芳环桥连双β-二酮烯土配合物的合成及光致发光性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀土β-二酮配合物由于其优良的发光性质已被广泛用于时间分辨荧光免疫分析,生物成像,光纤通讯和有机发光二极管等领域的研究。双β-二酮是两个单β-二酮通过间隔基连接的一类四酮配体。由于其具有多个配位原子及自身酮式与烯醇式的互变异构,使得这类化合物可通过多种配位方式与金属离子配位而形成结构丰富(双螺旋,三螺旋,四螺旋,三角,四面体,笼状,一维链等)的金属配合物。从已有文献来看多核稀土配合物相比于单核稀土配合物具有更高的发光效率,但其高效发光的原因并未被人们所认知。因此,合成一系列双β-二酮稀土配合物并获得其晶体结构,建立结构和发光性质的关系对稀土配合物发光的理论研究具有重要意义。
     本文通过偶联三种常见双齿β-二酮配体苯甲酰三氟丙酮(BTFA),二苯甲酰甲烷(DBM)和噻吩甲酰三氟丙酮(TTA)合成了三种四齿双β-二酮配体3,3'-双(4,4,4-三氟-1,3-丁二酮基)联苯(BTB),3,3'-双(3-苯基-1,3-丙二酮基)联苯(BPB)和5,5'-双(4,4,4-三氟-1,3-丁二酮基)联噻吩(BTT)。通过在芳环适当位置偶联单β-二酮配体实现了对双β-二酮配体结构和激发态能级的可控。芳环间可自由旋转的C-C键使配体与氯化稀土以3:2比例反应时生成了三个系列稀土配合物Ln2L3。X-射线单晶衍射分析证实配合物具有双核三螺旋结构。此外,三个配体中间隔基的改变实现了对配体三线态能级调控,使其与稀土离子的激发态能级达到较好的匹配实现了对不同稀土离子的高效敏化。光致发光研究显示双核配合物相比于单核配合物具有更加优异的发光性能。三个系列配合物的合成、结构的获得及其发光性质的研究为配合物螺旋结构的形成提供了重要了理论指导,为理论上解释双核配合物的发光性能提供了有价值的实验数据。
The unique optical properties of lanthanide ions have made their complexes ofintense interest for a wide range of photonic applications such as tunable lasers, lightemitting diodes, optical amplifier, luminescence probes for bio-analysis and medicalimaging. Bis-diketones are derived from the diketones through the bridging spacers,resulting in a series of tetra-ketones, which promise their rich structural chemistry withthe metal ions in various modes. Typical structures are featured by the double-strandedhelical, triple-stranded helical, tetra-stranded helical, triangular, and chainlike motifs.Reviewing the reported literatures, it is found that the fluorescent intensity andefficiency of the multi-nuclear lanthanide complexes are much better than thecorresponding mono-nuclear lanthanide complexes, unfortunately, we do not know toomuch about why. We have designed and synthesized a series of lanthanide complexesassembled about the bis-diketones and their luminescent properties have beeninvestigated, which would pave the way for further study the theoretical work on therelationship of the structures and luminescent behaviors.
     In this work, we have prepared three bis-diketones BTB, BPB and BTT throughthe coupling of two mono-ketones (BTFA, DBM and TTA) via spacers, respectively.Interestingly, the energy levels of the excited state are controllable through the couplingat the proper position. The rigidity of the aryl groups prevents the two binding sitesfrom chelating a single metal ion, and the flexibility originating from the free rotation ofC-C single bond, allows the formation of structures (Ln: ligand=2:3) in a twistconformation, which has been confirmed by the single crystal structural analysis andMS-TOF. The control on the energy level of triple state of the ligand is achievedthrough introduction of the spacers between the two mono-ketone moieties, whichmatches well with the energy level of the excited state of the lanthanide ions, leading tothe significant sensitization to the lanthanide ions. The fluorescent investigation reveals that dinuclear complexes possess better behavior than the mononuclear complex. Thedesigns, syntheses, and fluorescent studies of the three series of triple-strandedlanthanide complexes have supplied valuable information for the theoretical workconcerning the relationship of the structure and the luminescence.
引文
[1]黄春辉.稀土配位化学[M].北京:科学出版社,1997.
    [2]徐光宪.稀土[M].北京:冶金工业出版社,1995.
    [3]苏锵.稀土化学[M].郑州:河南科技出版社,1993.
    [4] A. de Bettencourt-Dias. Lanthanide-based emitting materials in light-emittingdiodes. Dalton Trans.2007,2229–2241.
    [5] L. Armelao, S. Quici, F. Barigelletti, G. Accorsi, G. Bottaro, M. Cavazzini, E.Tondello. Design of luminescent lanthanide complexes: From molecules to highlyefficient photo-emitting materials. Coord. Chem. Rev.2010,254,487–505.
    [6] J. Kido, Y. Okamoto. Organo lanthanide metal complexes for electroluminescentmaterials. Chem. Rev.2002,102,2357–2368.
    [7] S. V. Eliseeva, J.-C. G. Bünzli. Lanthanide luminescence for functional materialsand bio-sciences. Chem. Soc. Rev.2010,39,189–227.
    [8] K. Kuriki, Y. Koike. Plastic optical fiber lasers and amplifiers containinglanthanide complexes. Chem. Rev.2002,102,2347–2356.
    [9] J.-C. G. Buünzli. Lanthanide luminescence for biomedical analyses and imaging.Chem. Rev.2010,110,2729–2755.
    [10] L. H. Slooff, A. van Blaaderen, and A. Polman. Rare-earth doped polymers forplanar optical amplifiers. J. Appl. Phys.2002,91,3955–3980.
    [11] F. F. Chen, Z. Q. Bian, C. H. Huang. Progresses in electroluminescence based oneuropium(III) complexes. J. Rare Earths2009,27,345-355.
    [12]李文连.有机/无机光电功能材料及其应用[M].北京:科学出版社,2005.
    [13]黄春辉,李富友,黄维.有机电致发光材料与器件导论[M].上海:复旦大学出版社,2005.
    [14]李建宇.稀土发光材料及其应用[M].北京:化学工业出版社,2003.
    [15] K. Binnemans. Handbook on the Physics and Chemistry of Rare Earths, Elsevier:Amsterdam,2005,35,107–272.
    [16] G. Aromí, P. Gamez, J. Reedijk. Poly beta-diketones: Prime ligands to generatesupramolecular Metalloclusters. Coord. Chem. Rev.2008,252,964–989.
    [17] P. A. Vigato, V. Peruzzo, S. Tamburini. The evolution of β-diketone orβ-diketophenol ligands and related complexes. Coord. Chem. Rev.2009,253,1099–1201.
    [18] A. Monguzzi, R. Tubino, F. Meinardi. Novel Er3+perfluorinated complexes forbroadband sensitized near infrared emission. Chem. Mater.2009,21,128–135.
    [19] A. S. Chauvin, F. Gumy, I. Matsubayashi. Fluorinated β-diketones for theextraction of lanthanide ions: photophysical properties and hydration numbers oftheir EuIII complexes. Eur. J. Inorg. Chem.2006,473–480.
    [20] D. B. A. Raj, S. Biju, and M. L. P. Reddy, One-, two-, and three-dimensionalarrays of Eu3+-4,4,5,5,5-pentafluoro-1-(naphthalen-2-yl)pentane-1,3-dionecomplexes: synthesis, crystal structure and photophysical properties. Inorg. Chem.2008,47,8091–8100.
    [21] Q. Ma, Y.Zheng, N. Armaroli. Synthesis and photoluminescence properties ofasymmetrical europium(III) complexes involving carbazole, phenanthroline andbathophenanthroline units. Inorg. Chim. Acta2009,362,3181–3186.
    [22] P. C. Andrews, G. B. Deacon, R. Frank. Formation of HoIII trinuclear clustersand GdIII monodimensional polymers induced by ortho and para regioisomers ofpyridyl-functionalised β-diketones: synthesis, structure, and magnetic properties.Eur. J. Inorg. Chem.2009,744–751.
    [23] N. M. Shavaleev, R. Scopelliti, F. Gumy, J. C. G. Bunzli. Visible-light excitationof infrared lanthanide luminescence via intra-ligand charge-transfer state in1,3-diketonates containing push-pull chromophores. Eur. J. Inorg. Chem.2008,9,1523–1529.
    [24] H. Xin, M. Shi, X. M. Zhang, F. Y. Li, Z. Q. Bian. Carrier-transport,photoluminescence, and electroluminescence properties comparison of a seriesof terbium complexes with different structures. Chem. Mater.2003,15,3728–3733.
    [25] S. H. Hwang, C. D. Shreiner, C. N. Moorefield, G. R. Newkome. Recent progressand applications for metallodendrimers. New J. Chem.2007,31,1192–1217.
    [26] L. Shen, M. Shi, F. Y. Li. Polyaryl ether dendrimer with a4-phenylacetyl-5-pyraz-olone-based terbium(III) complex as core: synthesis and photophysicalproperties. Inorg. Chem.2006,45,6188–6197.
    [27] S. H. Hwang, C. N. Moorefield, G. R. Newkome. Dendritic macromolecules fororganic light-emitting diodes. Chem. Soc. Rev.2008,37,2543–2557.
    [28] P. L. Burn, S. C. Lo, I. D. W. Samuel. The development of light-emittingdendrimers for displays. Adv. Mater.2007,19,1675–1688.
    [29] S. C. Lo, P. L. Burn. Development of dendrimers: macromolecules for use inorganic light-emitting diodes and solar cells. Chem. Rev.2007,107,1097–1116.
    [30] G. A. Crosby, R. E. Whan, R. M. Alire. Intramolecular energy transfer in rareearth chelates: role of the triplet state. J. Chem. Phys.1961,34,743–749.
    [31] G. A. Crosby, R. E. Whan, J. J. Freeman. J. Phys. Chem.1962,66,2493–2499.
    [32] H. Bauer, J. Blanc, D. L. Ross. Octacoordinate chelates of lanthanides. Twoseries of compounds. J. Am. Chem. Soc.1964,86,5125–5131.
    [33] L. R. Melby, N. J. Rose, E. Abramson, J. C. Caris. Synthesis and fluorescence ofsome trivalent lanthanide complexes. J. Am. Chem. Soc.1964,86,5117–5125.
    [34] R. G. Charles, R. C Ohlmann. Europium dibenzoylmethide adducts. J. Inorg.Nucl. Chem.1965,27,119–127.
    [35] S. M. Mattson, E. J. Abramson, L. C. Thompson. Synthesis and emission spectraof some adducts of Eu(fod)3. J. Less-Common Met.1985,112,373–380.
    [36] E. U. Barash, P. S. Coan, E. B. Lobkovskii, W. E. Streib, K. G. Caulton.Anhydrous yttrium acetylacetonate and the course of thermal “dehydration” ofY(acac)3.3H2O. Inorg. Chem.1993,32,497–501.
    [37] R. C. Mehrotra, T. N. Misra, S. N. Misra. Indian J. Chem.1965,3,525–527.
    [38] I. B. Liss, W. G. Bos. Rare earth acetylacetonates: New preparative methods andnew complexes. J. Inorg. Nucl. Chem.1977,39,443–447.
    [39] J. M. Koehler, W. G. Bos. A novel synthesis of some anhydrous rare earthacetylacetonates. Inorg. Nucl. Chem. Lett.1967,3,545–548.
    [40] L. R. Crisler.1975, US Patent3919274.
    [41] D. R. Van Staveren, J. G. Haasnoot, A. M. M. Lanfredi, S. Menzer, P. J.Nieuwenhuizen, A. L. Spek, F. Ugozzoli, T. Weyhermüller, J. Reedijk. Synthesisand characterization of the dinuclear iron–sulfur cluster {bis[(1,1′-dithiolatoferroc-ene-μ-sulfido-ferrate(III)]}2. Inorg. Chim. Acta2000,307,78–81.
    [42] K. J. Eisentraut, R. E. Sievers. Volatile rare earth chelates. J. Am. Chem. Soc.1965,87,5254–5256.
    [43] W. J. Evans, W. L. Schreeve, W. J. Ziller. Synthesis and X-ray structure of thefirst divalent lanthanide acetylacetonate complex, bis(2,2,6,6-tetramethylheptane-3,5-dionato)bis(dimethoxyethane)europium(II). Inorg. Chem.1994,33,6435–6437.
    [44] C. S. Erasmus, J. C. A. Boeyens. Acta Cryst.1971, B27,2335–2340.
    [45] S. W. Magennis, S. Parsons, Z. Pikramenou. Assembly of hydrophobic shells andshields around lanthanides. Chem. Eur. J.2002,8,5761–5771.
    [46] G. Mancino, A. J. Ferguson, A. Beeby, N. J. Long, T. S. Jones. Dramaticincreases in the lifetime of the Er3+ion in a molecular complex using aperfluorinated imidodiphosphinate sensitizing ligand. J. Am. Chem. Soc.2004,127,524–525.
    [47] P. B. Glover, A. P. Bassett, P. Nockemann, B. M. Kariuki, R. Van Deun, Z.Pikramenou. Fully fluorinated imidodiphosphinate shells for visible-andNIR-emitting lanthanides: Hitherto unexpected effects of sensitizer fluorinationon lanthanide emission properties. Chem. Eur. J.2007,13,6308–6320.
    [48] A. Zalkin, D. H. Templeton, D. G. Karraker. Crystal and molecular structure ofthe heptacoordinate complex tris(diphenylpropanedionato)aquoholmium,Ho(PhCOC-HCOPh)3. Inorg. Chem.1969,8,2680–2684.
    [49] H. He, A. G. Sykes, D. Galipeau. Crystallography and photoluminescenceproperties of β-diketonate monoporphyrinate ytterbium(III) complexes. Inorg.Chem. Comn.2008,11,1051–1053.
    [50] M. L. Hu, Z. Y. Huang, Y. Q. Cheng, S. Wang, J. J. Lin, Y. Hu, D. J. Xu, Y. Z.Xu. Chin. J. Chem.1999,17,637–643.
    [51] C. Freund, W. Porzio, U. Giovanella, F. Vignali, M. Pasini, S. Destri. Thiophenebased europium β-diketonate complexes: effect of the ligand structure on theemission quantum yield. Inorg Chem.2011,50,5417–5429.
    [52] M. Shi, F. Y. Li, T. Yi, D. Q. Zhang, H. M. Hu, C. H. Huang. Tuning the tripletenergy levels of pyrazolone ligands to match the5D0level of europium(III). Inorg.Chem.2005,44,8929–8936.
    [53] S. Biju, M. L. P. Reddy, A. H. Cowley, K. V. Vasudevan. Molecular ladders of lanthanide-3-phenyl-4-benzoyl-5-isoxazolonate and bis(2-(diphenylphosphino)ph-enyl)ether oxide complexes: The role of the ancillary ligand in the sensitization ofEu3+and Tb3+Luminescence. Cryst. Growth&Des.2009,9,3563–3569.
    [54] C. R. De. Silva, J. R. Maeyer, A. Dawson, Z. Zheng. Adducts of lanthanideβ-diketonates with2,4,6-tri(2-pyridyl)-1,3,5-triazine: synthesis, structuralcharacterization, and photoluminescence studies. Polyhedron2007,26,1229–1238.
    [55] C. R. De Silva, J. R. Maeyer, R. Wang. Adducts of europium β-diketonates withnitrogen p,p′-disubstituted bipyridine and phenanthroline ligands: synthesis,structural characterization, and luminescence studies. Inorg. Chim. Acta2007,360,3543–3552.
    [56] S. Dutta, P. Biswas, S. K. Dutta, K. Nag. Methoxo-bridged diiron(III) complex ofm-xylylenebis(acetylacetonate) showing remarkable thermal stability forencapsulated dichloromethane. New J. Chem.2009,33,847–852.
    [57] J. K. Clegg, D. J. Bray, K. Gloe, K. Gloe, K. A. Jolliffe, G. A. Lawrance, L. F.Lindoy, G. V. Meehan, M. Wenzel. Synthetic, structural, electrochemical andsolvent extraction studies of neutral trinuclear Co(II), Ni(II), Cu(II) and Zn(II)metallocycles and tetrahedral tetranuclear Fe(III) species incorporating1,4-aryl-linked bis-β-diketonato ligands. Dalton Trans.2008,1331–1340.
    [58] M. Albrecht, S. Schmid, M. de Groot, P. Weis, R. Fr hlich. Self-assembly of anunpolar enantiomerically pure helicate-type metalla-cryptand. Chem. Commun.2003,2526–2527.
    [59] M. Albrecht, S. Dehn, G. Raabea, R. Fr hlich. Structural diversity in theassembly of helicate-type nickel(II) complexes with enantiopurebis(β-diketonate) ligands. Chem. Commun.2005,5690–5692.
    [60] J. K. Clegg, L. F. Lindoy, J. C. McMurtriea, D. Schiltera. Dinuclearbis-β-diketonato ligand derivatives of iron(III) andcopper(II) and use of the latteras components for the assembly of extended metallo-supramolecular structures.Dalton Trans.2005,857–864.
    [61] J. K. Clegg, K. Gloe, M. J. Hayter, O. Kataeva, L. F. Lindoy,B. Moubaraki, J. C.McMurtrie, K. S. Murrayb, D. Schiltera. New discrete and polymericsupramolecular architectures derived from dinuclear (bis-β-diketonato)copper(II)metallocycles. Dalton Trans.2006,3977–3984.
    [62] J. K. Clegg, L. F. Lindoy, J. C. McMurtriea, D. Schiltera. Extendedthree-dimensional supramolecular architectures derived from trinuclear(bis-β-diketonato)copper(II) metallocycles. Dalton Trans.2006,3114–3121.
    [63] D. F. Martin, M. Shamma, W. C. Fernelius. Bis-(β-diketones). I. Synthesis ofcompounds of the type RCOCH2CO-Y-COCH2COR. J. Am. Chem. Soc.1958,804891–4895.
    [64] M. Albrecht, S. Dehn, R. Fr hlich. A nonanuclear gallium(III) cluster: Anintermediate in the formation of dinuclear triple-stranded helicates. Angew. Chem.Int. Ed.2006,45,2792–2794.
    [65] J. K. Clegg, L. F. Lindoy, B. Moubaraki, K. S. Murray,J. C. McMurtrie.Triangles and tetrahedra: metal directed self-assembly of metallosupramolecularstructures incorporating bis-β-diketonato ligands. Dalton Trans.2004,2417–2423.
    [66] G. Aromí, C. Boldron, P. Gamez, O. Roubeau, H. Kooijman, A. L. Spek, H.Stoeckli-Evans, J. Ribasa, J. Reedijkb. Complexes of a novel multinucleatingpoly-β-diketonate ligand. Dalton Trans.2004,3586–3592.
    [67] G. Aromí, P. Gamez, O. Roubeau, P. C. Berzal, H. Kooijman, A. L. Spek, W. L.Driessen, J. Reedijk. A Solvent-Controlled Switch of Manganese ComplexAssemblies with a β-Diketonate-Based Ligand. Inorg. Chem.2002,41,3673–3683.
    [68] R. W. Saalfrank, H. Maid, N. Mooren, F. Hampel. Hybrid metallacoronates orone-dimensional oxo-bridged metal strings by self-assembly–coordinationNumber controlled product formation. Angew. Chem. Int. Ed.2002,41,304–307.
    [69] G. Aromí, P. Gamez, O. Roubeau, H. Kooijman, A. L. Spek, W. L. Driessen, J.Reedijk. Ligand-templated four-metal chains dimerize into a unique [Cu8] cluster.Angew. Chem. Int. Ed.2002,41,1168–1170.
    [70] R. W. Saalfrank, N. L w, S. Trummer, G. M. Sheldrick, M. Teichert, D. Stalke.Octanuclear bis(triple-helical) metal(II) complexes. Eur. J. Inorg. Chem.1998,559–563.
    [71] G. Aromí, P. C. Berzal, P. Gamez, O. Roubeau, H. Kooijman, A. L. Spek, W. L.Driessen, J. Reedijk. A unique asymmetric [Mn3] triple-stranded helicate from asymmetric pentadentate ligand. Angew. Chem. Int. Ed.2001,40,3444–3446.
    [72] G. A. Craig, L. A. Barrios, J. S. Costa, O. Roubeau, E. Ruiz, S. J. Teat,C. C.Wilson, L. Thomas, G. Aromí. Synthesis of a novel heptacoordinated Fe(III)dinuclear complex: experimental and theoretical study of the magnetic properties.Dalton Trans.2010,39,4874–4881.
    [73] R. W. Saalfrank, V. Seitz, F. W. Heinemann, C. G bel, R. Herbst-Irmerc. Metaland ligand control in di-and octa-nuclear cluster formation. Dalton Trans.2001,599–603.
    [74] G. Aromí, P. Gamez, C. Boldron, H. Kooijman, A. L. Spek, J. Reedijk. A zig-zag[MnII4] cluster from a novel bis(β-diketonate) ligand. Eur. J. Inorg. Chem.2006,1940-1944.
    [75] R. W. Saalfrank, C. Schmidt, H. Maid, F. Hampel,W. Bauer, A. Scheurer.Enantiomerically pure copper(II) cubanes [Cu4L2(OMe)4] from chiralbis-1,3-diketones H2L through diastereoselective self-assembly. Angew. Chem.Int. Ed.2006,45,315–318.
    [76] D. E. Fenton, J. R. Tate, U. Casellato, S. Tamburini, P. A.Vigato, M. Vidali.Metal complexes of some tetraketones and their schiff bases. Inorg. Chim. Acta1984,83,23–31.
    [77] Y. Kobuke, K. Kokubo, M. Munakata. Cooperative metal ion binding bymetal-organized crown ether. J. Am. Chem. Soc.1995,117,12751–12758.
    [78] J. Yuan, S. Sueda, R. Somazawa, K. Matsumoto and K. Matsumoto. Chem. Lett.2003,32,492–493.
    [79] A. P. Bassett, S. W. Magennis, P. B. Glover, D. J. Lewis, N. Spencer, S. Parsons,R. M. Williams, L. De Cola and Z. Pikramenou. J. Am. Chem. Soc.2004,126,9413–9424.
    [80] M. Albrecht, S. Schmid, S. Dehn, C. Wickleder, S. Zhang, A. P. Bassett, Z.Pikramenou and R. Fr hlich. New J. Chem.2007,31,1755–1762.
    [81] Y. M. Luo, Z. Chen, R. R. Tang, L. X. Xiao and H. Peng. J. Spectrochim. ActaPart A2008,69,513–516.
    [82] S. G. Liu, P. He, H. H. Wang, J. X. Shi and M. L. Gong. Inorg. Chem. Commun.2009,12,506–508.
    [83] P. He, H. H. Wang, S. G. Liu, J. X. Shi, G. Wang and M. L. Gong. Inorg. Chem.2009,48,11382–11387.
    [84] P. He, H. H. Wang, H. G. Yan, W. Hu, J. X. Shi and M. L. Gong. Dalton Trans.2010,39,8919–8924.
    [85] L. Q. Yang, R. D. Yang. Synthesis and crystal structure of the dinuclear complexof1,5-bis(1′-phenyl-3′-methyl-5′-pyrazolone-4′-1,5-pentanedione with samarium.Polyhedron1995,41,507–510.
    [86] L. Q. Yang, R. D. Yang. Synthesis and structure of didysprosium complexes witha tetraketone. J. Mol. Struct.1996,380,75–84.
    [87] S. N. Semenov, A. Y. Rogachev, S. V. Eliseeva, C. Pettinari, F. Marchetti, A. A.Drozdov and S. I. Troyanov. Chem. Commun.2008,1992–1994.
    [88] S. G. Liu, P. He, H. H. Wang, J. X. Shi, M. L. Gong. A highly luminescentdinuclear Eu(III) complex based on4,4-bis(4,4,4-trifluoro-1,3-dioxobutyl)-o-terp-hen-yl for light-emitting diodes. Mater.Chem. Phys.2009,116,654–657.
    [89] Y. H. Luo, B. Chen, W. X. Wu, X. W. Yu, Q. J. Zhang. Judd–Ofelt treatment onluminescence of europium complexes with β-diketone and bis(β-diketone). J.Lumin.2009,129,1309–1313.
    [90] T. Shiga, M. Ohba, H. Ohkawa. A Series of trinuclear CuLnCu complexesderived from2,6-di(acetoacetyl)pyridine: synthesis, structure, and magnetism.Inorg. Chem.2004,43,4435–4446.
    [91] T. Shiga, N. Ito, A. Hidaka, H. Ohkawa, S. Kitagawa, M. Ohba. Series oftrinuclear NiLnNi complexes derived from2,6-di(acetoacetyl)pyridine: synthesis,structure, and magnetism. Inorg. Chem.2007,46,3492–3501.
    [92] J. Kido, K. Nagai and Y. Ohashi. Electroluminescence in a terbium complex.Chem. Lett.1990,657–660.
    [93] J. Kido, K. Nagai, Y. Okamoto and T. Skotheim. Electroluminescence frompolysilane film doped with europium complex. Chem. Lett.1991,1267–1270.
    [94] T. W. Canzler, J. Kido. Exciton quenching in highly efficient europium-complexbased organic light-emitting diodes. Org. Electron.2006,7,29–37.
    [95] S. Moynihan, R. Van Deun, K. Binnemans, J. Krueger, G. von Papen, A. Kewell,G. Crean, G. Redmond Organo-lanthanide complexes as luminescent dopants inpolymer waveguides fabricated by hot embossing. Opt. Mater.2007,29,1798–1808.
    [96] S. Moynihan, R. Van Deun, K. Binnemans, G. Redmond. Optical properties ofplanar polymer waveguides doped with organo-lanthanide complexes. Opt. Mater.2007,29,1821–1830.
    [97] J. L. Yuan, K. Matsumoto. A new tetradentate β-diketonate-europium chelate thatcan be covalently bound to proteins for highly sensitive time-resolvedfluoroimmunoassay. Anal. Chem.1998,70,596–601.
    [98] W. L. Scaff Jr., D. L. Dyer, K. Mori. Taxonomy, Ecology, and Morphology andStructure: Fluorescent Europium Chelate Stain. J. Bacteriol.1969,98,246-248.
    [99] L. N. Jiang, J. Wu, G. L. Wang, Z. Q. Ye, W. Z. Zhang, D. Y. Jin, J. L. Yuan, J.Piper. Development of a visible-light-sensitized europium complex fortime-resolved fluorometric application. Anal. Chem.2010,82,2529–2535.
    [100] I. Colon, R. D. Kelsey. Coupling of aryl chlorides by nickel and reducing metals.J. Org. Chem.1986,51,2627–2637.
    [101] L. Van Meervelt, A. Froyen, W. D’Olieslager, C. Walrand-Gorller, I. Drisque,G. S. D. King, S. Maes, A. T. H. Lenstra. Bull. Soc. Chim. Belg.1996,105,377–381.
    [102] B. Francis, D. B. Ambili Raj, M. L. P. Reddy. Highly efficient luminescenthybrid materials covalently linking with europium(III) complexes via a novelfluorinated β-diketonate ligand: synthesis, characterization and photophysicalproperties. Dalton Trans.2010,39,8084–8092.
    [103] Y. Hasegawa, S.-I. Tsuruoka, T. Yoshida, H. Kawai and T. Kawai. Enhanceddeep-red luminescence of tris(hexafluoroacetylacetonato)samarium(III) complexwith phenanthroline in solution by control of ligand coordination. J. Phys. Chem.A2008,112,803–807.
    [104] M. Irfanullah, K. Iftikhar. Hypersensitivity in the luminescence and4f–4fabsorption properties of mono-and dinuclear EuIIIand ErIIIcomplexes based onfluorinated β-Diketone and diimine/bis-Diimine Ligands. J. Flouresc.2010,21,81–93.
    [105] M. Xiao, P. Selvin. Quantum yields of luminescent lanthanide chelates andfar-red dyes measured by resonance energy transfer. J. Am. Chem. Soc.2001,123,7067–7073.
    [106] A.-S. Chauvin, F. Gumy, D. Imbert and J.-C. G. Bünzli. Europium and terbiumtris(Dipicolinates) as secondary standards for quantum yield determination.Spectrosc. Lett.2004,37,517–532.
    [107] C. Piguet, G. Bernardinelli, G. Hopfgartner. Helicates as versatile supramolecu-lar complexes. Chem. Rev.1997,97,2005–2062.
    [108] M. Albrecht.“Let’s twist again” Double-stranded, triple-stranded and circularhelicates. Chem. Rev.2001,101,3457–3497.
    [109] N. M. Shavaleev, L. P. Moorcraft, S. J. A. Pope, Z. R. Bell, S. Faulkner, M. D.Ward. Sensitized near-infrared emission from complexes of Yb(III), Nd(III) andEr(III) by energy-transfer from covalently attached Pt(II)-based antenna units.Chem. Eur. J.2003,9,5283–5291.
    [110] G. A. Crosby, R. M. Alire and R. E. Whan. Intramolecular energy transfer inrare earth chelates. Role of the triplet state. J. Chem. Phys.1961,34,743–748.
    [111] Y. W. Wang, Y. L. Zhang, W. Dou, A. J. Zhang, W. W. Qin and W. S. Liu,Synthesis, radii dependent self-assembly crystal structures and luminescentproperties of rare earth (III) complexes with a tripodal salicylic derivative.Dalton Trans.2010,39,9013–9021.
    [112] M. Latva, H. Takalo, V.-M. Mukkala, C. Matachescu, J. C. Rodriguez-Ubis, J.Kankare. Correlation between the lowest triplet state energy level of the ligandand lanthanide(III) luminescence quantum yield. J. Lumin.1997,75,149–169.
    [113] F. J. Steemers, W. Verboom, D. N. Reinhoudt, E. B. Van der Tol and J. W.Verhoeven. New sensitizer-modified calix[4]arenes enabling near-UV excitationof complexed luminescent lanthanide ions. J. Am. Chem. Soc.1995,117,9408–9414.
    [114] W. Sager, N. Filipescu, F. Serafin. Substituent effects on intramolecular energytransfer. I. absorption and phosphorescence spectra of rare earth β-diketonechelates. J. Phys. Chem.1965,69,1092–1100.
    [115] C. H. Huang, Z. Q. Bian, M. Guan, F. Y. Li, H. Xin. China Patent2003, Appl.03142611.5.
    [116] Z. Q. Bian, K. Z. Wang, L. P. Jin. Syntheses, spectroscopic and crystalstructural studies of novel imidazo[4,5-f]1,10-phenanthroline derivatives andtheir Eu(III) ternary complexes with dibenzoylmethane. Polyhedron2002,21,313–319.
    [117] M. R. Robinson, M. B. O’Regan, G. C. Bazan. Synthesis, morphology andoptoelectronic properties of tris[(N-ethylcarbazolyl)(3′,5′-hexyloxybenzoyl)met-hane](phenanthroline)europium. Chem. Commun.2000,1645–1646.
    [118] H. Xin, F. Y.Li, M. Guan, C. H. Huang. M. Sun, K. Z. Wang, Y. A. Zhang, L.P. Jin. Carbazole-functionalized europium complex and its high-efficiencyorganic electroluminescent properties. J. Appl. Phys.2003,94,4729–4731.
    [119] M. Sun, H. Xin, K. Z. Wang, L. P. Jin, C. H. Huang. Bright and monochromicred light-emitting electroluminescence devices based on a new multifunctionaleuropium ternary complex. Chem. Commun.2003,702–703.
    [120] F. S. Liang, Q. G. Zhou, Y. X. Cheng, L. X. Wang. Oxadiazole-functionalizedeuropium(III) β-diketonate complex for efficient red electroluminescence. Chem.Mater.2003,15,1935–1937.
    [121] O. L. Malta, H. F. Brito, J. F. S. Menezes, F. R. Goncalves e Silva, C. D.Donega, S. Alves. Experimental and theoretical emission quantum yield in thecompound Eu(thenoyltrifluoroacetonate)3·2(dibenzyl sulfoxide). Chem. Phys.Lett.1998,282,233–238.
    [122] F. F. Chen, Z. Q. Bian, C. H. Huang. J. Rare Earths2009,27,345–355.
    [123] H. Xu, K. Yin, W. Huang. J. Phys. Chem. C2010,114,1674–1683.
    [124] G. Zucchi, V. Murugesan, D. Tondelier, D. Aldakov, T. Jeon, F. Yang, P.Thuéry, M. Ephritikhine, B. Geffroy. Solution, solid state and film properties ofa structurally characterized highly luminescent molecular europium plasticmaterial excitable with visible light. Inorg. Chem.2011,50,4851–4856
    [125] J. Kai, M. C. F. C. Felinto, L. A. O. Nunes, O. L. Maltad, H. F. Brito.Intermolecular energy transfer and photostability of luminescence-tuneablemulticolour PMMA films doped with lanthanide-β-diketonate complexes. J.Mater. Chem.2011,21,3796–3802.
    [126] W. S. Lo, W. M. Kwok, G. L. Law, C. T. Yeung, C. T. L.Chan, H. L. Yeung, H.K. Kong, C. H. Chen, M. B. Murphy, K. L. Wong, W. T. Wong. Impressiveeuropium red emission induced by two-photon excitation for biologicalapplications. Inorg. Chem.2011,50,5309–5311.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700