用户名: 密码: 验证码:
光子晶体光纤色散与非线性特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光子晶体光纤(PCF),可以实现极大的折射率调制和高度灵活的折射率分布,可以满足色散补偿光纤和高非线性光纤对大折射率调制的要求。基于PCF技术的色散补偿光纤和高非线性光纤具有十分优异的色散特性和非线性特性,是目前研究的热点问题。
     论文首先研究了仿真PCF的两种算法:时域有限差分方法(FDTD)和频域有限差分方法(FDFD)。以这两种方法为核心算法,开发了光子晶体光纤仿真软件。该软件界面友好,操作简单,通用性强,可以仿真任意结构的光子晶体光纤。运用所开发的仿真软件,对PCF进行了几种理论设计和仿真。首先,利用FDTD研究了带隙型PCF,获取了光纤的导引频率、泄漏损耗和模场分布。其次,提出了一种宽带色散补偿光子晶体光纤的设计。通过在内包层引入一圈柚子形空气孔,大大改善了光纤的色散性能,其色散曲线在至少60nm带宽内随波长线性变化,解决了双芯PCF负色散带宽窄的问题。论文还提出了一种色散可调的PCF。通过往单模PCF的特定空气孔中选择性注入聚合物,改变光纤的传输特性,使得光纤具有大负色散,且其色散可随注入聚合物折射率的改变被调节。
     论文介绍了关于一种大模场面积、大负色散的光子晶体光纤从理论设计、实验制作、色散测试以及模场测试的全过程。首先设计出了一种符合光纤拉制工艺要求的大模场面积、大负色散的PCF。进行了光子晶体光纤的实验拉制。对拉制出的光纤的测试表明,该PCF同时具有大模场面积和大负色散的特性。开发出了一套高分辨率、大动态范围的光纤模场测试系统。利用该系统对制作的PCF的模场进行了测试,研究了其模场随波长演变规律。
     基于国产的高非线性PCF进行了慢光的研究。首先解决了高非线性PCF与单模光纤的焊接难题。测试了该高非线性PCF的受激布里渊增益特性。应用该PCF进行了慢光的研究。通过使用50米高非线性PCF,实现了最大半个脉冲宽度的时间延迟。在实验中还发现脉冲的延迟时间随增益呈指数增加的现象。
Photonic crystal fiber (PCF) can have very large refractive index modulation and very flexible index profile. It just meets the requirement on large index modulation in dispersion-compensating fiber(DCF) and high nonlinear fiber. PCF-based DCFs and high nonlinear fibers have outstanding performance in chromatic dispersion and nonlinearity respectively, which have attracted much attention.
     To simulate PCF, the dissertation studies two modeling methods which are Finite Difference Time Domain (FDTD) method and Finite Difference Frequency Domain (FDFD) method. Based on the two methods, a PCF simulating software is developed. The software is very friendly in the interface, very easy to use and can simulate all kinds of PCF profile.
     Several theoretical designs and simulations have been carried out by using the software. First, a band-gap guiding PCF is investigated by FDTD and the frequency of the guiding mode, the leaky loss and the mode field profile of the fiber are obtained. Secondly a broad band dispersion-compensating PCF is proposed. By introducing a ring of large grapefruit holes in the inner cladding, the dispersion performance of the dual core PCF can be improved greatly. The chromatic dispersion of the fiber demonstrates linear evolution with wavelength in a bandwidth of more than 60 nm. Thirdly, a tunable dispersion-compensating PCF is proposed. When a specific ring of air holes in a single mode PCF is filled with index tunable polymer, the propagation mechanism of the PCF is changed and the chromatic dispersion of the PCF is changed to be high negative. Moreover the chromatic dispersion of the PCF can be tunable when the refractive index of the filled polymer is changed.
     The dissertation presents a whole research process concerning a PCF with large mode area and high negative dispersion on the theoretical design, experimentally fiber-drawing fabrication and the measurements of the chromatic dispersion and the mode field of the fiber. At first, a PCF with large mode field area and high negative dispersion is designed theoretically based on the condition of the practical fiber drawing. And then the PCF is drawn experimentally. The measurement results on the fabricated PCF demonstrate that the fiber has large mode field area and high negative dispersion simultaneously. To study the mode field of the fabricated PCF, a fiber mode field measurement system with high resolution and large dynamic range is developed. The mode field of the fabricated PCF is tested and the evolution of the mode field with wavelength is investigated.
     A slow light experiment based on Stimulated Brillouin Scattering (SBS) in a homemade high nonlinear PCF is demonstrated. Low loss splicing between the high nonlinear PCF and a single mode fiber is realized. The Brillouin gain characteristic of the high nonlinear PCF is tested and a slow light experiment is carried out based on the PCF. Up to 1/2 pulse width delay is achieved in only 50-m PCF. It also demonstrates that the delay time grows exponentially with the Brillouin gain.
引文
[1] F.P.Kapron, D.B.Keck and R.D.Maurer. Radiation losses in glass optical waveguides. Appl. Phys.Lett. 1970,17:423-425.
    [2] J. B. MacChesney, P. B. O'Connor and H. M. Presley. A new technique for the preparation of low-loss and graded-index optical fibers. Proc. IEEE, 1974,62:1280- 1281.
    [3] T. Miya, Y. Terunuma, T.Hosaka et al. Ultimate low-loss single-mode fibre at 1.55μm. Electron. Lett. 1979,15:106-108.
    [4] Evgeny M.Dianov and Valery M. Mashinsky. Germania-based core optical fibers. J. Lightw. Technol.2005,23:3500-3508.
    [5] L.Gruner-Nielsen,S.N.Knudsen,B.Edvold et al.Dispersion compensating fibres. Opt. Fiber Technol. 2000,6:164-180.
    [6] J.L.Auguste, J.M.Blondy, J.Maury, et al. Conception, Realization, and Characterization of a Very High Negative Chromatic Dispersion Fiber. Opt. Fiber Technol. 2002,8:89-105.
    [7] L. Grüner-Nielsen,M.Wandel,P.Kristensen et al. Dispersion-Compensating Fibers. J. Lightw. Technol. 2005, 23:3566-3579.
    [8] Govind P.Agrawal. Nonlinear Fiber Optics. 4th ed. New York: Academic Press, 2007.
    [9] J.C.Knight,T.A.Birks,P.St.J.Russell et al. All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett. 1996,21:1547-1549.
    [10] Philip St.J. Russell. Photonic-Crystal Fibers. J. Lightw. Technol.,2006, 24: 4729- 4749.
    [11] B.J.Mangan, L.Farr, A. Langford et al. Low loss (1.7 dB/km) hollow core photonic bandgap fiber. Optical Fiber Communication Conference (OFC),2004, PDP 24.
    [12] P.J.Roberts, F.Couny, H.Sabert et al. Ultimate low loss of hollow-core photonic crystal fibres. Opt. Express,2004, 12:3341-3352.
    [13] R.F.Cregan, B.J.Mangan, J.C.Knight et al. Single-mode photonic band gap guidance of light in air. Science,1999,285:1537-1539.
    [14] Ivan P. Kaminow and Tingye Li. Optical fiber telecommunications IV B, Systems and impairments. New York: Academic Press, 2002:657-658.
    [15] Govind P.Agrawal. Fiber-optic communication systems. 3rd ed. New York: John Wiley & Sons, 2002.
    [16] M.J.Li. Recent progress in fiber dispersion compensators. 27th European Conference on Optical Communication(ECOC),2001, Th.M.1.1.
    [17] Masashi Eguchi, Masanori Koshiba and Yasuhide Tsujji. Dispersion compensation based on dual-mode optical fiber with inhomogeneous profile core. J. Lightw. Technol.1996, 14: 2387-2394.
    [18] F.Gerome, J.-L.Auguste, and J.-M.Blondy. Design of dispersion-compensating fibers based on a dual-concentric-core photonic crystal fiber. Opt. Lett. 2004,29: 2725-2727.
    [19] Y.Ni, L.An, J.Peng et al. Dual-core photonic crystal fiber for dispersion compensation. IEEE Photon. Technol. Lett. 2004,16:1516–1518.
    [20] B.Zsigri, J.Laegsgaard and A.Bjarklev. A novel photonic crystal fibre design for dispersion compensation. J. Opt. A: Pure Appl. Opt. 2004,6:717-720.
    [21] A.Huttunen and P.Torma. Optimization of dual-core and microstructure fiber geometries for dispersion compensation and large mode area. Opt. Express, 2004, 13: 627-635.
    [22] K. Thyagarajan, R. K. Varshney, P. Palai et al. A novel design of a dispersion compensating fiber. IEEE Photon. Technol. Lett. 1996, 8, 1510–1512.
    [23] U. Peschel, T. Peschel, and F. Lederer. A compact device for highly efficient dispersion compensation in fiber transmission. Appl. Phys. Lett.1995, 67:2111- 2113.
    [24] P.Dainese, P.St.Russell, N.Joly. Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres. Nature,2006,2:388-392.
    [25] J.T.Moeser, N.A.Wolchover, J.C.Knight et al. Initial dynamics of supercontinuum generation in highly nonlinear photonic crystal fiber. Opt. Lett. 2007,32:952-954.
    [26] Z.Yusoff, J.H.Lee, W.Belardi et al. Raman effects in a highly nonlinear holey fiber: amplification and modulation. Opt. Lett. 2002,27:424-426.
    [27] Kunimasa Saitoh and Masanori Koshiba. Numerical modeling of photonic crystal fibers. J. Lightw. Technol. 2005, 23: 3580-3590.
    [28] J.D.Joannopoulos, R.D.Meade and J.N.winn. Photonic Crystals:Molding the Flow of Light. Princeton: Princeton University Press,1995.
    [29] John David Jackson.Classical Electrodynamics.北京:高等教育出版社(影印版),2004.
    [30] Allen Taflove and Susan C. Hagness. Computational Electrodynamics: The Finite-Difference Time-Domain Method. 3rd ed. Boston:Artech House,2005.
    [31] Kane S. Yee. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propagat.1966,14: 302-307.
    [32] Jean-Pierre Berenger. A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics,1994,114:185-200.
    [33] Jean-Pierre Berenger. Three-dimensional perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics,1996,127:363-379.
    [34] Stephen D.Gedney. An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices. IEEE Trans. Antennas Propagat.1996,44:1630- 1639.
    [35] Zhaoming Zhu and Thomas G.Brown. Full-vectorial finite-difference analysis of microstructured optical fibers. Opt. Express,2002,10:853-864.
    [36] Shangping Guo, Feng Wu, Sacharia Albin et al. Loss and dispersion analysis of microstructured fibers by finite-difference method. Opt. Express, 2004, 12:3341- 3352.
    [37] P. R. McIsaac. Symmetry-induced modal characteristics of uniform waveguides-II: Theory. IEEE Trans.Microwave Theory Tech. 1975,23:429-433.
    [38] K. Saitoh and M. Koshiba. Leakage loss and group velocity dispersion in air-core photonic bandgap fibers. Opt. Express, 2003, 11:3100-3109.
    [39] Jes Broeng, Stig E. Barkou, Thomas Sondergaard et al. Analysis of air-guiding photonic bandgap fibers. Opt. Lett. 2000,25:96-98.
    [40] Kunimasa Saitohand, Masanori Koshiba. Confinement Losses in Air-Guiding Photonic Bandgap Fibers. IEEE Photon. Technol. Lett.2003,15:236-238.
    [41] Alexander Argyros, Martijn A. van Eijkelenborg et al. Hollow-core microstructured polymer optical fiber. Opt. Lett.2006,31:172-174.
    [42] Yong Xu and Amnon Yariv. Loss analysis of air-core photonic crystal fibers. Opt. Lett.2003,28:1885-1887
    [43] Charlene M. Smith, Natesan Venkataraman, Michael T. Gallagher et al. Low-loss hollow-core silica/air photonic bandgap fibre. Nature,2003,424:657-659.
    [44] Sigang Yang,Yejin Zhang,Xiaozhou Peng et al. Analysis and evaluation of the effect of fabrication-related structure fluctuations on the loss of photonic crystal fibers. Proceedings of SPIE, 2005, 5623:105-108.
    [45] P.J.Roberts1, B.J.Mangan1, H.Sabert et al. Control of dispersion in photonic crystal fibers. J. Opt. Fiber. Commun. 2005, Rep. 2:435–461.
    [46] Herma A. Haus and Weping Huang. Coupled-mode theory. Proc. IEEE, 1991, 19: 1501-1518.
    [47] Amnon Yariv. Coupled-mode theory for guided-wave optics. IEEE J. Quantum Electron.1973,QE-9:919-933.
    [48] Poul Kristensen. Design of dispersion compensating fiber. 30th European Conference on Optical Communication(ECOC), 2004,We.3.3.1.
    [49] Frédéric Gerome, Jean-Louis Auguste, Jean-Marc Blondy et al. Very high negative chromatic dispersion in a dual concentric core photonic crystal fiber. Optical Fiber Communication Conference (OFC),2004,WA2.
    [50] Sigang Yang, Yejin Zhang, Lina He et al. Broadband dispersion-compensating photonic crystal fiber. Opt. Lett.2006,31:2830-2832.
    [51] Photonic crystal fiber proposed for telecom dispersion compensation. Photonics Spectra, December 2006,102-103
    [52] B.J.Eggleton, C.Kerbage, P.S.Westbrook et al. Microstructured optical fiber devices. Opt. Express,2001,9:698-713.
    [53] Sigang Yang, Yejin Zhang and Shizhong Xie. Transformation of a single mode photonic crystal fiber into a tunable dispersion compensator. 32nd European Conference on Optical Communication(ECOC), 2006,We3.P.1.
    [54] N.G.R.Broderick, H.L.Offerhaus, D.J.Richardson. Large mode area fibers for high power applications. Opt. Fiber Technol. 1999,5:185-196.
    [55] J.C.Knight, T.A.Birks, R.F.Cregan. Large mode area photonic crystal fibre. Electron. Lett. 1998,34:1347-1348.
    [56] Philip Russell. Photonic crystal fibers.Science.2003,299:358-362.
    [57] Jonathan C. Knight. Photonic crystal fibres.Nature,2003,424:847-851.
    [58] Joo Hin Chong, M.K.Rao, Yinian Zhu. An effective splicing method on photonic crystal fiber using CO2 laser. IEEE Photon. Technol. Lett.2003,15:942-944.
    [59] Limin Xiao, Wei Jin, and M. S. Demokan. Fusion splicing small-core photonic crystal fibers and single-mode fibers by repeated arc discharges. Opt. Lett. 2007, 32: 115-117.
    [60] J. T. Lizier and G. E. Town. Splice losses in holey optical fibers. IEEE Photon. Technol. Lett.2001,13:794-796.
    [61] Sigang Yang, Yejin Zhang, Xiaozhou Peng et al. Theoretical study and experimental fabrication of high negative dispersion photonic crystal fiber with large area mode field. Opt. Express,2006,14:3015-3023.
    [62] Irshaad Fatadin, David Ives and Martin Wicks. Accurate magnified near-field measurement of optical waveguides using a calibrated CCD camera. J. Lightw. Technol.2006, 24:5067-5074.
    [63] Arash Mafi and Jerome V. Moloney. Beam quality of photonic-crystal fibers. J. Lightw. Technol.2005, 23:2267-2270.
    [64] D. J. Butler, A. Horsfall, K. A. Nugent et al. Measurement of an elliptical fiber mode field using near-field microscopy. J. Appl. Phys. 1995,77:5514-5517.
    [65] Jonathan D. Shephard, Peter J. Roberts, Julian D. C. Jones. Measuring beam quality of hollow core photonic crystal fibers. J. Lightw. Technol.2006, 24:3761-3769.
    [66] M. Artiglia, G. Coppa, P. Divita et al. Mode field diameter measurements in single-mode optical fibers. J. Lightw. Technol.1989, 7:1139-1152.
    [67] A. J. Parker. Near field measurement of fiber mode field diameters: effects of defocusing. IEEE Transaction on Instrumentation and Measurement,1995,44: 458-460.
    [68] Sigang Yang, Yejin Zhang, Lina He et al. Experimental demonstration of very high negative chromatic dispersion dual-core photonic crystal fiber. Optical Fiber Communication (OFC), 2007,OThA6.
    [69] Sigang Yang, Yejin Zhang, Jinyan Li et al. Experimental Study of Mode Field Evolution of Dual-Core Photonic Crystal Fiber. IEEE Photon. Technol. Lett. 2007, 19:1523- 1525.
    [70] Mehmet Fatih Yanik and Shanhui Fan. Slow light: dynamic photon storage. Nature Physics,2007,3:372-373.
    [71] Michellel Povinelli. Slow light: variable speed limit. Nature Physics, 2006, 2: 735- 736.
    [72] Daniel J.Gauthier.Optical communications: solitons go slow. Nature Photonics, 2007,1: 92-93
    [73] Yurii A. Vlasov, Martin O’Boyle, Hendrik F. Hamann. Active control of slow light on a chip with photonic crystal waveguides. Nature,2005,438:65-69.
    [74] Joe T. Mok and Benjamin J. Eggleton. Photonics, expect more delays. Nature,2005, 433:811-812.
    [75] Rodney S. Tucker, Pei-Cheng Ku and Constance J. Chang-Hasnain. Slow-light optical buffers: capabilities and fundamental limitations. J. Lightw. Technol. 2005, 23:4046-4066.
    [76] Kwang Yong Song, Miguel Gonzalez Herraez and Luc Thevenaz. Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering. Opt. Express,2004,13:82-88.
    [77] Zhaoming Zhu and Daniel J. Gauthier. Nearly transparent SBS slow light in an optical fiber.Opt. Express,2006, 14:7238-7245.
    [78] Yoshitomo Okawachi,Matthew S. Bigelow, Jay E.Sharping et al. Tunable all-optical delays via Brillouin slow light in an optical fiber. Phys. Rev. Lett. 2005,94:153902.
    [79] Miguel Gonzalez-Herraez, Kwang-Yong Song and Luc Thevenaz. Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering. Appl. Phys.Lett. 2005,87:081113.
    [80] C.Jauregui, H.Ono, P.Petropoulos et al. Four-fold reduction in the speed of light at practical power levels using Brillouin scattering in a 2-m Bismuth-oxide fiber. Optical Fiber Communication (OFC),2006, PDP2.
    [81] Kwang Yong Song and Kazuo Hotate. 25 GHz bandwidth Brillouin slow light in optical fibers. Opt. Lett.2007,32:217-219.
    [82] Kwang Yong Song,Miguel González Herráez and Luc Thévenaz. Long optically controlled delays in optical fibers. Opt. Lett.2005,30:1782-1784.
    [83] Thomas Schneider, Markus Junker and Kai-Uwe Lauterbach. Time delay enhancement in stimulated-Brillouinscattering-based slow-light systems. Opt. Lett.2007,32:220-222.
    [84] Thomas Schneider, Markus Junker and Kai-Uwe Lauterbach. Potential ultra wide slow-light bandwidth enhancement. Opt. Express,2006,14:11082-11087.
    [85] Zhaoming Zhu and Daniel J. Gauthier. Numerical study of all-optical slow-light delays via stimulated Brillouin scattering in an optical fiber. J. Opt. Soc. Am. B.2005,22:2378-2384.
    [86] Zhaoming Zhu,Andrew M. C. Dawes,Daniel J. Gauthier et al. Broadband SBS slow light in an optical fiber. J. Lightw. Technol. 2007, 25:201-205.
    [87] Jean-Charles Beugnot, Thibaut Sylvestre and HervéMaillotte. Guided acoustic wave Brillouin scattering in photonic crystal fibers. Opt. Lett.2007,32:17-19.
    [88] Wei Zhang,Yin Wang, Yanyan Pi et al. Influences of pump wavelength and environment temperature on the dual-peaked Brillouin property of a small-core microstructure fiber. Opt. Lett.2007,32:2303-2305.
    [89] Lufan Zou, Xiaoyi Bao and Liang Chen. Brillouin scattering spectrum in photonic crystal fiber with a partially germanium-doped core. Opt. Lett. 2003,28:2022-2024.
    [90] Nori Shibata, Akimichi Nakazono, Noritaka Taguchi. Forward brillouin scattering in holey fibers. IEEE Photon. Technol. Lett. 2006,18:412-414.
    [91] Lufan Zou, Xiaoyi Bao, Shahraam Afshar V. et al. Dependence of the Brillouin frequency shift on strain and temperature in a photonic crystal fiber. Opt. Lett.2004,29:1485-1487.
    [92] Ju Han Lee, Zulfadzli Yusoff, Walter Belardi et al. Investigation of Brillouin effects in small-core holey optical fiber: lasing and scattering. Opt. Lett.2002,27:927-929.
    [93] R. K. Pattnaik, S. Texier, J. Toulouse et al. Characteristic features of stimulated Brillouin scattering in a holey fiber. in Proc. Conf. Lasers and Electro-Optics (CLEO),2003,1259-1260.
    [94] Aydin Yeniay, Jean-Marc Delavaux and Jean Toulouse. Spontaneous and stimulated Brillouin scattering gain spectra in optical fibers. J. Lightw. Technol. 2002, 20: 1425-1432.
    [95] Marc Nikles, Luc Thevenaz and Philippe A. Robert. Brillouin gain spectrum characterization in single-mode optical fibers. J. Lightw. Technol. 1997, 15:1842- 1851.
    [96] Cesar Jauregui,Periklis Petropoulos and David J.Richardson. Brillouin assisted slow-light enhancement via bry-Perot cavity effects.Opt. Express, 2007, 15: 5126- 5135 .
    [97] Alexander L. Gaeta and Robert W. Boyd. Stimulated Brillouin Scattering in the Presence of External Feedback. International Journal of Nonlinear Optical Physics,1992, 1:581-594.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700