有源电子式电流互感器的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电子式电流互感器是利用光电子技术和光纤传感技术来实现电力系统电流测量的新型互感器。它具有体积小、重量轻;无铁芯、不存在磁饱和与铁磁谐振问题;动态响应范围大,频率响应宽;抗电磁干扰性能强;无油化结构、绝缘可靠、价格低等优点;是未来电流互感器发展的方向,是新一代电力数字网发展的需要,适应电力计量和保护数字化、微机化和自动化发展的潮流。
     本论文首先对电磁式电流互感器面临的主要问题和电流测量方法新的发展方向进行了比较全面地介绍,对电子式电流互感器的主要特点、工作原理、发展现状、研制难点进行了阐述,对电子式电流互感器的市场前景进行了预测。
     本论文着重对有源电子式电流互感器的原理进行了研究,特别是系统地研究了传感头、信号接收机、光纤传递部分以及计算机接口等各部分的电路结构。并采用了激光供能的新方法给传感头电子线路提供稳定的电源供应。通过采用合理的滤波、接地、屏蔽等各种方法,尤其是采用电源LC滤波电路、电源上加旁路电容抑制线路板上的电压波动、传感头加屏蔽层、传感头总体接地结构等多种抗干扰办法,减小了电源和地线上的各种电磁干扰,保证了系统的稳定性和可靠性。通过合理选配A/D、CPU等参数减少采样保持时间、A/D转换时间、数据传输时间与CPU计算时间等组成的数据转换过程的总时延,保证了系统的精确度。通过采用时分复用的串行同步传输方式将数据信号通过两根光纤传递给信号接收机,实现了多路信号的采集。通过采用PIN管接收从传感头传递下来的时钟脉冲和数据脉冲信号,并将它们放大整形传送到逻辑控制单元,产生逻辑控制信号,再将数字信号传送给D/A转换器,设计了滤波器和移相器电路,还原出了原始的被采样信号。把采集的信号进行分离和还原后,送入计算机进行数据的采集和计算处理。
     本论文对整个系统的各个部分提出了技术要求,并对电子线路的设计进行了总体规划,设计了整机的结构方案,研制出了这种新型的有源电子式电流互感器的样机。它的电压等级为220千伏,额定电流为600安培。经过实验室测量,整机系统的比差和角差达到了我国关于0.2级电流互感器的标准要求。
Active electronic current transformer is a new type of high-voltage apparatus for current measurement of power system, which is a complete combination of optical electronic technology with fiber optic sensing technology. The main features of the apparatus are focus on small volume, light weight, no iron core, no magnetic saturation and no ferreous resonance, moreover, related advantages such as the large range of transient and frequency response, excellent electrical magnetic compatibility, oil-free configuration, reliable insulation structure, are all the trends of current transformer in the future. Meanwhile, it should agree with the future power gauge and digital, computer, automatic relay protection. It will meet the demand of digital power network.
    In this paper, the technical problem and new methods of current measurement are fully investigated in the first. Besides, the technical specification, operating principle, crucial problem have been analyzed in detail. The market prospects of this apparatus are forecast at the same time.
    In this paper, the emphasis is laid on the principle of active electronic current transformer, especially on the sensor head, signal receiver, fiber optic communication, and computer interface. A new method based on laser energizing is used to supply consistent current for the part of high-voltage unit. For the improvement of reliability and stability of the whole apparatus, meanwhile, for eliminating various electric-magnetic disturbance within the power supply and ground, measures such as filter, grounding, shielding are all taken in technique. The special methods are LC filter for power supply, bypass capacitor for suppressing voltage surge in printed circuit board, shielding layer wrapped in sensor head and overall grounded. Reasonable selection of A/D and CPU is very important for sharply shortening the period of sampling and holding, A/D conversion, data transmissions, and final calculation. In data communications, the serial synchronization transmission mode based on the technique of time divided mult
    iplex application is used for detecting multi-channels
    
    
    of signal only by two channels of fiber optic. The clock and data pulsation signals from upper sensor heads can be received using PIN diode, then, amplified and inverted in logical control unit for the purpose of CPU operation. Hereinafter, the digital signal will be delivered into the central processing unit (CPU) for related calculation, and meanwhile transmitted to a D/A converter for signal recovery after filter and phase-shift circuit.
    The technical requirements of the active electronic current transformer are described, and total designs on electronic circuit and integrated configuration are finished in this thesis. An experimental apparatus of electronic optic current transformer is manufactured in actual scale with 220 kV of rated voltage and 600 A of rated current. It is shown from the test results that the ratio error and phase error have been integrated to meet class 0.2 of national standard.
引文
1 [苏]B.B.阿法纳西耶夫.电流互感器.陆安业,肖耀荣,朱英浩译.机械工业出版社,1989:297~331
    2 J. Song, P. G. Mclaren, D. J. Thomson, et al. A Prototype Clamp-on Magneto-optical Current Transducer for Power System Metering and Relaying. IEEE Transactions on Power Delivery, 1995, 10(4):1764~1770
    3 管喜康.光纤在电工领域中的应用.水利电力出版社,1990:164~174
    4 T. W. Cease, Paul Johnston. A Magneto-Optic Current Transformer. IEEE Trans. on Power Delivery, 2000, PWRD-5(2): 548~555.
    5 T. W. Cease. Optical Sensing Technology Passes Field Tests. Electrical World, 2000, 204(9):44~46.
    6 张明明,刘延冰.一种新型的有源光纤电流互感器.中国仪器仪表,1998,2:15~16
    7 M. Born, E. Wolf. Principles of Optics, 6th ed. Pergamon Press, 1986
    8 M. Smith. Optical fibres for current measurement applications. Optics and Laser Technol, 2000:25~29
    9 A. J. Rogers. Optical methods for measurement of voltage and current on power systems. Optics and lasers Technology, 2001: 273
    10 D. Tang, A. H. Reae, and G. W. Day. Practical considerations in the design of opticalfibre current sensors. SPIE. 1267, Fibre Optic Sensors/V, 2001:29
    11 Ben-K/sh, M. Tur, and E. Shafir. Geometrical separation between the birefringence components in Faraday-rotation fibre-optic current sensors. Opt. Lett, 1999, 16(9):687
    12 N.C. Pistoni and M. Marttinelli. Vibration-insensitive fibre-optic current sensor. Opt. Lett.,2001, 18(4):314
    13 Y.N. Ning, Z.P. Wang and A.W. Palmer et al. Recent progress in optical current sensing techniques. Rev. Sci. Instrum, 1995, 66(5):3097~3111
    14 Ulmer, E.A. A high-accuracy optical current transducer for electric power systems. IEEE Trans. Pwr. Delivery, 2000, 5(2):892~898
    
    
    15 H. Katsukawa, H. Ishikawa, H. Okajima. Development of An Optical Current Transducer with A Bulk Type Farady Sensor for Metering. IEEE Transactions on Power Delivery, 2001, 9(3):1245~1252
    16 W. J. Tabor and F. S. Chen. Electromagnetic Propagation through Materials Possessing Both Faraday Rotation and Birefringence: Experiments with Ytterbium Orthoferrite. J. of Appl. Phys. 1969, 40(7):2760~2765.
    17 T. D. Mafferone, T. M. McClelland. 345kV Substation Optical Current Measure-ment System for Revenue Metering and Protective Relaying. IEEE Trans. on Power Delivery, 2001, PWRD-6(4):1430~1437.
    18 何竞翼,刘德明等.光纤偏振态自动补偿的光纤电流互感器.光学学报,1999,19(12):1678~1681
    19 曾庆禹.电力系统数字光电量测系统的原理及技术.电网技术,2001,25(4):1-5
    20 黄宗军,王政平,孙伟民等.反射相移对Faraday电流传感器灵敏度及稳定性影响的理论分析.光子学报,1998,27(3):243~247
    21 颜研 张涛 申烛 王士敏等.利用激光供电的光电电流互感器.电源世界,2001,5:15~17
    22 余春雨,李红斌,叶国维,王晓琪.电子式互感器数字输出特性与通讯技术.高电压技术,2003,6:7~8
    23 Ramboz, John D. Machinable Rogowski Coil Design and Calibration[J]. IEEE Transactions on Instrumentation and Measurement, 2001, 45(2):511~515
    24 Ljubomir Kojovic. Rogowski coils suit relay protection and measurement[J]. IEEE Computer Application in Power, 2002(7):47~52
    25 Photonics Power Systems Incorporation Production Information. Photonics Power Systems Incorporation, 1998
    26 AD Corporation. Data Sheet. 2000
    27 C. M. Davis. Phase-modulated Fiber-optic Current Transformer/ Voltage Trans-former. EPRI Final Report EL-7421, Research Project 1991, 3:2734
    28 A.E. Peterson. Portable Optical AC-and Proposed DC-Current Sensor for
    
    High Voltage Application. IEEE Trans. on Power Delivery, 1995, PWRD-10(2): 595~599.
    29 T. Sato, G. Takahashi, Y. Inui. Method and Apparatus for Optically Measuring a Current. European Patent Application. Application No. 83102230. 6
    30 纪昆,李芙英.光电式电流互感器的实用化设计.光电工程,2002,29(2):39-41,44
    31 陈海清 郭守珠.高电压领域中的光电式电流互感器。高电压技术,1998,24(2):70-72,75
    32 王廷云,罗承沐,田玉鑫.电力系统中光电电流互感器研究.电力系统自动化,2000:38-41
    33 张沛云.电力系统中光电电流互感器分析.山东电力技术,2001,119(3):24-26
    34 段雄英 邹积岩 张可畏.电压/电流组合型电子式互感器的研究.电工技术,2002(5):9-12,16
    35 徐雁,叶妙元,张庆,肖霞.光电互感器的应用及接口问题.电力系统自动化,2001:45-48,52
    36 段雄英,邹积岩.一种新型光纤电流互感器的研究.高电压技术,2000,26(6):46-48
    37 李芙英,纪昆.一种新型光电式电流互感器的设计.半导体光电,2002,23(2):139-141.
    38 乔峨,安作平,罗承沐,王廷云.光电式电流互感器的开发与应用21世纪互感器技术展望.电力系统自动化,2000:37(1):40—43.
    39 乔峨,安作平,罗承沐.应用在混合式光电电流互感器中的Rogowski线圈.电力系统自动化,2000:37(5):17—19.
    40 [美]汉斯·S·劳申巴赫.太阳电池阵列设计手册—光电能转换原理及其应用.张金熹,廖春发,李芙蓉等译.宇航出版社,1987:125~131
    41 M. R. Al-Mohanadi, J. N. Ross, J. E. Brignell. Optical Power and Intelligent Sensors. Sensors and Actuators A, 2000, 60:142~146
    42 N. Inoue, T. Tsunekage, S. Sakai. On-Line Location System for 66kV Underground Cables with Fast O/E and Fast A/D Technique. IEEE Transaction on Power Dilivery, 2001, 9(1): 579~582
    43 Dr. Harald Schwarz, Manfred Hudasch. Optical Current
    
    Transformers-Successful First Field Test in A 380-kV System. ABB Peview, 2002, 3:12~18
    44 N. A. Pilling, R. Holmes, G. R. Jones. Optically Powered Hybrid Current Measurement System. Electronics Letters 10th June, 1993, 29(12):1049~1051
    45 T. W. Cease, J. G. Driggans, S. J. Weikel, Optical Voltage and Current Sensors Used in a Revenue Metering System, IEEE Trans. on Power Delivery, 1991, PWRD-6(4): 1374~1379.
    46 Beck, et al. Magneto-optical Current Transformers 2: Components. Applied Optics, 1980, 19(22): 3735~3740.
    47 N. A. Pilling, R. Holmes, G. R. Jones. Low-power Optical Current Measurement System Employing A Hybrid Transmitter. IEE Proc-Sci. Meas. Technol, 1994, 141(3):129~134
    48 Photonics Power Systems Incorporation Production Information. Photonics Power Systems Incorporation, 1998
    49 T. Yoshino. Compact and Highly Efficient Faraday Rotators Using Relatively Low Verdet Constant Faraday Materials. Japanese Journal of Applied Physics, 1980, 19(4):745~749.
    50 段雄英,邹积岩.一种新型光纤电流互感器的研究.高电压技术,2000,26(6):46~48
    51 陈海清,郭守珠.高电压领域中的光电式电流互感器.高电压工程,1998,24(6):70~72
    52 张培铭,张泳.太阳能微功耗光纤传感式电流互感器.光电工程,1998,25(1):33~38
    53 刘湘林.磁光材料和磁光器件.北京科学技术出版社,1990:87~89
    54 清华大学,能源部电科院.光纤大电流传感头技术报告.1990H.Aulich,W.
    55 叶国雄,刘延冰,张明明,易本顺,李劲,周向阳,叶其政,李伟.500kV组合式光学电流、电压传感器.华电测与仪表,2001,38(7):21-23,29
    56 刘晔,王采堂,苏彦民,张斌贝,邹建龙.电力系统适用光学电流互感器的研究新进展.电力系统自动化,2000:60-64
    57 宋军强,杨煜普,周彪.DSP在光纤电压测试系统中的应用.测控技术2001,20(4):56-58,60
    58 湖北省电磁兼容学会.电磁兼容性原理及应用.国防工业出版社,1996:
    
    173~187
    59 中华人民共和国国家技术监督局.GB1208—1997,中华人民共和国国家标准—电流互感器.中国标准出版社,1997-07-03
    60 张适昌.外积分式罗柯夫斯基线圈.高电压技术,1986,2:37~41
    61 姚为正,易映萍.智能化电器的抗干扰技术.低压电器,1998,4:44~49
    62 Ljubomir Kojovic. Rogowski Coils Suit Relay Protection and Measurement. IEEE Computer Applications in Power, 2000,7:453~458
    63 Wolf. T. Photovoltaic Power Convertor for Sensor Systems. Elektronik Praxis, 1995, 31(24):123~130
    64 MAXIAM Corporation. Data Sheet. 2000
    65 G. R. Jones, G. Li, J. W. Spencer, et al. Faraday Current Sensing Employing Chromatic Modulation. Optical Communications, 2000, 145:203~212
    66 W.Stephen Woodward, Nanopower. VFC Includes Self-Compensating Charg Pump. Electronic Design, 1998, 46(3): 37~40
    67 徐华清,张培铭,张泳.太阳能光纤电流传感系统.传感器技术,1998,17(5):16~18
    68 王廷云,孙圣和,郑绳楦.一种新型光纤电流传感器.仪器仪表学报,1997,6:27~32
    69 赵永鹏,吴重庆,徐凤海.光纤电压传感器的研究现状及应用.仪表技术与传感,1997,11:8~12
    70 梁国忠,梁作亮.激光电源电路.兵器工业出版社,1995:1~10
    71 中国通信学会主编.现代通信电源.北京:人民邮电出版社,1987:473~509
    72 关荣锋,赵军良.实用的半导体激光电源的研制.焦作工学院学报,1996,16(4):28~31
    73 陈凯良.恒流源及其应用电路.杭州:浙江科学技术出版社,1992:1~27
    74 艾时英.光时分复用技术.光通信研究,1998,5:46~51
    75 原荣.全光通信技术讲座第三讲光时分复用技术.广西通信技术,1997,2:31~37
    76 张祥冰.波分复用(WDM)和光时分复用(OTDM)系统的技术进展.光纤与电缆及其应用技术,1997,4:34~38
    77 许刚,李毓麟.利用光纤进行串行通信.光纤及电缆及其应用技术,1999,2:
    
    28~31
    78 王廷尧.光通信设备基础.天津:天津科学技术出版社,1991:256~262
    79 肖春华.光纤通信工程师实用手册.天津:天津科学技术出版社,1996:338~341
    80 沈兰荪.高速数据采集系统的原理与应用.北京:人民邮电出版社,1995:211~220
    81 刘鹏程,邱扬.电磁兼容原理及技术.北京:高等教育出版社,1993:144~147
    82 中国通信学会.光纤通信工程.北京:人民邮电出版社,1994:250~270
    83 唐玉麟,周高辉.光纤通信应用.桂林:广西师范大学出版社,1988:81~95
    84 顾畹仪,李国瑞.光纤通信系统.北京:人民邮电出版社,1988:197~212
    85 纪越峰,赵荣华,顾畹仪.光纤数字通信使用技术基础.科学文献出版社,1994:134~160
    86 清华大学电子学教研组.数字电子技术基础.北京:高等教育出版社,1986:224~291
    87 王永洪.线性集成运算放大器及其应用.北京:机械工业出版社,1988:180~255
    88 杨振江,蔡德芳.新型集成电路使用指南与典型应用.西安:西安电子科技大学出版社,1998:149~175
    89 严楣辉,杨光璧.集成运算放大器分析与应用.成都电讯工程学院出版社,1988:110~123
    90 周明德.微型计算机IBM—PC/XT[0520系列]系统原理及应用(上).清华大学出版社,1991:341~361
    91 姚为正,易映萍.智能化电器的抗干扰技术.低压电器,1998,4:44~49
    92 张著,程震先,刘继华.数字设计—电路与系统.北京理工大学出版社,1992:399~440
    93 刘骥,朱东柏.数字组合式光电互感器的技术探讨.高压电器,2003,26(5):19-23
    94 朱勇,叶妙元,刘杰,罗苏南,徐雁,易铁.220kV组合式光学电压电流互感器的设计.高电压技术,2000(2):34-36
    95 诸邦田.电子线路抗干扰技术手册.北京:北京科学技术出版社,1988.1~6

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700