基于开环光纤陀螺控制的无人作战平台稳定技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
惯性稳定运动平台是无人作战系统的核心,对运动平台的姿态进行惯性稳定控制是发展各种类型无人作战系统的基础,因此,研究无人作战平台惯性稳定技术具有重要的意义。本文围绕无人作战平台惯性稳定控制的共性关键技术,开展基于开环光纤陀螺的无人作战平台惯性稳定技术的研究。
     论文在综合分析国外无人作战平台技术发展的基础上,根据实际应用需求,进行了平台总体方案的设计、系统建模和理论分析,为具体方案的实施提供了理论依据;根据无人作战平台姿态控制的综合性能指标要求,选择开环光纤陀螺作为核心惯性测量元件,设计了基于开环光纤陀螺的高性能角位移反馈控制传感器;进行了开环光纤陀螺性能改进,通过热力学结构优化设计改善了陀螺温度特性;针对实际系统存在的变参量和非线性的特点,采用自抗扰控制技术实现了系统的稳定控制;在综合考虑平台抗后坐力冲击能力、电机驱动能力以及系统可控性等多种因素后,进行了平台结构的优化设计,并完成了系统的研制;实验测试结果表明系统性能达到了预定指标要求,这些工作为无人作战平台的进一步发展奠定了基础。
     本论文的主要成果和创新性如下:
     1.设计了基于开环光纤陀螺的角位移反馈控制传感器,实验证明该新型传感器可以同时实现角位移测量和电机反馈控制。
     2.将自抗扰控制技术成功运用于无人作战平台的稳定控制,通过仿真分析与实验在线调试相结合的办法解决了自抗扰控制器控制参数整定的问题。
     3.采用有限元分析方法对无人作战平台的机械结构进行了强度和刚度校核,在保证平台结构强度和刚度的条件下对平台结构进行了轻量化设计。
     4.成功设计和制作了国内首台用于无人作战系统的自动武器站工程样机,实验测试结果显示平台方位轴稳定瞄准精度为22.86角秒,俯仰轴稳定瞄准精度为28.98角秒,稳定瞄准精度达到国外同类型自动武器站的指标要求。
Stability of inertial motion platform is the core of unmanned combat system. Thus inertial attitude of the moving platform stability control is the basis for the development of all types of unmanned combat systems. The study on unmanned combat platform inertial stabilization has great significance. The thesis focuses on the common key technologies of unmanned combat platform inertial stability control, which is based on open-loop fiber optic gyroscope.
     Scheme design, system modeling and theoretical analysis are finished based on the comprehensive analysis of foreign unmanned combat platform technology and the practical application of performance requirements. It provides a theoretical basis for the implementation. According to the comprehensive performance requirements of unmanned combat platform attitude control, open-loop fiber optic gyro is chose as a core inertial sensing component. A high-performance angular displacement feedback control sensor based on open-loop fiber optic gyroscope is designed. Temperature characteristics of the fiber gyroscope are improved by thermodynamic optimization. According to variable parameters and nonlinear characteristics of the system, stability control of the system is realized through the active disturbance rejection control technology. Considering the impact of platform anti-recoil ability, motor drive ability and the controllability, the design of the platform structure is optimized and the development of the system is completed. The test results show that the system performance achieves the goal of the design. These works have laid the foundation for further development of unmanned combat system.
     The main results and innovation of this thesis are as follows:
     1. A novel angular displacement feedback control sensor based on open-loop fiber optic gyroscope is designed. Experiment shows that this new sensor can measure the angular displacement and achieve feedback control of the motor at the same time.
     2. Disturbance rejection control techniques have been successfully used for the stability control of the unmanned combat platform. The parameter tuning of disturbance rejection controller have been solved by simulation and experiment online debugging.
     3. The strength and stiffness of the unmanned combat platform mechanical structure is verified by finite element method. The structure of the platform is lightweight redesigned under the conditions of ensuring the structural strength and stiffness.
     4. Domestic first engineering prototype of automatic weapons station for unmanned combat system is successfully designed and developed. Experimental result shows that the stability accuracy of azimuth-axis is 22.86 arc-seconds and the pitch-axis stability accuracy is 28.98 arc-seconds, which satisfy the demand of similar foreign automatic weapons stations.
引文
[1]孙柏林.无人平台在军事领域里的应用[J].自动化博览,2003,20:145~149.
    [2]岳松堂等.美国陆军武器装备发展总揽[J].现代军事,2008,10:24~33.
    [3] Ramon lopez. UGVs: making the objective.Unmanned Systems, 2004, 4.
    [4] Ramon lopez. Pentagonbuilds ground robot force. Unmanned Systems, 2004, 6.
    [5] Future combat systems (FCS) [EB/OL]. http://www.globalsecurity.org/ military/systems/ground/ fcs.htm.
    [6] Cooperative unmanned ground attack robots (COUGAR) [EB/OL]. http://www. globalsecurity.org/military/systems/ground/cougar.htm.
    [7] Armed robotic vehicle UGV robotic armored assault system (RAAS) [EB/OL]. http: //www. globalsecurity.org/ military/systems/ground/fcs-arv.htm.
    [8] Intelligent munition system (IMS) [EB/OL]. http://www.globalsecurity.org/ military/ systems/ ground/ims.htm.
    [9] Small unmanned air vehicle (SUAV) [EB/OL]. http://www.globalsecurity.org/ intell/systems/fcs-suav.htm.
    [10] Tactical unmanned air vehicle (TUAV) [EB/OL]. http://www. globalsecurity. org/ systems/systems/ fcs-tuav.htm.
    [11]张维斌.“全球鹰”无人飞行载具[J].世界航空航天博览:A版,2003,4.
    [12]庞新良.机载光电稳定平台数字控制关键技术研究[D].国防科技大学博士学位论文,2007.
    [13]陈苗海.机载光电导航瞄准系统的应用和发展概况[J].电光与控制,2003,10(14):42~46.
    [14]徐荣林.战斗机导航/瞄准吊舱[J].国际航空,1994,6:45~47.
    [15]苗濛,吴克捷.机载探测系统的最新发展[J].国际航空,2005,4:45~49.
    [16]毕永利.多框架光电平台控制系统研究[D].中国科学院研究生院博士论文,2004.
    [17] James P. Quinn.Dual elevation weapon station and method of use [P]. United States Patent, 2004.8.
    [18] James P. Quinn.Dual elevation weapon station and method of use [P].United States Patent, 2009.2.
    [19]仲崇慧.向亲身涉险说不,遥控武器站备受亲睐[J].现代兵器,2005,44~47.
    [20]朱凝华等.轻武器如虎添翼—遥控武器站[J].轻兵器,2006,10~14.
    [21]冉隆云.CTA遥控武器平台[J].国外坦克,2000,7.
    [22]吴磊.XM101通用遥控武器站[J].国外坦克,2005,44.
    [23]王开启.安装遥控武器的战车[J].国外坦克,2004,12.
    [24]黄春芳.土耳其研制出新型遥控武器站[J].国外坦克,2006,1.
    [25]王飞宇,黄春芳.荷兰SWARM遥控武器系统[J].国外坦克,2007,2.
    [26]刘宇.无人平台光电装备发展动向与光电创新概念—Eurosatory 2006防务展回顾之三[J].激光与光电子学进展,2007,44:58~64.
    [27] http://blog.sina.com.cn/aerocarrier.
    [28]美国新型车载激光武器可精确拦截各种无人机.东方网[EB/OL],2009,12~15.
    [29]任永亮.遥控武器站发展对我国火控武器的影响[J].兵工自动化,2008,27(10):11~14.
    [30]陈占峰,毛保全等.CAN总线在遥控武器站数据传输中的应用[J].火炮发射与控制学报,2008,9(3):41~43.
    [31]毛保全,房学龙等.基于模糊综合评价法的遥控武器站火力打击能力评价[J].兵工自动化,2009,28(7):84~86.
    [32]纪兵,毛保全.遥控武器站武器系统人机界面初步设计[J].兵工自动化,2009,28(7):89~93.
    [33]王传有,邵毅等.某型遥控武器站架座有限元分析[J].兵工自动化,2009,28(7):36~38.
    [34]胡敬坤.轻武器射击平台的初步研究[D].南京理工大学硕士学位论文, 2007.
    [35]殷英.某机枪动力学特性仿真分析[D].南京理工大学硕士学位论文.2007.
    [36] Pircher G, Hepner G. Perfectionnements aux dispositifs du type gyrometre interferometrique a laser[P]. French patent, 1967.
    [37] Vali V, Shorthill R W.Fiber ring interferometer [J]. Appl Opt, 1976, 15:1099~1100.
    [38] Bohn K, Petermann K. Signal processing schemes for fiber-optic gyroscope [C]. Fiber Optic Gyros: SPIE, 1986, 719~721.
    [39] A D Kersey, R P Moeller. Open loop fiber optic gyroscope with phase shift nulling signal processing [J]. Electronics letters, 1990, 26(16): 1251~1253.
    [40] Sander G A, Szafraniec B, Liu R Y et al.. Fiber optic gyros for space,marine and aviation application [C]. Fiber Optic Gyros:20th Anniversary Conference.SPIE, 1996, 2837:61~71.
    [41] A Tselikov, et al.. Zero-crossing demodulation for open-loop sagnac interferometers [J]. Journal of Lightwave Technology, 1998, 16(9): 1613~1619.
    [42] Reinaldo Blas Conzalez Rodriguez, et al.. Zero-crossing demodulation for open loop fiber optic gyroscopes [C]. IEEE, 2001, 149~152.
    [43] Sanders S J, Strandjord L K, Mead D. Fiber optic gyro technology trends-A Honeywell perspective [C]. Optical Fiber Sensors Conference Technical Digest, OFS 2002, 1:5~8.
    [44] Dyott R B , Bennett S M , Allen D, et al.. Development and commercialization of open loop fiber gyros at KVH Industries (formerly at Andrew) [C].Optical Fiber Sensors Conference Technical Digest, OFS 2002, 1:19~22.
    [45] Gaiffe T. From R&D brassboards to navigation grade FOG-based INS: the experience of Photonetics/Ixsea [C]. Optical Fiber Sensors Conference Technical Digest, USA:OFS 2002, 1:1~4.
    [46] Usui R, Ohno A. Recent progress of fiber optic gyroscopes and applications at JAE [C]. Optical Fiber Sensors Conference Technical Digest, OFS 2002, 1:11~14.
    [47] Kumagai T, Ohnuki W, Yamamoto S, et al.. Optical fiber sensor applications at Hitachi cable [C]. Optical Fiber Sensors Conference Technical Digest, OFS 2002, 1:35~38.
    [48] E. C. Ferreira, et al.. Precision analog demodulation technique for open-loop sagnac fiber optic gyroscopes [J]. Review of Scientific Instruments, 2007, 024704:1~5.
    [49] Leszek R. Jaroszewicz, et.. A new area of the fiber-optic sagnac interferometer application [C]. Proceeding SBMO/IEEE MTI-S IMOC 2003, 661~666.
    [50] R.B. Dyott. Method for finding true north using a fiber-optic gyroscope [J]. Electronics letters, 1994, 30(13):1087~1088.
    [51] Norihisa Miyake. Position estimation and path control of an autonomuous land vehicle [C]. Proceeding IROS97, 1997:690~696.
    [52] S.Emge, et al.. Reduced minimum configuration fiber optic gyro for land navigation applications [J]. IEEE AES systems magazine, 1997, 4:18~21.
    [53] Leszek R. Jaroszewicz.Application of fiber optic gyroscope for quality research of angular rotation in slow-speed platforms [C]. SPIE conference on laser interferomety, 1999, 7:284~293.
    [54] Toshiya Yuhara, et al.. Fiber optic gyroscope for automobiles utilizing integrated optical gyrochip and elliptical core polarization maintaining optical fiber [C]. SPIE Fiber optica and laser sensor, 1993, 2070:246~254.
    [55] Zhou Shiqin, et al.. Fiber optic gyroscope for harsh environment applications [J]. SPIE conference on fiber optic sensor technology and applications, 1999, 3860:356~361.
    [56] http://express.cetin.net.cn:8080.
    [57]李文魁等.直升机机载光电吊舱的发展状况及对策[J].中国惯性技术学报,2004,12(5):75~80.
    [58] Shupe D M. Thermally induced nonreciprocity in the fiber-opticinterferometer [J]. Appl opt, 1980, 19(5):654~655.
    [59] Klaus U B, Eberhard K. RPM measuring devices utilizing an optical fiber coil and winding method for making the coil [P]. United States Patent, 1988.
    [60] Randy P G, Ralph A B. Trimming of fiber optic winding and method of achieving same [P]. United States Patent, 1996.
    [61] Jerry L P, David R B,Douglas M. Optical fiber coil and method of winding [P]. United States Patent, 1998.
    [62] Frigo N J. Compensation of linear sources of nonreciprocity in sagnac inerferometers [J]. SPIE, 1983, 412:268~271.
    [63] Ruffin P B, Lofts C, Sung C C. Investigation of the effects of temporal thermal gradients in fiber optic gyroscope sensing coils [J]. Optical engineering, 1995, 34(10):2856~2863.
    [64] Mohr F. Thermooptically induced bias drift in fiber optical Sagnac interferometers [J]. Journal of lightwave technology, 1996, 14(1):27~41.
    [65] Herve C. Lefevre. Fiber-Optic Gyroscope [M]. Norwood, MA: Artech House, 1993:32~33.
    [66] Theodore T. Hadeler, Montvale, N. J.. Fiber optic gyro drift rate compensation based on temperature [P]. United States Patent, 1995.
    [67] Eberhard Handrich, Manfred Kemmler et al.. Closed loop fiber optic gyro with shupe effect compensation [P]. United States Patent, 2001.
    [68] Yang Yuanhong, et al.. Thermal induced error and compensating in open-loop fiber-optical gyroscope [C]. SPIE, 2000, 4220: 77~81.
    [69] Shigeru Oho, et al.. Signal processing schemes for open-loop optical fiber gyroscopes[C]. SPIE, 1991, 226~238
    [70] Paul Ruffin, et al.. Progress in miniaturizing fiber optic gyroscope components for tactical weapon systems [C]. SPIE, 2837:345~355.
    [71] Paul B. Ruffin. Progress in the development of gyroscopes for use in tactical weapon systems [C]. SPIE, 3990:2~12.
    [72] S. Emge, et al.. Reduced minimum configuration fiber optic gyro for land navigation applications [C]. IEEE, 1997, 18~21.
    [73]韩京清.自抗扰控制技术—估计补偿不确定因素的控制技术[M].北京:国防工业出版社,2008.
    [74]韩京清,王伟.非线性跟踪微分器[J].系统科学与数学,1994,14(2):177~183.
    [75]韩京清.一类不确定对象的扩张状态观测器[J].控制与决策,1995,10(1):85~88.
    [76]韩京清.非线性状态误差反馈控制律—NLSEF[J].控制与决策,1995,10(3):221~225.
    [77]韩京清.自抗扰控制器及其应用[J].控制与决策,1998,13(1):19~23.
    [78]韩京清.自抗扰控制技术[J].前沿科学,2007.
    [79] Guang Feng, Yan-Fei Liu, Lipei Huang. A new robust algorithm to improve the dynamic performance on the speed control of induction motor drive [C]. IEEE Transations on power electronics, 2004, 19(6):1614~1627.
    [80] Huanpao Huang, Liqiang Wu, Jingqing Han, et al.. A new synthesis method for unit coordinated control system in thermal power plant-ADRC control scheme [C]. International conference on power system technology, 2004, 11:133~138.
    [81]韩京清.自抗扰控制器及其应用[J].控制与决策,1998,13(1):19~23.
    [82] Kai Sun, Lipei Huang, Daning Zhou. A nonlinear robust controller for matrix converter fed induction motor drives [C]. IEEE, 2005, 1365~1370.
    [83] Zhiqiang Gao, Shaohua Hu,Fangjun Jiang. A novel motion control design approach based on active disturbance rejection [C]. IEEE, 2001, 12:4877~4882.
    [84] Chun Guo, Zengqiang Chen,et al.. An active disturbances rejection controller for hysteretic systems [J]. Proceeding of the 6th world congress on intelligent control and automation, 2006, 06:992~996.
    [85]宋金来.自抗扰控制技术及其在高速高精度武器系统中的应用[D].中国科学院系统科学研究所博士论文,2002.
    [86]陈立周.机械优化设计方法[M].冶金工业出版社,1995.
    [87]李芳,凌道盛.工程结构优化设计发展综述[J].工程设计学报,2002,9(5):229~235.
    [88]汪树玉等.结构优化设计的现状与进展[J].基建优化,1999,20(4):3~14.
    [89]李昊等.结构优化[J].天津城市建设学院学报,2002,8(4):3~7.
    [90] Yu H. Continiuous poincare-like cell mapping method and its application to nonlinear dynamics analysis of a bearing-rotor system [J]. 1998, 7(69):375~379.
    [91]王承瑶.陀螺稳定系统[M].北京:国防工业出版社,1985.
    [92]郭富强,于波,汪叔化.陀螺稳定装置及其应用[M].西安:西北工业大学出版社,1995.
    [93]刘政华,何将三.机械电子学[M].长沙:国防科技大学出版社,1999.
    [94]胡浩军.运动平台捕获、跟踪与瞄准系统视轴稳定技术研究[D].国防科技大学博士学位论文,2005.
    [95]张桂才,王巍译.光纤陀螺仪[M].北京:国防工业出版社,2002.
    [96] Pablo O. Arambel, et.. New generation high speed turret and pseudo bang-bang controller [J]. Proceeding of the American Control Conference, 2001, 2561~2566.
    [97] N. Coleman, et al.. High precision weapon control system design [C]. IEEE, 1992, 726~730.
    [98] T-J Yu, et al.. Advanced flexible pointing testbed and control system design[C]. AIAA Guidance Navigation and Control Conference, 1996, 7.
    [99] S. Banks, et al.. Advanced integrated control of nonlinear flexible pointing systems [J]. 1994, 952~954.
    [100] S. Banks, et al.. Real-time, high-performance, adaptive, robust control system design [C]. Proceeding of the American Control Conference, 1995, 500~504.
    [101]苏奎峰,吕强,耿庆锋,陈圣俭.TMS320F2812原理与开发[M].北京:电子工业出版社,2005.
    [102] Altera Corporation.Cyclone FPGA family data sheet[EB/OL].Altera Corporation,2007.
    [103] F. Mohr. Thermooptically induced bias drift in fiber optical Sagnac interferometers [J]. J. Lightwave Technol., 1996, 14(1):27~41.
    [104] Paul B. Ruffin, et al.. Analysis of temperature and stress effects in fiber optic gyrsoscopes [C]. SPIE, 1991, 1585:293~299.
    [105] C. M. Lofts, et al.. Investigation of the effects of temporal thermal gradients in fiber optic gyrsoscope sensing coils [J]. Opt. Eng., 1995, 34(1):2856~2863.
    [106]蓝慧娟等.光纤陀螺温度噪声的研究[J].传感器技术.1998,17(3):32~37.
    [107]钱峰.干涉式光纤陀螺仪建模分析及其温度漂移模型辨识方法研究[D].上海交通大学博士后学位论文,2006.
    [108]左瑞芹.光纤陀螺温度补偿技术研究[D].哈尔滨工程大学硕士学位论文,2006.
    [109]王海.光纤陀螺温度影响与误差补偿[J].北京航空航天大学学报,2007,33(5):549~551.
    [110]钱德儒.温度漂移补偿及光纤环测试方法研究[D].哈尔滨工程大学硕士学位论文,2009.
    [111]小飒工作室.最新经典ANSYS及Workbench教程[M].电子工业出版社,2004.
    [112]孟照魁,崔佳涛,杜新政等.光纤陀螺系统热建模及仿真[J].北京航空航天大学学报,2007,33(6):701~704.
    [113]杨士铭,陶文铨.传热学[M] .北京:高等教育出版社,2006.
    [114] Texas Instruments.TMS320C28x assembly language tools user’s guide [EB/OL].Texas Instruments, 2001.8.
    [115] Texas Instruments.TMS320C28x DSP CPU and instruction set reference guide [EB/OL].Texas Instruments, 2004.3.
    [116] Texas Instruments.TMS320x281x event manager (EV) reference Guide [EB/OL].Texas Instruments, 2004.11.
    [117] Texas Instruments.TMS320x281x analog to digital converter (ADC) module reference guide [EB/OL].Texas Instruments, 2004.11.
    [118] Texas Instruments.TMS320x280x system control and interrupts reference guide [EB/OL].Texas Instruments, 2004.11.
    [119] Texas Instruments.TMS320x281x, 280x serial communications interface (SCI) reference guide [EB/OL].Texas Instruments, 2004.11.
    [120] Texas Instruments . TMS320x281x, 280x peripherals reference guide [EB/OL].Texas Instruments, 2004.11.
    [121] Texas Instruments.TMS320F2812 digital signal processors data manual [EB/OL].Texas Instruments,2007.
    [122]申子星,冯丽辉.基于DSP的供电电源电路设计[J].昆明理工大学学报(理工版),2005,30:219~221.
    [123]贾昊,张春光,樊丽萍.基于DSP2812的电源可靠性的硬件设计[J].通信电源技术,2005,22(5):41~44.
    [124]王晓明,王玲.电动机的DSP控制——TI公司DSP应用[M].北京:北京航空航天大学出版社,2004.
    [125]于增安,周春阳.光耦合器4N25非线性与线性应用[J].沈阳工程学院学报(自然科学版),2006,2(2):147~148.
    [126]程开富.光电耦合器的发展及应用[J].国外电子元器件,2002,1:64~66.
    [127]杨咸启等.现代有限元理论技术与工程应用[M].北京:北京航空航天大学出版社,2007.
    [128]李秋红.三轴转台有限元结构分析[D].哈尔滨工程大学硕士论文,2007.
    [129] Huybrecbts Steven, Meink Troy. Advanced grid stiffened structures for the next generation of lauch vehicles [C]. IEEE Aerospace applications conference proceedings, 1997, 21:263~269.
    [130]孙勇.有限元分析在光电稳定系统结构设计中的应用[D].南京理工大学,2004.
    [131] Wikerson S. A. Modeling of gun dynamics using three-demensional finite element techniques [J]. The 14th international symposium on ballistics, 1993, 9:352~358.
    [132]孙亮.自行火炮炮塔动静态特性分析[D].南京理工大学硕士学位论文,2007:26~27.
    [133]张华,杨拥民.采用有限元模型对武器发射架的仿真[J].计算机仿真,2005,22(8):9~11.
    [134]王连明.机载光电平台的稳定与跟踪伺服控制技术研究[D].中科院博士学位论文,2002.
    [135]何春燕.时延估计算法及其应用研究[D].南京信息工程大学硕士学位论文,2009.
    [136]易岷.时延及相关参数估计技术研究[D].电子科技大学博士学位论文,2004.
    [137]张群飞,黄建国,谢一清.时延估计的高分辨率方法[J].声学学报,1995,20(3):211~217
    [138]向瑾.基于四元十字阵的被动声定位技术研究[D].中北大学硕士学位论文,2008.
    [139]郅熙彪,王伟策,张卫平,蒋新胜.四元阵列声速修正模型研究[J].探测与控制学报,2007,29(3):34~36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700