基于cryptophane修饰SiO_x纳米线的荧光猝灭型化学传感器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气体传感器是通过物理、化学效应将气体的种类、浓度等按一定规律转化为可测电量或非电量信息的气体测量传感器件。光纤气体传感器作为一类重要的气体传感器,已在工业气体监测、环境空气质量检测、有害气体分析、爆炸气体实时监测、火山喷发气体分析等领域获得广泛应用。甲烷及其氯化物之一的三氯甲烷是一类对安全生产、环境和人体健康有重要影响的气体,其中甲烷气体极易发生爆炸,是煤矿事故的“头号杀手”,也是天然气储运、加工、使用过程中的重要危险源,而挥发性三氯甲烷则可作用于中枢神经系统,具有麻醉作用,对心、肝、肾有损害,吸入后引起急性中毒,因此监测甲烷及其挥发性三氯甲烷的浓度对于煤矿安全生产、天然气安全使用、人体健康具有十分重要的作用。
     为了进一步提高传感器监测甲烷及其挥发性三氯甲烷气体浓度的性能,论文提出两种基于cryptophane包合作用的荧光猝灭型传感器,分别用于甲烷和挥发性三氯甲烷的检测,即基于cryptophane修饰SiO_x纳米线(NWs)的荧光猝灭型甲烷传感器和基于cryptophane-E-(OEt)_6修饰SiO_xNWs的荧光猝灭型三氯甲烷气体传感器。具体研究内容包括:
     ①分析荧光猝灭型气体传感器的光学系统、敏感元件及其工作原理,提出将基于激发/猝灭特性非均匀分布的荧光猝灭型传感器的数学模型应用到连续激发方式的荧光测量中。
     ②分别以香兰素、乙基香兰素为起始原料,采用略为改进的直接法合成主体化合物cryptophane-A和cryptophane-E-(OEt)_6。采用量子化学方法研究了cryptophane-A与甲烷(CH_4)的相互作用。荧光光谱研究表明,CHCl_3能够被cryptophane-E-(OEt)_6选择性包合。cryptophane主体对客体的包合不仅取决于客体尺寸相对于内腔的大小,还取决于客体可进入和离开腔入口的大小,这种包合作用主要是通过范德华力来稳定的。该研究结果为基于cryptophane的甲烷(或三氯甲烷)传感器设计与制作奠定了理论基础。
     ③基于SiO高温热蒸发法,提出一种可规模合成超长无定形氧化硅纳米线的方法。该方法采用抛光p型单晶硅片为基板,分别在有或无铝热剂条件下进行。由于SiO_x纳米线比表面积大且易于连接各种功能基团,能够为气体传感器提供平台。
     ④设计并制作一种基于cryptophane-A修饰SiO_x纳米线荧光猝灭型光纤传感元件,用于3.5% (v/v)以下的低浓度甲烷动态监测。结果表明,该甲烷传感元件的检出限低于0.1%,具有响应快速、恢复时间短(仅几秒钟)、重复性好、选择性强、长期稳定性良好。实验还开展了基于cryptophane-E-(OEt)_6修饰SiO_x纳米线的甲烷敏感性能研究,发现在甲烷浓度小于0.5%的低浓度区域,I0/I~[CH_4]曲线满足Stern-Volmer方程线性特征,而较高浓度甲烷时转为非线性。同时,实验证明该传感器在矿井环境下对甲烷同样具有良好的选择性。
     ⑤基于V.I. Ogurtsov等建立的通用数学模型和强度调制型传感器研究对象,在连续激励条件下,研究了激活介质内的主要参数(即猝灭常数、甲烷气体和cryptophane分子浓度和激发强度)在非均匀分布情况下荧光猝灭型甲烷传感器的积分荧光信号(强度)变化规律。具体分析了离散单指数模型和正定义的瑞利(Rayleigh)和麦克斯韦(Maxwell)分布,表明瑞利分布和麦克斯韦分布的逼近误差显著小于离散单指数模型;瑞利分布模型使实验和计算的荧光强度数据最一致(对于cryptophane-A和cryptophane-E-(OEt)_6,δin分别为0.34%和1.66%);分布式猝灭常数的平均值大于单指数模型;同时,还采用双指数模型(属于三参数模型) fδ(k-k_1) + (1-f)δ(k-k_2)对数据进行逼近,对于基于cryptophane-E-(OEt)_6的传感器,δin减小为1.14%,逼近效果明显优于单参数模型。
     ⑥设计和制作一种荧光猝灭型三氯甲烷传感器,其敏感元件为crptophane-E-(OEt)_6分子固定于SiO_x纳米线,分析反射荧光信号强度变化即可实现对三氯甲烷的检测。研究表明,随着三氯甲烷浓度增加,荧光强度逐渐减低,即被三氯甲烷有效猝灭,且传感器输出信号满足Stern-Volmer线性关系。传感器对三氯甲烷检出限为52.4 ppm,响应时间80 s,恢复时间150 s,且四氯化碳和二氯甲烷几乎不干扰三氯甲烷的响应。此传感器对三氯甲烷的检测时间比现有的气相色谱法具有明显效率优势,有望应用于工作环境中三氯甲烷监测。
Gas sensors detect different gas types and transform current gas concentration in an electrical signal (or non-electrical signal) which can be read by indicators, regulators, alarm systems and other another analysis systems. Recently, optical fiber gas sensors have been attracting attention owing to several advantages over conventional electricity-based gas sensors. Methane (CH_4) is extremely flammable and may form explosive mixtures with air. As one of chlorinated derivatives of methane, chloroform (CHCl_3) is harmful to both human health and the environment. Inhaling its vapors depresses the central nervous system and can cause dizziness, fatigue, and headache. Chronic exposure may damage the liver and kidneys, and some people have an allergic reaction to it. Thus, developing sensors for the detection of methane and volatile chloroform is gaining interest in fields related to coal mine production and industrial and environmental applications.
     Therefore, this paper presents two novel quenched-luminescence gas sensors based on the binding properties of cryptophanes for detection of methane and volatile chloroform, respectively. They are optical methane sensor based on luminescence quenching of silica nanowires (SiO_xNWs) modified with cryptophane-A and volatile chloroform sensor based on cryptophane-E-(OEt)_6@SiO_xNWs. The detailed contents are as follow:
     ①The operation principle of luminescence-based fibre-optical sensor with methane-sensing element comprising cryptophane-functionalized SiO_x nanowires immobilized on the silicon substrate was analysed. A general mathematical model, which describes the integral luminescent intensity signal of the quenched-luminescence methane sensor, was applied in the continuous excitation condition.
     ②Cryptophane-A and cryptophane-E-(OEt)_6 were synthesized from the starting materials vanillin and ethyl vanillin, respectively, according to the well-known“direct method”with modified procedures. A quantum chemical study was devoted to the complexation of methane by cryptophane-A. The spectral studies indicate that cryptophane-E-(OEt)_6 is able to selectively encapsulate chloroform. The complexation of a nonpolar substrate by a cryptophane host depends mainly on the size of the guest with respect to the size of the cavity, and on the size of the portals through which the guest can enter and leave the cavity. The association is stabilized mainly through van der Waals forces. This knowledge has been gained from recent endeavors, which allow sensitive investigation of cryptophane-based sensor and other devices using cryptophanes, likely to develop in the field of environmental chemistry.
     ③Based on the thermal evaporation of silicon monoxide at high temperature, an improved method has been developed for large-scale synthesis of ultralong amorphous silica sub-micron wires using polished p-Si wafers as substrates. The synthesis was done with and without thermite. Silica nanowires as excellent candidate materials for chemical sensors and biosensors, have attracted wide attention due to their intrinsic vast surface-to-bulk ratio, good reversibility, quick response, and oxide-coated or H-terminated surface, which allows easy attachment to various functional groups.
     ④An optical sensor based on luminescence quenching of cryptophane-A@silica nanowires was successfully constructed and used to dynamically monitor methane gas at low concentration below 3.5% (v/v). The sensing element shows an intensive and stable blue luminescence when excited by UV light source at wavelength of 380 nm, and it is efficiently quenched by molecular methane. The response of the sensing element demonstrates excellent linear Stern-Volmer behavior at the fixed wavelength 439 nm within the methane concentration range between 0.1% and 3.5% (v/v). A detection limit of below 0.1% (v/v) is estimated for the methane sensing element. This newly developed methane sensing element has significant advantages over the currently available methane sensors such as fast response and recovery (within seconds), good repeatability, selectivity, and long-term stability. On the other hand, experimental investigations of the methane sensing performance of the fabricated cryptophane-E-(OEt)_6@SiO_xNWs material show that there was a downward curvature of the Stern-Volmer plots (i.e. turning nonlinear) especially at higher methane concentrations (above 0.5% v/v). This methane sensor will also have good selectivity in the mine environment.
     ⑤According a general mathematical model suggested by V.I. Ogurtsov et al., just considering the continuous excitation, the integral luminescent intensity signal of the quenched-luminescence methane sensor was described in the case of non-uniform distribution of the main parameters inside active medium, namely the quenching constant, methane concentration and cryptophane distribution and intensity of excitation. Firstly, discrete single-exponential model and Rayleigh and Maxwell distributions (positively defined) were analyzed. For both Rayleigh and Maxwell distributions approximation errors were smaller than for the discrete single-exponential model. The model with Rayleigh distribution provided the best agreement between experimental and calculated intensity data (δin = 0.34 for the sensor based on cryptophane-A; andδin = 1.66 for the sensor based on cryptophane-E-(OEt)_6). Average of distributed quenching constant was larger than for the single-exponential model. On the other hand, double-exponential model fδ(k-k_1) + (1-f)δ(k-k_2), which belongs to three-parametric model, was analyzed. This model provided better approximation than above one-parametric models. Approximation errorδin reduces to 1.14 for the sensor based on cryptophane-E-(OEt)_6.
     ⑥A quenched-luminescence sensor for chloroform vapor detection was designed and implemented successfully through the employment of silica nanowires as a substrate for the immobilization of the cryptophane-E-(OEt)_6 transducer, coupled with a fiber optical device, which was designed to operate via luminescence reflection. The sensing material shows a stable blue luminescence, and it is efficiently quenched by chloroform vapor. The prepared optical sensor was highly sensitive to 52.4 ppm of chloroform vapor and the response time was very fast within 80 s. There is almost no interference from CCl4 and CH2Cl2 on the detection. This novel efficient chloroform vapor sensor has significant advantages over gas chromatography and might have application potential.
引文
[1]卢革宇,全宝富,张彤.气体传感器的最新进展[J].仪表技术与传感器, 2009(S1): 134-136.
    [2]杨建春,徐龙君,章鹏.倏逝波型光纤气体传感器研究进展[J].光学技术2008, 34(04): 562-567.
    [3]罗达峰,杨建华,仲崇贵.基于红外吸收光谱的瓦斯气体浓度检测技术[J].光谱学与光谱分析, 2011, 31(2): 384?386.
    [4]刘水文.光纤bragg光栅在煤矿安全中的应用探讨[J].工矿自动化, 2011(2): 26?28.
    [5]和卫星,吴文亚,董国贵.基于MSP430的井下瓦斯测量及无线传输系统设计[J],煤矿安全, 2011, 42(2): 74?77.
    [6]周盼东.瓦斯抽放与通风安全自动综合监测在采煤工作面的实践[J],煤矿安全, 2011, 42(2): 107?109.
    [7]张志伟.一种远程矿井瓦斯浓度检测仪的设计[J],煤矿安全, 2011, 42(2): 78?80.
    [8]蒋中承,陈开岩.综放工作面瓦斯涌出量预测统计模型及应用[J].煤矿安全, 2011, 42(1): 82?85.
    [9]康莉,刘桂华,陈卫,等.毛细管气相色谱法检测大气中三氯甲烷和四氯化碳[J].卫生研究, 2011, 40(02): 208–210.
    [10] N. S. Lawrence. Analytical detection methodologies for methane and related hydrocarbons [J]. Talanta, 2006, 69(2): 385–392.
    [11]柴化鹏,冯锋,白云峰,等.瓦斯传感器的研究进展[J] .山西大同大学学报, 2009, 25(3): 27?31.
    [12] Y. Wang, M. Tong, D. Zhang, et al. Improving the performance of catalytic combustion type methane gas sensors using nanostructure elements doped with rare earth cocatalysts [J]. Sensors, 2011, 11(1): 19?31.
    [13] G. Leina, S. Paquettea, S. Vadhavkarb, et al. Batron P–Si microsensor for methane and its derivatives [J]. Sensors and Actuators B, 2009, 142: 147–151.
    [14] J. Liu, Q. Tan, W. Zhang, et al. Miniature low?power IR monitor for methane detection [J]. Measurement, 2011, 44(5): 823?831.
    [15] E. S. Bradley, I. Leifer; D. A. Roberts, et al. Detection of marine methane emissions with AVIRIS band ratios [J]. Geophysical Research Letters, 2011, 38: L10702.
    [16] C. A. Trujillo, S. S. Sheppard, E. L. Schaller. A Photometric system for detection of water and methane ices on kuiper belt objects [J]. Astrophysical Journal, 2011, 730(2): 105.
    [17] S. H. Pyun, J. Cho, D. F. Davidson, et al. Interference?free mid?IR laser absorption detection of methane [J]. Measurement science & technology, 2011, 22(2): 025303.
    [18] S. Hou, A. Liu, Y. Liu, et al. Methane monitoring system, has management unit displaying parameter and control instruction and transmitting instruction to control unit according to input of user to control detection unit [P]. CN201780496?U, 2011.
    [19] J. Pope, J. Herries. Methane concentration measurement method in coal bed methane well involves detecting signal radiation pattern of methane from water in contact with sample interface and processing signal radiation pattern detection to compute concentration [P]. US2011036146?A1, 2011.
    [20] S. Chakravarty, W.?C. Lai, X. Wang, et al. Photonic crystal slot waveguide spectrometer for the detection of methane [C]. Proceedings of the SPIE, 2011, 7941: 79410K (7pp.).
    [21] H. Wang, J. Gao. Portable methane detection alarm unit for use in mine field, has staff locating identifier card designed on main board of portable meter and provided with display, power source, shell, buzzer for alarm and keyboard [P]. CN201689069?U, 2011.
    [22] Z. Zhao; D. Liu; J. Zhang, et al. Design of non?dispersed infrared (NDIR) methane gas sensor [J]. Spectroscopy and Spectral Analysis, 2011, 31(2): 570?573.
    [23] Q. Lin. Fixed methane breaker for coal mine, has shell whose lower part is provided with transom window and connected with air chamber, and infrared methane detect sensor placed into air chamber [P]. CN201828795?U, 2011.
    [24] W. Fotanini, Y. Wu. Methane collection detector comprises e.g. a programmable logic controller system, a gas concentration flow sensor, an air inlet filter screen, a sensitive dehumidifier, an air absorbing fan, a fan motor, and an impeller [P]. CN201762326?U, 2011.
    [25] C. Sun, P. Jiang, J. Tai, et al. Infrared methane sensor for mine has alarm lampshade which is disposed outside of alarm lamp and fixed with shell via alarm lamp holder [P]. CN201756982?U, 2011.
    [26] M. Li, X. Wu. Calibration of methane sensor based on wireless sensor network [J]. Computer Measurement & Control, 2011, 19(1): 240?242.
    [27] C. Sun, P. Jiang, J. Tai, et al. Waterproof and dustproof low?concentration methane sensor, has front shell whose side is provided with plug electrically connected to circuit board component, and sealing rubber gasket arranged between front shell and rear shell [P]. CN201757754?U, 2011.
    [28] Y. Chen, Z. Li, Q. Sun, et al. Methane sensor, has probe seat connected with wire jumper switch, CPU connected with amplifier, adjustable resistor connecting probe seat and amplifier, and another adjustable resistor connecting pins of amplifier [P]. CN201773081?U, 2011
    [29] Y. Xiao, Z. Li, P. Jiang, et al. Acoustic-optical alarm device for use in low-concentration methane sensor, has resistors connected with power supply, and pin of NAND gate integrated circuit connected with pin of alarm buzzer via third resistor [P]. CN101968460?A, 2011.
    [30] T. Furuta, T. Suzuki, M. Narita, et al. Intermittent drive method of semiconductor gas sensor, involves setting temperature of sensor to low value so as to measure selectivity of methane with respect to carbon monoxide and hydrogen [P]. JP2011002358?A, 2011.
    [31]杨建春.基于笼形分子配合效应的光纤甲烷传感技术研究[D].重庆大学博士学位论文, 2010.
    [32] M. Benounis, N. Jaffrezic?Renault, J. P. Dutasta, et al. Study of a new evanescent wave optical fibre sensor for methane detection based on cryptophane molecules [J]. Sens. Actuators B Chem., 2005, 107: 32–39.
    [33] S. Wu, Y. Zhang, Z. Li, et al. Mode?filtered light methane gas sensor based on cryptophane A [J]. Anal. Chim. Acta, 2009, 633: 238–243.
    [34] J. Yang, L. Xu, and W. Chen. An optical fiber methane gas sensing film sensor based on core diameter mismatch [J]. Chin. Opt. Lett., 2010, 8(5): 482–484.
    [35] L. Garel, J.?P. Dutasta, A. Collet. Complexation of methane and chlorofluorocarbons by cryptophane?A in organic solution [J]. Angew. Chem. Int. Ed., 1993, 32(8): 1169?1171.
    [36] A. Collet. Cyclotriveratrylenes and cryptophanes [J]. Tetrahedron, 1987, 43(24): 5725?5759.
    [37] M. J. Hardie. Recent advances in the chemistry of cyclotriveratrylene [J]. Chem. Soc. Rev., 2010, 39(2): 516?527.
    [38] T. K. Ronson, C. Carruthers, J. Fisher, et al. Tripodal 4?pyridyl?derived host ligands and their metallo supramolecular chemistry: Stella octangula and bowl?shaped assemblies [J]. Inorg. Chem., 2010, 49(2): 675?685.
    [39]史艳艳,于金涛,黄志镗,等.环三藜芦烃的分子识别与组装[J].中国科学B辑:化学, 2009, 39(4): 329-342.
    [40] J. Canceill, A. Collet, J. Gabard, et al. Exciton approach to the optical activity of C3?cyclotriveratrylene derivatives [J]. J. Am. Chem. Soc., 107, 1985(5): 1299?1308.
    [41] T. Traoré, L. Delacour, S. Garcia-Argote, et al. Scalable synthesis of cryptophane-1.1.1 and its functionalization [J], Organic Letters, 2010, 12(5): 960-962.
    [42] A. Bouchet, T. Brotin, D. Cavagnat, et al. Induced chiroptical changes of a water-soluble cryptophane by encapsulation of guest molecules and counterion effects [J]. Chem. Eur. J. 2010, 16, 4507–4518.
    [43] E. Souteyrand, D. Nicolas, J. R. Martin, et al. Behaviour of cryptophane molecules in gas media [J]. Sens. Actuator B?Chem., 1996, 33(1?3): 182?187.
    [44] T. Brotin, J. P. Dutasta. Behaviour of cryptophane molecules in gas media [J]. Chem. Rev., 2009, 109(1): 88?130.
    [45] C. H. Zhang, W. L. Shen, R. Y. Fan, et al. Study of the contact charge transfer behavior between cryptophanes (A and E) and fullerene by absorption, fluorescence and 1H NMR spectroscopy [J]. Anal. Chim. Acta, 2009, 650(1): 118?123.
    [46] D. Cavagnat, T. Brotin, J.?L. Bruneel, et al. Raman microspectrometry as a new approach to the investigation of molecular recognition in solids: Chloroform?cryptophane complexes [J]. J. Phys. Chem. B, 2004, 108(18): 5572?5581.
    [47] J. Crassous, S. Hediger. Dynamics of CHFClBr and CDFClBr inside a thiomethylated cryptophane, studied by 19F-1H CSA-DD cross-correlated relaxation and 2H quadrupolar relaxation measurements [J]. J. Phys. Chem. A, 2003, 107(48): 10233?10240.
    [48] A. Collet, J.?P. Dutasta, B. Lozach, et al. Cyclotriveratrylenes and cryptophanes: Their synthesis and applications to host?guest chemistry and to the design of new materials [J]. Top. Curr. Chem., 1993, 165: 103?129.
    [49] Z. Takacs, M. Soltesova, D. Kotsyubynskyy, et al. NMR investigation of guest?host complex between chloroform and cryptophane C [J]. Magn. Reson. Chem., 2010, 48(8): 623?629.
    [50] C.?H. Zhang, W.?L. Shen, R.?Y. Fan, et al. Spectral study on the inclusion complex of cryptophane?E and CHCl3[J]. Spectrochimica Acta Part A, 2010, 75 (1): 157?161.
    [51] K. E. Chaffee, H. A. Fogarty, T. Brotin, et al. Encapsulation of small gas molecules by cryptophane?111 in organic solution. 1. Size? and shape?selective complexation of simple hydrocarbons [J]. J. Phys. Chem. A, 2009, 113(49): 13675?13684.
    [52] R. M. Faichild, K. T. Holman. Selective anion encapsulation by a metalated cryptophane with a pi?acidic interior [J]. J. Am. Chem. Soc., 2005, 127(47): 16364?16365.
    [53] J. Lang, J. J. Dechter, M. Effemey, et al. Dynamics of an inclusion complex of chloroform and cryptophane?E: Evidence for a strongly anisotropic van der Waals bond [J]. J. Am. Chem. Soc., 2001, 123(32): 7852?7858.
    [54] Z. Tosner, J. Lang, D. Sandstrom, et al. Dynamics of an inclusion complex of dichloromethane and cryptophane?E [J]. J. Phys. Chem. A, 2002, 106: 8870?8875.
    [55] P. D. Kirchhoff, M. B. Bass, B. A. Hanks, et al. Structural fluctuations of a cryptophane host: a molecular dynamics simulation [J]. J. Am. Chem. Soc., 1996, 118(13): 3237?3246.
    [56] P. D. Kirchhoff, J. P. Dutasta, A. Collet, et al. Structural fluctuations of a cryptophane?tetramethylammonium host?guest system: A molecular dynamics simulation [J]. J. Am. Chem. Soc., 1997, 119(34): 8015?8022.
    [57] P. D. Kirchhoff, J.?P. Dutasta, A. Collet, et al. Dynamic and rotational analysis of cryptophanehost?guest systems: Challenges of describing molecular recognition [J]. J. Am. Chem. Soc., 1999, 121(2): 381?390.
    [58] M. Marjanska, B. M. Goodson, F. Castiglione, et al. Inclusion complexes oriented in hermotropic liquid?crystalline solvents studied with carbon?13 NMR [J]. J. Phys. Chem. B, 2003, 107(46): 12558?12561.
    [59] C. Zhang, W. Shen, G. Wen, et al. Spectral study on the interaction of cryptophane?A and neutral molecules CHnCl4?n (n=0, 1, 2) [J]. Talanta, 2008, 76: 235–237.
    [60] J. Gabard, A. Collet. Synthesis of a (D3)?bis(cyclotriveratrylenyl) macrocage by stereospecific replication of a (C3)?subunit [J]. J. Chem. Soc. Chem. Commun., 1981, 21: 1137?1139.
    [61] T. Brotin, J.?P. Dutasta. Cryptophanes and their complexes——present and future [J]. Chem. Rev. 2009, 109: 88–130.
    [62]施衍奇.新型cryptophanes主体的合成及其分子识别研究[D].重庆大学硕士学位论文, 2011.
    [63] G. M. Robinson. A reaction of homopiperonyl and of homoveratryl alcohols [J]. J. Chem. Soc., 1915, 102: 267?276.
    [64] A. S. Lindesy. The structure of cyclotriveratrylene (10, 15?dihydro?2, 3, 7, 8, 12, 13?hexamethoxy?5H?tribenzo[a, d, g]cyclononene) and related compounds [J]. J. Chem. Soc., 1965: 1685?1692.
    [65] J. L. Scott, D. R. MacFarlane, C. L. Raston, et al. Clean, efficient syntheses of cyclotriveratrylene (CTV) and tris?(O?allyl)CTV in an ionic liquid [J]. Green Chem., 2000, 2(4): 123?126.
    [66] B. Umezawa, O. Hoshino, H. Hara, et al. Chemistry of cyclotriveratrylene. I. Formation of cyclotriveratrylene from veratrylamine N-tosylates[J]. Chem. Pharm. Bull., 1969, 17: 2240?2244.
    [67] R. Poupko, Z. Luz, N. Spielberg, et al. Structure and dynamics of pyramidic liquid crystals by deuterium NMR and X?ray diffraction [J]. J. Am. Chem. Soc., 1989, 111(16): 6094?6105.
    [68] J. Canceill, A. Collet, G. Gottarelli. Optical activity due to isotopic substitution. Synthesis, stereochemistry, and circular dichroism of (+)? and (?)?[2,7,1 2?2H3]cyclotribenzylene [J]. J. Am. Chem. Soc., 1984, 106(20): 5997?6003.
    [69] C. Garcia, J. Malthete, A. Collet. Key intermediates in cyclotriveratrylene chemistry. Synthesis of new C3?cyclotriveratrylenes with nitrogen substituents [J]. Bull. Soc. Chim. Fr., 1993, 130(1): 93?95.
    [70] C. Garcia, A. Collet. New functionalized derivatives of cyclotriveratrylene. Synthesis,resolution, absolute?configuration and circular?dichroism of C3?triiodocyclotriveratrylenes [J]. Bull. Soc. Chim. Fr., 1995, 132(1): 52?58.
    [71] D. Xu, R.Warmuth. Edge?directed dynamic covalent synthesis of a chiral nanocube [J]. J. Am. Chem. Soc., 2008, 130(24): 7520?7521.
    [72] A. Guy, J. Doussot, A. Falguieres, et al. New functionalized derivatives of cyclotriveratrylene. Synthesis of tris-trifluoromethyl cyclotriveratrylenes [J]. Bull. Soc. Chim. Fr., 1996, 133(10): 1005?1010.
    [73] Y. Y. Shi, J. L. Sun, Z. T. Huang, et al. Crystalline self?assembly of a bowl?like cyclotriguaiacylene derivative with alcohol/phenols by hydrogen bonding and C?H···πinteractions: The self?inclusion extended organic frameworks [J]. Cryst. Growth. Des., 2010, 10 (1): 314?320.
    [74] T. Brotin, V. Roy, J. P. Dutasta. Improved synthesis of functional CTVs and cryptophanes using Sc(OTf)3 as catalyst [J]. J. Org. Chem., 2005, 70(16): 6187?6195.
    [75] O. Taratula, P. A. Hill, Y. Bai, et al. Shorter synthesis of trifunctionalized cryptophane?A derivatives, Org. Lett., 2011, 13(6): 1414?1417.
    [76] M. Benounis, T. Aka-Ngnui, N.Jaffrezic,et al. NIR and optical fiber sensor for gases detection produced by transformation oil degradation[J]. Sens.Actuators A,2008, 141(1): 76?83.
    [77] C. Garcia, D. Humilière, N. Riva, et al. Kinetic and thermodynamic consequences of the substitution of SMe for OMe substituents of cryptophane hosts on the binding of neutral and cationic guests [J]. Org. Biomol. Chem., 2003, 1(12): 2207?2216.
    [78] D. J. Cram, M. E. Tanner, S. J. Keipert, et al. Host?guest complexation. 59. Two chiral [1.1.1]orthocyclophane units bridged by three biacetylene units providing a host to bind medium?sized organic guests [J]. J. Am. Chem. Soc., 1991, 113(23): 8909?8916.
    [79] N. Kotera, L. Delacour, T. Traoré, et al. Design and synthesis of new cryptophanes with intermediate cavity sizes [J]. Org. Lett., 2011, 13(9): 2153?2155.
    [80] J. Canceill, L. Lacombe, A. Collet. New cryptophane forming unusually stable inclusion complexes with neutral guests in a lipophilic solvent [J]. J. Am. Chem. Soc., 1986, 108(14): 4230?4232.
    [81] Z. Tosner, O. Petrov, S. D. Dvinskikh, et al. A 13C solid?state NMR study of cryptophane?E: chloromethane inclusion complexes [J]. Chem. Phys. Lett., 2004, 388(1?3): 208?211.
    [82] O. Petrov, Z. Tosner, I. Csoregh, et al. Dynamics of chloromethanes in cryptophane?E inclusion complexes: A 2H solid?state NMR and X?ray diffraction study [J]. J. Phys. Chem. A, 2005, 109(20): 4442?4451.
    [83] J. Canceill, M. Cesario, A. Collet, et al. Structure and properties of the cryptophane?E/CHCl3complex. A stable van der Waals molecule [J]. Angew.Chem.Int.Ed., 1989, 28(9): 1246?1248.
    [84] J. Canceill, L. Lacombe, A. Collet. Analytical optical resolution of bromochlorofluoromethane by enantioselective inclusion into a tailor?made cryptophane and determination of its maximum rotation [J]. J. Am. Chem. Soc., 1985, 107(24): 6993?6996.
    [85] J. Costante?Crassous, T. J. Marrone, J. M. Briggs, et al. Absolute configuration of bromochlorofluoromethane from molecular dynamics simulation of its enantioselective complexation by cryptophane?C [J]. J. Am. Chem. Soc., 1997, 119(16): 3818?3823.
    [86] Y.–Q. Shi, X.–M. Li, J.–C. Yang, et al. Efficient Encapsulation of Chloroform with Cryptophane?M and the Formation of Exciplex Studied by Fluorescence Spectroscopy [J]. J. Fluoresc., 21(2), 531–538 (2011).
    [87] S. T. Mough, J. C. Goeltz, K. T. Holman. Isolation and structure of an "Imploded" cryptophane [J]. Angew. Chem. Int. Ed., 2004, 43(42): 5631?5635.
    [88] L. Garel, B. Lozach, J.?P. Dutasta, et al. Remarkable effect of the receptor size in the binding of acetylcholine and related ammonium ions to water?soluble cryptophanes [J]. J. Am. Chem. Soc., 1993, 115(24): 11652?11653.
    [89] J. Canceill, L. Lacombe, A. Collet. Synthesis of new cavitands having a bis (cyclotriveratrylenyl) structure. Application to the selective complexation of dichloromethane in the presence of chloroform [J]. C. R. Acad. Sci. Paris, Sér. II 1984, 298: 39?42.
    [90] J. Canceill, M. Cesario, A. Collet, et al. A new bis-cyclotribenzyl cavitand capable of selective inclusion of neutral molecules in solution. Crystal structure of its CH2Cl2 cavitate [J]. J. Chem. Soc., Chem. Commun. 1985: 361?363.
    [91] J. Canceill, M. Cesario, A. Collet, et al. Selective recognition of neutral molecules: 1H n.m.r. Study of the complexation of CH2Cl2 and CH2Br2 by cryptophane-D in solution and crystal structure of its CH2Cl2 cavitate [J]. J. Chem. Soc., Chem. Commun. 1986: 339?341.
    [92] A. Collet, J.?P.Dutasta, B. Lozach. in Advances in Supramolecular Chemistry, Vol. 3 (Ed.: G. W. Gokel) [M]. JAI Press, Greenwich, CT, 1993: 1?35.
    [93] A. Collet, J.?P. Dutasta, B. Lozach. Design, synthesis, and properties of macrocyclic receptors for tetrahedral substrates [J]. Bull. Soc. Chim. Belg. 1990, 99: 617?633.
    [94] S. Mecozzi, J. Rebek Jr. The 55 % solution: A formula for molecular recognition in the liquid state [J]. Chem.?Eur. J. 1998, 4: 1016?1022.
    [95] A. Varnek, S. Helissen, G. Wipff, et al. van der Waals host–guest complexes: Can one predict complexation selectivity of neutral guests by a cryptophane? MD-FEP studies in gas phase and chloroform solution [J]. J. Comput. Chem. 1998, 19(8): 820?832.
    [96] S. Akabori, M. Takeda, M. Miura. The complexing abilities of diethyleneoxy-andxylene-bridged cryptophanes with alkanes [J]. Supramol. Chem. 1999, 10(4): 253?262.
    [97] L. Garel, H. Vezin, J.?P. Dutasta, et al. Piperidine aminoxyl radicals as EPR probes for exploring the cavity of a water-soluble cryptophane [J]. Chem. Commun. 1996: 719?720.
    [98] L. Garel, J.?P. Dutasta, A. Collet. Complexation of tetraalkylated derivatives of silicon, germanium, tin and lead by a water soluble cryptophane [J]. New J. Chem. 1996, 20(2): 1265?1271.
    [99] S. Akabori, M. Miura, M. Takeda, et al. Syntheses of diethyleneoxy bridged cryptophanes and their complexing abilities with alkali metal and alkylammonium cations [J]. Supramol. Chem. 1996, 7(3): 187?193.
    [100] C. E. O. Roesky, E. Weber, T. Rambusch, et al. A new cryptophane receptor featuring three endo-carboxylic acid groups: Synthesis, host behavior and structural study [J]. Chem.?Eur. J. 2003, 9(5): 1104?1112.
    [101] K. K. Gast, B. Eberle, J. Schmiedeskamp, et al. Magnetic resonance imaging using hyperpolarized 3He-gas [J]. Acad. Radiol. 2003, 10(10): 1119?1131.
    [102] J. C. Leawoods, D. A. Yablonskiy, B. T. Saam, et al. Hyperpolarized 3He gas production and MR imaging of the lung [J]. Concepts Magn. Reson. 2001, 13(5): 277?293.
    [103] H. E. M?ller, X. J. Chen, B. T. Saam, et al. MRI of the lungs using hyperpolarized noble gases [J]. Magn. Reson. Med. 2002, 47(6): 1029?1051.
    [104] B. M. Goodson. Nuclear Magnetic Resonance of Laser-Polarized Noble Gases in Molecules, Materials, and Organisms [J]. J. Magn. Reson. 2002, 155(2): 157?216.
    [105] A. Cherubini, A. Bifone. Hyperpolarised xenon in biology [J]. Prog. Nucl. Magn. Reson. Spectrosc. 2003, 42(1?2): 1?30.
    [106] A.?M. Oros, N. J. Shah. Hyperpolarized xenon in NMR and MRI. Topical review [J]. Phys. Med. Biol. 2004: R105?R153.
    [107] D. J. Cram, M. E. Tanner, C. B. Knobler. Host-guest complexation 58. Guest release and capture by hemicarcerands introduces the phenomenon of constrictive binding [J]. J. Am. Chem. Soc. 1991, 113(20): 7717?7727.
    [108] T. A. Robbins, C. B. Knobler, D. R. Bellew, et al. Host-guest complexation 67. A highly adaptive and strongly binding hemicarcerand [J]. J. Am. Chem. Soc. 1994, 116(1): 111?122.
    [109] N. Branda, R. M. Grotzfeld, C. Valdés, et al. Control of self-assembly and reversible encapsulation of xenon in a self-assembling dimer by acid-base chemistry [J]. J. Am. Chem. Soc. 1995, 117(1): 85?88.
    [110] C. Valdés, U. P. Spitz, L. M. Toledo, et al. Synthesis and self-assembly of pseudo-spherical homo- and heterodimeric capsules [J]. J. Am. Chem. Soc. 1995, 117(51): 12733?12745.
    [111] K. Bartik, M. Luhmer, J.?P. Dutasta, et al. 129Xe and 1H NMR study of the teversible trapping of xenon by cryptophane?A in organic solution, J. Am. Chem. Soc., 1998, 120(4): 784?791.
    [112] K. Bartik, M. Luhmer, J. Dutasta, et al. 129Xe and 1H NMR study of the reversible trapping of xenon by cryptophane?A in organic solution [J]. J. Am. Chem. Soc., 1998, 120(4): 784?791.
    [113] P. A. Hill, Q. Wei, R. G. Eckenhoff, et al. Thermodynamics of xenon binding to cryptophane in water and human plasma [J]. J. Am. Chem. Soc., 2007, 129(30): 9262?9263.
    [114] M. M. Spence, S. M. Rubin, I. E. Dimitrov, et al. Functionalized xenon as a biosensor [J]. Proc. Natl. Acad. Sci., 2001, 98(19): 10654?10657.
    [115] E. J. Ruiz, D. N. Sears, A. Pines, et al. Diastereomeric Xe chemical shifts in tethered cryptophane cages [J]. J. Am. Chem. Soc., 2006, 128(51): 16980?16988.
    [116] C. Hilty, T. J. Lowery, D. E. Wemmer, et al. Spectrally resolved magnetic resonance imaging of a xenon biosensor [J]. Angew. Chem. Int. Ed., 2006, 45(1): 70?73.
    [117] L. Schroder, T. J. Lowery, C. Hilty, et al. Molecular imaging using a targeted magnetic resonance hyperpolarized biosensor [J]. Science, 2006, 314(5798): 446?449.
    [118] P. Berthault, A. Bogaert?Buchmann, H. Desvaux, et al. Sensitivity and multiplexing capabilities of MRI based on polarized 129Xe biosensors [J]. J. Am. Chem. Soc., 2008, 130(49): 16456?16457.
    [119] A. Schlundt, W. Kilian, M. Beyermann, et al. A xenon?129 biosensor for monitoring MHC?peptide interactions [J]. Angew. Chem. Int. Ed., 2009, 48(23): 4142?4145.
    [120] E. Souteyrand, D. Nicolas, J.?R. Martin, et al. Behaviour of cryptophane molecules in gas media [J]. Sens. Actuators, B 1996, 33(1-3): 182?187.
    [121] P. Sun, Y. Jiang, G. Xie, et al. A room temperature supramolecular?based quartz crystal microbalance (QCM) methane gas sensor [J]. Sensors and Actuators B, 2009, 141: 104–108.
    [122]沈维力,吴锁柱,张彩红,等.穴番(A, E)对甲烷及其卤代衍生物的分子识别研究[J].山西大学学报(自然科学版), 2008, 31(2): 297?298.
    [123]张彩红,张建彪,双少敏,等.一种薄膜荧光检测甲烷的方法[P]. CN101183076. 2008.05.21.
    [124] W. Jin, M. S. Demokan, G. Stewart. Performance limit of fiber?optic gas sensors from coherent backscatter [J]. IEEE Proc. Optoelectron, 2004, 145(3): 186?189.
    [125]王玉田,郑龙江,侯培国.光电子学与光纤传感器技术[M],北京国防工业出版社, 2003: 217?218.
    [126] T. L. Yeo, T. Sun, K. T. V. Grattan. Fibre?optic sensor technologies for humidity and moisture measurement [J]. Sensors and Actuators A, 2008, 144: 280–295.
    [127]李辉,郝建军,何秋生.光纤传感技术在矿井安全监测中的应用[J].煤矿安全, 2006(04):37?40.
    [128] B. Lee, S. Roh, J. Park. Current status of micro? and nano?structured optical fiber sensors [J]. Optical Fiber Technology, 2009,15: 209–221.
    [129] W. Jin, H. L. Ho. Optical fiber gas sensor development and application [C]. Proceedings of SPIE, 2009, 7278: 727?802.
    [130] G. Orellana, D. Haigh. New trends in fiber?optic chemical and biological sensors [J]. Current Analytical Chemistry,2008, 4(4): 273?295.
    [131] M. J. Aernecke, D. R. Walt. Optical?fiber arrays for vapor sensing [J]. Sensors and Actuators B, 2009, 142: 464–469.
    [132]路宗强.多点光纤甲烷浓度监测系统的研究与开发[D].合肥工业大学硕士学位论文, 2008.
    [133] Y. L. Lo, C. S. Chu, J. P. Yur, et al. Temperature compensation of fluorescence intensity?based fiber?optic oxygen sensors using modified Stern–Volmer model [J]. Sensors and Actuators B, 2008, 131: 479–488.
    [134] D. Valerinia, A. Cretìb, A.P. Caricatoa, et al. Optical gas sensing through nanostructured ZnO films with different morphologies [J]. Sens. Actuators B: Chem., 2010, 145(1): 167–173.
    [135] C. S. Chu, Y. L. Lo. Fiber?optic carbon dioxide sensor based on fluorinated xerogels doped with HPTS [J]. Sensors and Actuators B, 2008, 129: 120–125.
    [136] V. Matejec, J. Mrázek, M. Hayer, et al. Sensitivity of microstructure fibers to gaseous oxygen [J]. Materials Science and Engineering C, 2008, 28: 876–881.
    [137] A. Panahi. Fiber optic oxygen sensor using fluorescence quenching for aircraft inerting fuel tank applications [C]. Proc. of SPIE, 2009, 7314: 73140D.
    [138]饶云江.长周期光纤光栅研究现状分析[J].电子科技大学学报, 2005, 34(6): 873?884.
    [139] C. L. Zhong, X. P. Dong, J. J. Li, et al. Gas concentration detection with FBGs and compensation method [C]. Photonics and Optoelectronics Meetings (POEM, 2008) ?The International Society for Optical Engineering, 2009, 7278: 72780K.
    [140] J. Liu, H. M. Yang. Study on optical fiber multi?gas sensor based on spectral absorption [J]. Instrument Techniques and Sensor, 2005, 26(8): 162?163.
    [141] H. Ding, J. Q. Liang, Z. H. Xiong. Double FBG system for acetylene sensing based on differential absorption spectroscopy [J]. Acta Optica Sinica, 2009, 29(2): 548?551.
    [142]郭文刚,杨秀峰,罗绍均,等.基于激光瞬态特性的气体浓度光纤传感器[J].物理学报, 2007, 56(1): 308?311.
    [143] S. T. Wang. Optical fiber gas sensing system based on FBG filtering [C]. Fifth International Symposium on Instrumentation Science and Technology, 2009, 7133: 71331A.
    [144] K. Schroeder, W. Ecke, R. Willsch. Optical fiber Bragg grating hydrogen sensor based on evanescent?field interaction with palladium thin?film transducer [J]. Optics and Lasers in Engineering, 2009, 47: 1018–1022.
    [145] Y. J. Wang, Y. T. Wang, Y. Y. Kang. Study on optical fiber CO gas sensor based on difference absorption [C]. 4th International Symposium on Instrumentation Science and Technology (2006) ?Journal of Physics: Conference Series. Harbin: 2006, 46: 1172?1175.
    [146] C. Caucheteur, M. Debliquy, D. Lahem, et al. Hydrogen sensor using fiber gratings covered by a catalytic sensitive layer [C]. Photonic Materials, Devices, and Applications II (2007) Proceedings of the SPIE, 2007, 6593: 65930U.
    [147] M. Buric, T. Chen, M. Maklad, et al. Multiplexable low?temperature fiber Bragg grating hydrogen sensors [J]. IEEE Photonics Technology Letters, 2009, 21(21): 1594?1596.
    [148] H. Ding, J. Q. Liang, J. H. Cui, et al. A novel fiber Fabry–Perot filter based mixed?gas sensing system [J]. Sensors and Actuators B, 2009, 138: 154–159.
    [149] L. Ai, J. C. Mau,W. F. Liu, et al. Superstructure fiber Bragg gratings with coated poly?aniline film for ammonia detecting superstructure fiber Bragg gratings with coated poly?aniline film for ammonia detecting [C]. Conference on Optical Sensing Technology and Applications (2007) ?Optical Sensing Technology and Applications. 2007, 6585: U424?U431.
    [150]徐艳平,顾铮先,陈家璧,等.长周期光纤光栅气敏薄膜传感器结构优化[J].光学学报, 2006, 26(3): 326?330.
    [151] Z. T. Gu, Y. P. Xu, C. L. Deng. Optical characteristics of coated long?period fiber grating and its sensing application ? art. no. 680013[C]. Proceedings of SPIE, 2008, 6800: 80013.
    [152]吴希军,王玉田,刘海龙,等.一种新型光纤布拉格光栅气体泄漏检测传感器[J].传感技术学报, 2008, 21(8): 1348?1351.
    [153] X. T. Wei, T. Wei, H. Xiao, et al. Nano?structured Pd?long period fiber gratings integrated optical sensor for hydrogen detection [J]. Sensors and Actuators B, 2008, 134: 687–693.
    [154] H. Xia, J. S. Goldmeer, K. T. McCarthy, et al. Sensing system with fiber gas sensor [P], US7489835, 2009.02.10.
    [155] C. Caucheteur, M. Debliquy, D. Lahem, et al. Hybrid fiber gratings coated with a catalytic sensitive layer for hydrogen sensing in air [J]. Optics Express, 2008, 16(21): 16854?16859.
    [156] X. L. Tang, R. Kurtis, X. W. Lan, et al. Perovskite?type oxide thin film integrated fiber optic sensor for high?temperature hydrogen measurement [J]. Analytical Chemistry, 2009, 81(18): 7844?7848.
    [157]彭勇,孙敏.镀有敏感膜的长周期光纤光栅NO气体传感特性[J].大连海事大学学报, 2007, 33(2): 27?31.
    [158] S. M. Topliss, S. W. James, F. Davis, et al. Optical fibre long period grating based selective vapour sensing of volatile organic compounds [J]. Sensors and Actuators B, 2010, 143(2): 629?634.
    [159]张艳霞,乔学光,李明,等.光子晶体光纤及其在传感器中的应用[J].光通信研究, 2007 (4): 59?61.
    [160] M. B. Marques, F. Magalhaes, J. P. Carvalho, et al. Recent advances on optical sensing using photonic crystal fibers [C]. AIP Conference Proceedings. 2008, 1055: 39?42.
    [161] B. Lee, S. Roha, J. Park. Current status of micro? and nano?structured optical fiber sensors [J]. Optical Fiber Technology, 2009, 15(3): 209?221.
    [162] J. M. Lazaro, A. M. Cubillas, M. S. Lopez, et al. Methane sensing using multiple?coupling gaps in hollow?core photonic bandgap fibers?art. no.70044U [C]. 1st Workshop on Specialty Optical Fibers and Their Applications (2008), Proceedings of SPIE, 2008, 7004: U44.
    [163] A. M. Cubillas, J. M. Lazaro, O. M. Conde, et al. Gas sensor based on photonic crystal fibres in the 2ν3 andν2 + 2ν3 vibrational bands of methane [J]. Sensors, 2009, 9(8): 6261?6272.
    [164] S. G. Li, S. Y. Liu, Z. Y. Song, et al. Study of the sensitivity of gas sensing by use of index?guiding photonic crystal fibers [J]. Applied Optics, 2007, 46(22): 5183?5188.
    [165] H. L. Ho, Y. L. Hoo, W. Jin, et al. Optimizing microstructured optical fibers for evanescent wave gas sensing [J]. Sensors and Actuators B, 2007, 122: 289–294.
    [166] D. Monzón-Hernández, V. P. Minkovich, J. Villatoro, et al. Photonic crystal fiber microtaper supporting two selective higher?order modes with high sensitivity to gas molecules [J]. Applied physics letters, 2008, 93: 081106.
    [167]顾雯雯,赵建林,崔莉,等.光子晶体光纤气体传感灵敏度的有限差分法分析[J].光子学报, 2001, 36(1): 94?98.
    [168] Y. L. Hoo,W. Jin, J. Ju, et al. Numerical investigation of a depressed?index core photonic crystal fiber for gas sensing [J]. Sensors and Actuators B, 2009, 139: 460–465.
    [169] A. M. Cubillas, M. Silva?Lopez, J. M. Lazaro, et al. Methane detection at 1670 nm band using ahollow?core photonic bandgap fiber and a multiline algorithm [J]. Optics Express, 2007, 15(26): 17570?17576.
    [170] R. M. Wynne, B. Barabadi, K. J. Creedon, et al. Sub?minute response time of a hollow?core photonic bandgap fiber gas sensor [J]. J. Lightwave Technol., 2009, 27(11): 1590?1596.
    [171] E. Austin, A. van Brakela, M. N. Petrovicha, et al. Fibre optical sensor for C2H2 gas using gas-filled photonic bandgap fibre reference cell [J]. Sens. Actuators B, 2009, 139: 30–34.
    [172] P. Joanna1, X. F. Li, M. Takahirol, et al. Sensor for measurement of hydrocarbons concentration based on optic fiber [C]. Proceedings of SPIE, 2009, 7389(2): 73893D.
    [173] J. Villatoro, M. P. Kreuzer, R. Jha, et al. Photonic crystal fiber interferometer for chemical vapor detection with high sensitivity [J]. Optics Express, 2009,17(3): 1447?1453.
    [174] V. Matejec, J. Mrazek, O. Podrazky, et al. Microstructure fibers for sensing gaseous hydrocarbons [C]. Conference on Optical Sensing Technology and Applications (2007), Optical Sensing Technology and Applications. Prague, 2007, 6585: U284?U292.
    [175]邓广福.基于可调谐激光光谱的矿井瓦斯气体传感系统的研究[D].吉林大学博士学位论文, 2008.06.
    [176]陈林.光纤传感在瓦斯检测中的应用研究[D].安徽理工大学硕士学位论文, 2007.06.
    [177] J. Moreno, F. J. Arregui, I. R. Matias. Fiber optic ammonia sensing employing novel thermoplastic polyurethane membranes [J]. Sensors and Actuators B, 2005, 105: 419–424.
    [178]张文超.基于倏逝波场的光纤瓦斯气体传感器的研究[D].黑龙江大学硕士学位论文, 2008.05.
    [179] D.L. Moreno, D.M. Hernandez, J. Villatoro,et al. Optical fiber hydrogen sensor based on core diameter mismatch and annealed Pd–Au thin films [J]. Sens. Actuators B, 2007, 125: 66–71.
    [180] M. Bezunartea, J. Estella, J. C. Echeverría, et al. Optical fibre sensing element based on xerogel?supported [Au2Ag2(C6F5)4(C14H10)]n for the detection of methanol and ethanol in the vapour phase [J]. Sensors and Actuators B, 2008, 134: 966–973.
    [181]范金友.塑料光纤浮游植物荧光传感系统的研究[D].华侨大学硕士学位论文, 2007.12
    [182]樊美公.光化学基本原理与光子学材料科学[M].北京:科学出版社, 2001: 77?83.
    [183] V. I. Ogurtsov, D. B. Papkovsky. Modeling of luminescence?based oxygen sensors with non?uniform distribution of excitation and quenching characteristics inside active medium [J]. Sensors and Actuators B, 2003, 88: 89?100.
    [184] V. I. Ogurtsov, D. B. Papkovsky. Selection of modulation frequency of excitation for luminescence lifetime?based oxygen sensor [J]. Sens. Actuators B, 1998, 51: 377?381.
    [185] J. R. Lakowicz. Principles of Fluorescence spectroscopy, 2nd ed. [M]. Plenum Press, New York, 1999.
    [186] D. M. Himmelblau. Process Analysis by Statistical Methods [M]. Wiley, New York, 1970.
    [187] V. I. Ogurtsov, D. B. Papkovsky, N. Y. Papkovskyja. Approximation of calibration function of phase?fluorimetric oxygen sensors on the basis of physical models [J]. Sens. Actuators B, 2001, 51: 377?381.
    [188] D. F. Eaton. Reference materials for fluorescence measurement [J]. Pure Appl. Chem. 1988, 60: 1107–1114.
    [189] M. Lukeman, D. Veal, P. Wang, et al. Photogeneration of 1, 5-naphthoquinone methides via excited-state (formal) intramolecular proton transfer (ESIPT) and photodehydration of1-naphthol derivatives in aqueous solution [J]. Can. J. Chem., 2004, 82: 240–253.
    [190] M. Maus, W. Retigg, D. Bonafoux, et al. Photoinduced intramolecular charge transfer in a series of differently twisted donor-acceptor biphenyls as revealed by fluorescence [J]. J. Phys. Chem. A, 1999, 103: 3388–3401.
    [191] P. B. Kandagal, S. Ashoka, J. Seetharamappa, et al. Study of the interaction of an anticancer drug with human and bovine serum albumin: spectroscopic approach [J]. J. Pharm. Biomed. Anal. 2006, 41: 393–399.
    [192] Hyperchem 8.0 Package, Hyperchem Inc., Gainesville, FL.
    [193] X. T. Vu, R. Stockmann, B. Wolfrum, et al. Fabrication and application of a microfluidic- embedded silicon nanowire biosensor chip [J]. Phys. Status Solidi A, 2010, 207: 850–857.
    [194] S. M. Nelson, T. Mahmoud, M. Beaux II, et al. Toxic and teratogenic silica nanowires in developing vertebrate embryos [J]. Nanomedicine: NBM, 2010, 6: 93–102.
    [195] Z. X. Su, J. Sha, J. J. Niu, et al. Synthesis and Raman spectra of Si-nanowires [J]. Phys. Status Solidi A, 2006, 203(4): 792–801.
    [196] J. Koo, S. Kim. Charge transport modulation of silicon nanowire by O2 plasma [J]. Solid State Sci. 2009, 11: 1870–1874.
    [197] G.?J. Zhang, L. Zhang, M. J. Huang, et al. Silicon nanowire biosensor for highly sensitive and rapid detection of Dengue virus. Sens. Actuators B: Chem. 2010, 146: 138–144.
    [198] Y. W. Wang, C. H. Liang, G. W. Meng, et al. Synthesis and photoluminescence properties of amorphous SiOx nanowires [J]. J. Mater. Chem., 2002, 12: 651–653.
    [199] D. P. Yu, L. Hang, Y. Ding, et al. Amorphous silica nanowires: Intensive blue light emitters [J]. Appl. Phys. Lett., 1998, 73: 3076–3078.
    [200] S. K. Srivastava, P. K. Singh, V. N. Singh, et al. Large-scale synthesis, characterization and photoluminescence properties of amorphous silica nanowires by thermal evaporation of silicon monoxide [J]. Physica E, 2009, 41: 1545–1549.
    [201] X. C. Wu, W. H. Song, K. Y. Wang, et al. Preparation and photoluminescence properties of amorphous silica nanowires [J]. Chem. Phys. Lett. 2001, 336(1-2): 53–56.
    [202] S. Kar, S. Chaudhuri. Catalytic and non-catalytic growth of amorphous silica nanowires and their photoluminescence properties [J]. Solid State Commun. 2005, 133: 151–155.
    [203] J.?F. Hsu, B.?R. Huang. The growth of silicon nanowires by electroless plating technique of Ni catalysts on silicon substrate [J]. Thin Solid Films, 2006, 514: 20–24.
    [204] M. Jeon, H. Uchiyama, K. Kamisako. Characterization of tin-catalyzed silicon nanowires synthesized by the hydrogen radical-assisted deposition method [J]. Mater. Lett. 2009, 63: 246–248.
    [205] O. Demichel, F. Oehler, V. Calvo, et al. Photoluminescence of silicon nanowires obtained by epitaxial chemical vapor deposition [J]. Physica E 2009, 41: 963–965.
    [206] J. H. Kim, H. H. An, H. S. Kim, et al. Direct deposition of size-tunable Au nanoparticles on silicon oxide nanowires [J]. J. Colloid Interface Sci. 2009, 337: 289–293.
    [207] B. Salhi, B. Gelloz, N. Koshida, et al. Synthesis and photoluminescence properties of silicon nanowires treated by high-pressure water vapor annealing [J]. Phys. Status Solidi A, 2007 204(5): 1302–1306.
    [208] S. T. Lee, Y. F. Zhang, N. Wang, et al. Semiconductor nanowires from oxides [J]. J. Mater. Res., 1999, 14(12): 4503–4507.
    [209] S. T. Lee, N. Wang, Y. F. Zhang, et al. Oxide-assisted semiconductor nanowire growth [J]. MRS Bull, 1999, 24(8): 36–42.
    [210] X. H. Fan, L. Xu, C. P. Li, et al. Effects of ambient pressure on silicon nanowire growth [J]. Chem. Phys. Lett., 2001, 334(4-6): 229–232.
    [211] S. Q. Feng, D. P. Yu, H. Z. Zhang, et al. The growth mechanism of silicon nanowires and their quantum confinement effect [J]. J. Cryst. Growth, 2000, 209: 513–517.
    [212] H. Nishikawa, T. Shiroyama, R. Nakamura, et al. Photoluminescence from defect centers in high-purity silica glasses observed under 7.9eV excitation[J]. Phys. Rev.B, 1992,45: 586–591.
    [213] H. Nishikawa, R. Nakamura, R. Tohmon, et al. Generation mechanism of photoinduced paramagnetic centers from preexisting precursors in high-purity silicas [J]. Phys. Rev. B, 1990, 41: 7828–7834.
    [214] A. N. Trukhin, L. N. Skuja, A. G. Boganov, et al. The correlation of the 7.6 eV optical absorption band in pure fused silicon dioxide with twofold-coordinated silicon [J]. J. Non?Cryst. Solids, 1992, 149(1-2): 96–101.
    [215] E. P. O'Reilly, J. Robertson. Theory of defects in vitreous silicon dioxide [J]. Phys. Rev. B 1983, 27: 3780–3795.
    [216] W. A. Clarkson. Thermal effects and their mitigation in end-pumped solid state lasers [J]. J. Phys. D: Appl. Phys. 2001, 34(16): 2381–2395.
    [217] Y. F. Chen, Y. P. Lan, S. C. Wang. Influence of energy-transfer upconversion on the performance of high-power diode-end-pumped cw lasers [J]. IEEE J. Quantum Electron. 2000, 36: 615–619.
    [218] C. Massie, G. Stewart, G. McGregor, et al. Design of a portable optical sensor for methane gas detection [J]. Sens. Actuators B: Chem., 2006, 113: 830–836.
    [219] G. Xie, P. Sun, X. Yan, et al. Fabrication of methane gas sensor by layer?by?layer self?assembly of polyaniline/PdO ultra thin films on quartz crystal microbalance [J]. Sens.Actuators B: Chem., 2010, 145: 373–377.
    [220] N. G. Shang, U. Vetter, I. Gerhards, et al. Luminescence centres in silica nanowires [J]. Nanotechnology, 2006, 17: 3215–3218.
    [221] M. M. F. Choi, D. Xiao. Single standard calibration for an optical oxygen sensor based on luminescence quenching of a ruthenium complex [J]. Anal. Chim. Acta, 2000, 403: 57–65.
    [222] C. L. Yaws. Yaws' Handbook of Vapor Pressure: Antoine Coefficients [M]. Gulf Publishing, 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700