1986,11 (12):776-778
    [9]周德春,于凤霞,谭芳.高分辨率光纤传像束的制备及其光学性能[J].中国激光,2009,36(3):723-726
    [10]刘德森,殷宗敏,祝颂来,张林潘.纤维光学[M].北京:科学出版社,1987:1-3
    [11][日]长尾和美著,邮电532厂技术情报室译.光导纤维[M].北京:人民邮电出版社,1980:1-2
    [12]李坤宁.无源光纤传像系统传像质量的评价与优化研究[D]:[博士学位论文].南京:南京理工大学,2001
    [13]饶云江.光纤技术[M].北京:科学出版社,2006:1-3
    [14]K.C.Kao, G.A.Hockham. Dielectric-fibre surface waveguides for optical frequencies[J]. Proc.IEEE,1966.113 (7):1151-1153
    [15]Sakaguchi S. Terunuma Y. Ohishi Y. etal. Fluoride fiber drawing with improved tensile strength[J]. Mater Sci Lett.1987.6(9):1063-1065
    [16]韩庆荣.PCVD单模光纤的材料组成、结构和性能研究[D]:[博士学位论文].武汉:武汉理工大学,2006
    [17]Ngayen V Q. Effect of temperature on the absorption loss of chalcogenide glass fibers[J]. Applied Optics. 1999.38(15):3206-3210
    [18]Zhou Dechun, Yu Fengxia, Lu Jingjuan, et al. Design of Yb-doped All-fiber Laser Device Based on Optical Fiber Gratings Resonator[j].ACTA PHOTONICA SINICA.2010.39 (3):389-392
    [19]司德平,杜留记.浅谈光学纤维[J].现代物理知识,2003,15(2):12-14
    [20]Hansen T P. Broeng J. Simonsen H. etal. Highly birefringent index-guiding photonic crystal fibers[A]. IEEE photon Tech Lett.2001,13(4):588-590
    [21]Sun Lei. Large cross-section fiber bundle and its application[J]. Application Optics.2000.(2):58-60
    [22]Chen Liang.KungBin Sung,,Rebecca R. Richards-Kortum. et al.Design of a high-numerical-aperture miniature microscope objective for an endoscopic fiber confocal reflectance microscope [J]. Appl. Opt.2002,41(22):4603 4610
    [23]Kobayashi. Yuichi Takenag. Image fibre imaging apparatus[P]. U.S.Patent:6744957,2004-06-01
    [24]朱云青,徐明泉,赵锦琳等.多组份玻璃光纤在医用照明上的应用[J].玻璃纤维,2004,2:7-11
    [25]马相路.光纤传像束原理及其应用[J].光机电信息,2007,10:44-49
    [26]迟泽英,陈文建,李武森等.无源光纤传像技术军事应用研究[A].全国第十二次光纤通信暨第十三届集成光学学术会议论文集[C],2005:854-859
    [27]孙磊.大截面光纤传像束及应用[J].玻璃纤维,1999,3:71-72
    [28]Biswas D R.Characterization of polyimide-coated optical fibers[J].Optical Engineering,1991.30 (6):772-775
    [29]ITUTG.654:Characteristics of a cut-off shifted single-mode optical fibre cable.2004.6
    [30]胡先志.通信光纤的最新研究动向[J].电信工程技术与标准化,2005, 2:55-59
    [31]Uhlman D R. Glass Science and Technology[M].Academic Press.1984:324-326
    [32]Cai Bo.Ji Xiaoli.Zhang Chaocan. The Characteristics and Application of Polymer Optical Fiber[J].Joumal of Wu han University of Technology.2003.18 (4):41-43
    [33]杨青,胡先志.提高聚合物光纤传输容量的研究[J].光通信技术,2006, 4:52-53
    [34]Zubia. Joseba, Arrue. Jon. Plastic Optical Fibers:An Introduction to Their Technological Processes and Applications [J].Optical Fiber Technology,2001,7 (2):101-140
    [35]Huang Ximing, Zhong Jiacheng, Gong Chuqing. Pilot study of organic and inorganic nanocomposite optical fibre materials[J].Materials Letters,2004.58:89-93
    [36]Saito M, Matsuura Y, Kawamura M. et al. J.Optical Society of Americal A (Optics and Image Sciences).1990. 7:2063-2068
    [37]Nishii J., Morimoto S.,Inagawa I.,et al. Recent advances and trends in chalcogenide glass fiber technology a review[J]. J.Non-cryst.Sol.,1992.140:199-208
    [38]Nubing R., Harrington J.A. Optical properlies of single-crystal sapphire fibers[J]. Appl.Opt..1997,36:5934-5940
    [39]孙强,周虚.光纤通信系统及其应用[M].北京:清华大学出版社,北方交通大学出版社,2004:21-22
    [40]原荣.光纤通信技术讲座一(二):光纤传输原理、特性和应用[J].光通信技术,2003,2:51-54
    [41]Lu Buyun, Yang Kewu, Xue Hongkui.2 meter length IR coherent bundle of As-Se-Te glass fibers[J]. Infrared and Laset Engineering,2001.30 (5):357-360
    [42]周安,陆春华.许仲梓.多组分紫外光纤包层玻璃化学稳定性[J].南京工业大学学报,2006,28(4):18-21
    [43]Churbanov M F.J. Non-Crystal[J]. Sloids,1992,140:324
    [44]Schneider H W,Schoberth S A.Gerndt C. Fluoride glass ecthing method for preparation of infrared fiber with improved tensile stuength[J]. Electron Letters,1986.22 (18):949-950
    [45]Inagawa I, Morimoto S. Yamashita T, etal. Temperature dependence of transmission loss of chalcogenide giass fibers[J]. Jpn J Appl Phys.1997,36:2229-2235
    [46]J.C.Knight. T.A.Birks. P.S.J.Russell, et al. All-silica single-mode optical fiber with photonic crystal cladding[J]. Optics Letters,1996.21 (19):1547-1549
    [47]Philip Russell. Photonic crystal fibers[J]. Science.2003.299:358-362
    [48]Fiona C.McNeillie.Erling Riis. Highly Polarized Photonic Crystal Fiber Laser[J].Opt.Exp.,2004.12(17):3981-3987
    [49]Chen X. Li M J, Michael T.etal. Highly birefringent hollow core photonic bandgap fiber[J]. Opt.Express. 2004,12(16):3888-3893
    [50]Mortensen N A. Effective area of photonic crystal[j]. Optics Express.2002.10:341-348
    [51]Ni Yi. Wang Qing. Zhang Lei. et al. Entangled photon-pair source based on photonic crystal fiber[J]. Optics Communications,2004.238:45-49
    [52]Benabid F. Couny F. Knight J C. etal. Compact stabie and efticient all-fiber gas cells using hollow-core photonic ctystal fibers[J]. Nature.2005.434:488-491
    [53]Bjarklev A, Broeng J. Bjarklev A S. Photonic Crystal Fibers [M]. London:Kluwer Academic Press.2003:221-231
    [54]Y.Jeong. J.K.Sahu. R.B.Williams. et al. Ytterbium-doped large-core fiber laser with 272 W output power[J]. Electron Lett..2003.39 (13):977-978
    [55]Sichani A V, Mouftah H T. A novel signaling nested reservation protocol for all-optical net works[J]. IEEE Journal on selected are as in communications.2005.23 (2):277-282
    [56]Yamada M. Kanamori T. Terunuma Y. etal. IEEE Photon Technol Lett.,1996.8:882-884
    [57]周德春,于凤霞,谭芳等.大截面柔性传像光纤光子材料的研制[J].中国激光,2010,37(3):836-841
    [58]朱世国,付克祥.纤维光学[M].成都:四川大学出版社,1992:14-17
    [59]郁道银,谈恒英.工程光学[M].第二版.北京:机械工业出版社,2007:183-189
    [60]郭玉斌.光纤通信技术[M].西安:西安电子科技大学出版社,2008:12-15
    [61]Pennington Tim Othy L. Xiao Hai. Russell May. Miniaturized 3-D surface profilometer using a fiber optic coupler[J]. Optics and Laser Technology,2001,33:313-320
    [62]孙圣和,王廷云,徐影.光纤测量与传感技术[M].第二版.哈尔滨:哈尔滨工业大学出版社,2002:9-11
    [63]Lydtin H. PCVD:a technique suitable for large-scale fabrication of optical fibres[J].Light wave Technol.,1986.LT4 (8):1034-1038
    [64]Bergen A H Van. Brevls T. PCVD:the ultimate technology for production of high bandwidth multimode fibres[J]. IWCS,1998,67-71
    [65]Shi Nanlin, Luo Kun, Zu Yapei, et al. A novel technology for preparation of high performance fiber by ratio frequency heating CVD[J].J Mater Sci Techn,2000.16 (6):637
    [66]Krishnarao R V, Subrahmanyam J.Subbarao S. Sic fiber by chemical vapour deposition on tungsten filament[J].Bull Mater Sci,2001.24 (3):273
    [67]Sarkar A. Trends in optical fiber technologies[J]. Lightwave.1999.6(10):6-9.
    [68]Hong K H. Kang S H. Three-dim ensional analysis of heat transfer and thermophoretic particle deposition in OVD process[J].J Heat Mass Transfer.1998,41 (10):1339-1346
    [69]Cho J. Choi M. Determination of number density, size and morphology of aggregates in coflow diffusion flames using light scattering and local sampling[J]. J Aerosol Sci,2000.31(9):1077-1095.
    [70]Suda H. Depostion mechanism of fine glass particles and high-rate production of fiber performs in the VAD process[J]. Electron Letter,1982,18 (18):179-180
    [71]K.Tsuji Kawa. M.Ohashi. K.Shiraki. et al. Effect of thermal treatment on Rayleigh scattering property in silica-based glasses[J]. Electro. Lett.,1995.31:1940-1941
    [72]石顺祥,陈国夫,赵卫等.非线性光学[M].西安:西安电子科技大学出版社,2003:534-546
    [73]Marcuse D. Curvature loss formula for optical fibers[J].J.Opt.Soc.Am.1976,66 (3):216-220
    [74]刘叶新.杨晓云,陈学琴等.多模光纤弯曲损耗的分析[J].中山大学学报(自然科学版).2002,41(5):25-27
    [75]张宝富,崔敏,王海潼.光纤通信[M].西安:西安电子科技大学出版社,2004:75-76
    [76]Feng Xiaoming. Liu Yuanyuan. liu Bin. et al. Fiber Coupling of Laser Diode Bar to Multimode Fiber Array[J]. Chinese journal of semiconductors,2002.23 (5):464-468
    [77]Fan Guangzhao. Li Ruijun. Song Xinming. An Innovative Micro-3D Measurement System with Fiber Image Transmission[J]. Nanotechnology and precision Engineering,2004.2 (4):302-307
    [78]Duane M W. Sampling in imaging systems[J]. J.Opt.Soc.Am.1975,65 (6):700-706
    [79]Marcuse D. Solution of the vectorwave equation for general dislectric waveguides by the galerkin method[A]. IEEE J Quantum Electron.1992.28(3):459-465
    [80]Huang Hungchia, Wang Zihua. Analytical approach to prediction of dispersion properties of step-index single mode optical fibers[J]. Electron. Lett.,1981,17(5):202-204
    [81]j.s.Wey. etal., IEEE Photonics Technol Lett.,1995.7:152
    [82]张锐,陈德良,杨道媛等.玻璃制造技术基础[M]。北京:化学工业出版社,2009:7-8
    [83][美]D.R.乌尔曼,N.J.克赖多.玻璃的弹性与强度[M].北京:轻工业出版社,1988:27-30
    [84][日]作花济夫,境野照雄,高桥克明.玻璃手册[M].北京:中国建筑工业出版社,1985:534-535
    [85][德]W·福格尔.玻璃化学[M].北京:轻工业出版社,1988:420-422
    [86][俄]M.A.马特维耶夫,(?).M.马特维耶夫,(?).H.弗仑凯尔.玻璃化学与工艺学计算[M].北京:中国建筑工业出版社,1978:191-192
    [87]周德春,于凤霞,谭芳等.大数值孔径传像光纤的制备及其光学性能研究[J].激光与光电子学进展,2010,47(12):120605-1-4
    [88]匡敬忠.差热分析在玻璃相变中的应用[J].玻璃,2006.4:29-33
    [89]西北轻工业学院.玻璃工艺学[M].北京:轻工业出版社,1982:115-123
    [90]浙江大学等.硅酸盐物理化学[M].北京:中国建筑工业出版社,1980:271-282
    [91]葛敦世.玻璃纤维碱侵蚀机理和耐碱性的探讨[J].玻璃纤维,2007.1:1-9
    [92]李响,梁中翥,郭鹏等.光纤传像束研究进展[J].光机电信息,2009.26 (7):24-31
    [93]于凤霞,周德春,关锡彬等.酸溶法光纤传像束酸溶工艺的研究[J].光学技术,2009.35(1):141-144
    [94]于福熹等.光学玻璃[M].科学出版社,1964:89-91
    [95]Yu Zhu. Song Wei, He Guangyu. Effect of single fiber core diameter of image-carrying optical fiber bundle on optical fiber image plane hologram[J]. Acta Optica Sinica,1997,17 (10):1341-1346
    [96]Zhang Yixin. Statistical of fiber bundle imagery of wavelength multiplexing. Proc.SPIE,1994,2302:244-252
    [97]王承遇,陶瑛.玻璃成分的设计与调整(十八)[J].玻璃与搪瓷,2004,32(6):56-59
    [98]戴金辉,葛兆明等.无机非金属材料概论[M].第二版.哈尔滨:哈尔滨工业大学出版社,2001:13-16
    [99]王承遇,陶瑛.玻璃成分设计与调整(一)[J].玻璃与搪瓷,2002.30(1):56-59
    [100]张炎,陆春华,许仲梓.计算机辅助玻璃组分设计[J].南京工业大学学报,2005.27(3):39-42
    [101]王泽斌.计算机辅助玻璃配方优化设计[J].硅酸盐通报,2003,4:81-85
    [102]王承遇,陶瑛.玻璃成分设计与调整(五)[J].玻璃与搪瓷,2002.30(5):59-62
    [103]Achilov M F,etal. Drawing condition and external effects dependence of superbroad band luminescence in pure silica optical fibers[J]. Non-crystalline solids.1992.143:245-251
    [104]Yuho H. Shigeo K. Acid-soluble glass for making flexible optical fiber bundle:US,4460696[P].1984-7-17
    [105]徐桂富,凌根华,张文进.多组分玻璃光学纤维及导光元件的制造与应用[J].玻璃纤维,1999.3:63-67
    [106]张文进,马永红.多组分玻璃光纤传光束的热溶法工艺研究[J].玻璃纤维,1999.,3:50-51
    [107]Komiyama.A, Hashimoto.M. A new Class of Crosstalk in Imaging Fiber[J]. Optics Communication,1994.107 (6):49-53
    [108]Zou Y. A new definition for resolution of imaging fiber bundles at static scaning. Optik.1993.94 (1):43--47
    [109]王中俭,戴辉,胡一晨等.酸溶法柔性光纤传像束成纤系统设计原理[J].玻璃与搪瓷,2008.36(2):31-34
    [110]扈性纯.光纤拉丝工艺张力研究[J].硅酸盐学报,1998,26(3):359-364
    [111]张文进.粘接技术在叠片法制造光纤传像束中的应用[J].粘接,1997,18(5):38-39
    [112]]王巧梅.酸溶法大截而光纤传像束制备工艺及性能研究[D]:[硕士学位论文].长春:长春理工大学,2007
    [113]Devreux F.. Ledieu A., Barboux P., etal. Leaching of borosilicate glasses. Ⅱ.Model and Monte-Carlo simulations[J]. Journal of Non-Crystalline Solids,2004.343:13-25.
    [114]Liu Defu. Duan Jian. Mechanism research on lapping of optical fiber end-face[J]. Optica and precision Engineering. 2004.12 (6):570-575
    [115]Lin Shen. Effect of polishing conditions on terminating optical connectors with spherical convex polished ends[J]. Appl.Opt.,2002.41 (1):88-95
    [116]Udrea M, Orun H. Alacakir A. Laser polishing of optical fiber end surface. Optical Engineering,2001,40(9): 2026-2030
    [117]王承遇.陶瑛.玻璃表面处理技术[M].北京:化学工业出版社,2004:201-202
    [118]周艳艳.于凤霞.刘淑梅等.光纤端面的质量与光纤光学性能的关系[J].光学技术,2005,31(6):806-808
    [119]徐明泉,陆小健.光纤传像束极限分辨率的测试[J].玻璃纤维,1999.3:56-58
    [120]汪东华,钱安平.相干纤维束质量分析[J].光学与光电技术,2008,6(2):67-70
    [121]苑立波.光纤实验技术[M].哈尔滨:哈尔滨工程大学出版社,2005:102-104
    [122]汪东华,钱安平.相干纤维束技术参数的测量[J].光纤与电缆及其应用技术,2008.4:9-12
    [123]W B Allan. Fiber Optics:Theory and Practice[M]. Beijing:Publishing House of Light Industry,1981
    [124]Shin W. S. and Ravindran A. Interactive multiple objective optimization:survey I-continuous case[J]. Computers and Operations Resarch.1991.18(1):97-114
    [125]于凤霞,刘禹,王新伟等.酸溶法光纤传像束透光性能的研究[J].光学技术,2007.33(4):539-542
    [126]吴平,严映律.光纤与光缆技术[M].成都:西南交通大学出版社,2003:84-88
    [127]廖延彪.光纤光学[M].北京:清华大学出版社,2000.226-230
    [128]马养武.柔软光纤传像束的传像特性[J].激光技术,1999.23(1):53-56
    [129]张少飞,陈文建.光纤传像束串扰率的测量研究[J].光纤测试技术新发展,2004,3:391-394
    [130]陈前荣,沈英春.光纤传像束断丝率的自动检测[J].光纤与电缆及其应用技术,2007,5:13-16
    [131]扈性纯.酸溶法光纤传像束暗丝分析[J].应用光学,1998.19(]):26-31
    [132]于凤霞,周艳艳,唐吉龙等.酸溶法光纤传像束暗丝问题研究[J].中国激光,2003,30(Z):116-118

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700