基于飞秒激光的长周期光纤光栅制备及其传感特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着光纤及光子器件制造技术的不断完善,光纤光栅已成为目前最具有代表性和最具有发展前途的光纤无源器件之一,广泛应用于光通信和光传感等领域。长周期光纤光栅(long-period fiber gratings:LPFG)作为一种新型的光纤光栅,由于其插入损耗小、带宽宽、后向反射低、对外界环境变化的反应灵敏度高、制作简单、成本低廉等优点,受到国内外广大学者的关注。发展短短数年,已经显示出了极为广阔的应用前景。由于LPFG的周期相对较长,满足相位匹配条件的是同向传输的纤芯基模和包层模,这一特点决定了LPFG的谐振波长和峰值对外界环境变化非常敏感,具有比布拉格光栅(FBG)更好的温度、应变、弯曲、扭曲、横向负载、浓度和折射率灵敏度。因此,LPFG在传感领域具有比布拉格光栅和其他传感器件更多的优点和更加广泛的应用。另外,由于对光纤光栅功能需求标准的不断提高,新结构、新特性、多功能光纤光栅的研制已经成为开发新型光子器件的必然发展趋势。
     本文在前期对长周期光纤光栅理论以及长周期光纤光栅各种制备方法比较分析的基础上,深入分析了长周期光纤光栅的耦合模原理和各种光栅制备方法的优缺点,设计了基于800nm飞秒激光器的使用逐点刻写法的长周期光纤光栅制备系统,实现了光纤位置的精确控制并利用两个CCD和监视器实现了光纤纤芯与激光脉冲实现了精确对准,并且刻写得到了不同参数谐振峰谱形的长周期光纤光栅。然后又对刻写得到的LPFG进行了包括高/低温、轴向应变、弯曲以及折射率等各种传感特性分析与实验,得到了相应的变化曲线。接着,使用氢氟酸腐蚀以及PSS和PDDA两种聚合物对刻写得到的LPFG进行静电自组装涂覆,用于增强光栅的折射率响应灵敏度,并对增敏后的LPFG进行了折射率灵敏度响应测试。最后,设计了基于LPFG和高双折射光纤Sagnac环镜干涉仪的多参数测量方法。
     本文的主要内容包括:
     1.根据三层光纤模型,分析了光纤波导中的模式分布,并合理简化,分析了长周期光纤光栅中的纤芯基模与一阶低次包层模式的耦合,用耦合常数描述了模式耦合的强弱。同时,对长周期光纤光栅的光谱特性进行分析和数值模拟,探索了长周期光纤光栅各参数对其谱形变化的影响,为LPFG的制备和传感应用研究提供理论参考。
     2.比较分析了光纤光栅制备技术中常见的写制方法,主要介绍了干涉仪法、相位掩板法、逐点刻写法等方法,并分析比较各方法的优缺点。接着介绍目前常见的各类激光器以及实验系统中涉及的800nm飞秒激光器。然后详细分析说明论文采用的基于逐点刻写法和800nm飞秒激光器的长周期光纤光栅刻写系统的各主要组成部分及其功能。并通过实验获得使用光栅制备系统实现光纤位置的精确控制的方法和使用两个CCD和监视器实现光纤纤芯与激光脉冲焦点的精确对准的方法。最后,使用设计的长周期光纤光栅制备系统在未载氢的裸光纤的上成功刻写得到多种不同谐振峰谱形特征的LPFG,刻写得到的LPFG光路损耗低,其谐振峰变化平滑,线宽较窄。通过对刻写的过程进行监测,得到了LPFG写制过程中透射谱线变化趋势,验证了该刻写系统可以准确稳定地保证光纤纤芯与激光脉冲焦点的对准。
     3.在全面深入研究长周期光纤光栅传感特性基本理论的基础上,对飞秒刻写LPFG进行温度、轴向应变和弯曲特性分析与实验。实验得到,LPFG谐振峰值在30-250℃以及300-800℃两个范围内的随温度升高向长波方向呈线性变化,在两段温度范围内,温度响应曲线的线性度均保持在0.99以上,其温度特性稳定平滑,高温稳定性比较理想。飞秒刻写LPFG谐振峰值在0~800με范围内的随拉力的增加向长波方向呈线性变化,两个谐振峰值对轴向应变的响应灵敏度分别为0.472×10-3nm/με和0.501×10-3nm/,με,线性度均不低于0.993。飞秒刻写LPFG谐振峰随着曲率半径的减小损耗(曲率增加)逐渐减小,并且随着曲率半径的减小谐振峰向短波方向发生缓慢的漂移,但是光栅谐振峰损耗与峰值变化的趋势因弯曲方向的不同而会出现较大的差异。
     4.实验对飞秒刻写LPFG进行了折射率传感特性分析,并使用浓度10~60%的蔗糖溶液和一系列有机试剂对其进行折射率响应灵敏度实验。实验得到,当外界环境折射率接近光纤包层折射率时,LPFG折射率灵敏度响应越灵敏的结论。然后使用氢氟酸对LPFG进行腐蚀,并使用PDDA与PSS两种聚合物对腐蚀后的LPFG进行静电自组装涂膜,对飞秒刻写LPFG进行折射率增敏实验。涂膜实验后对并增敏后的LPFG进行折射率响应灵敏度测试。实验得到,增敏后的LPFG的折射率灵敏度得到了提高,而且折射率的灵敏度增加了三倍左右,结果表明经过增敏后LPFG可测量溶液的范围和精度都随之增大。
     5.在对Sagnac效应以及高双折射率光纤Sagnac环镜干涉仪进行理论分析的基础上,设计了使用LPFG和高双折射率光纤Sagnac环镜干涉仪的多参数同时测量系统,并将该系统进行了温度与应变的同时变化,进行了相关测量与验证实验。经过实验得到,该系统的温度分辨率为0.03℃,应变分辨率为1.7με,温度和应变的测量精度为分别可以达到±0.26℃和±17.4με。与其它方法相比,该系统在保持较高的测量精度的基础上保持了光路损耗小的优势。
With the optical fiber and photon devices fabrication technology improving continually, fiber grating has become one of the most representative and promising fiber-optic passive components. And it has been widely used in optical communication, optical sensing and other fields.
     The long-period fiber grating (LPFG) as a new kind of fiber grating has been studied by many researchers all around the world recently, and has got great progresses in a few years. It attracts wildly attention of home and abroad scholars for its advantages such as low insert-loss, broad-band, low back-reflection, sensitive to the changes of environments, low-cost and easy to be fabricated. In addition, designing the new structure, new features, and multi-function photonic devices has become an inevitable trend as the requirements of the fiber Bragg grating functional standard improves. It has shown a very broad application prospects within recent years development.
     In this dissertation, based on the LPFG inscription technology, coupled-mode theroy and different fiber grating write systems were analysised, an LPFG write system using an800nm laser and point-by-point technology was designed. Using this inscribe system, we inscribed many different LPFGs with different paraments. And, some sensing characteristics, including temperature, axial strain, bending and refractive index characteristics, were analysis and experiments were performed. Then, using chemical corrosion and electrostatic self-assembly method, the long period fiber grating refractive index sensitizing experimental study. Finally, the design of the LPFG and high-birefringence fiber Sagnac interferometer based multi-parameter measurement method was proposed.
     The main contents of this article include:
     1. According to three-layer cylindrical fiber model, the fiber mode distribution is analyzed. And the coupling of fiber core-mode and low first-order cladding mode is also further studied. Then using coupling constant describes the strength of mode coupling. Theoretical analysis and numerical simulation of transmission spectral characteristics is a good reference to the fabrication and sensor application of LPFG.
     2. Main fiber-gratings-inscribe methods were introduced and compared, including interfermeter method, phase mask plate method and point-by-point method, and so on. And the common types of lasers and an800nm femtosecond laser system was introduced in detail. Then a long period fiber gratings inscribed system based on point-by point technology using the800nm femtosecond laser was designed. The functions of the major components were introduced. Using this system, the fiber position could be precisely controlled, and laser pulses could focus precisely on the fiber core using two CCDs and two monitors. Then, many different characteristics LPFGs with different resonance peaks were inscribed in non-hydrogen-load bare fiber. The LPFG is with low road loss and the resonant peak changes in smooth, line width narrow. According to the experiment of monitoring the process of inscription, trend of the resonance peak transmission line is clear, and this system is verified that the alignment of the laser pulse focus is accurate and stable.
     3. Based of deap study of long period fiber grating sensing characteristics theory, high/low temperature experiments, axial strain experiment and bending experiment was perfomed on the LPFG inscribed with femtosecond laser. It was result from the experiments that in the two temperature range30~250℃and300~800℃, the linearity of the temperature response curve were maintained above0.99, the temperature characteristics is stable and smooth. The resonance peak of the LPFG changes linearly to longer wavelengths at range of0~800με with pull, and the response sensitivity of two resonant peak axial strain were0.472×10-3nm/με and0.501×10-3nm/με, respectively. And the linearity is no less than0.993. The resonance peak of the LPFG decreases with the decrease of the radius of curvature (curvature increases), and the resonance peak drifts to the shortwave direction. But the resonance peak loss peak trends will appear different due to the different direction of bending.
     4. The refractive index characterstics of LPFG was analyzed, and refractive index sensitivity experiments were performed using concentration of10to60%sucrose solution and a series of organic reagents. It is result from the experiments that the refractive index sensitivity of the LPFG, responses to the more sensitive when the refractive index of the external environment close to the fiber cladding refractive index. Then, refractive index increased sensitivity experiments were performed using of hydrofluoric acid LPFG corrosion and electrostatic self-assembly film of two polymers(PDDA and PSS) on the corrosion of the LPFG. Refractive index characteristics experiment of the sensitized LPFG was performed. It was result that the refractive index sensitivity of LPFG has been improved after sensitizing, and the refractive index of the sensitivity increased about three times. The result showed that after sensitizing, the LPFG measurable range and accuracy of the solution are both increased.
     5. Based on analysis of high-birefringence fiber Sagnac interferometer, a simultaneous measurement system using LPFG and high birefringence fiber Sagnac interferometer was proposed and experiments were executed with the simultaneous changes of temperature and strain measurement. The result showed that in the system, the system temperature resolution of0.03℃, the strain resolution of1.7με, and temperature and strain measurement accuracy can reach±0.26℃and±17.4με, respectively. Compared with other methods, this system maintains a higher measurement accuracy, and has lower the optical path.
引文
[1]K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki. Photo-sensitivity in optical fiber Waveguides:Application to reflection filters fabrication[J]. Applied Physics Letters,1978,32(13):647-649.
    [2]G. Meltz, M. M. Morey, W. H. Glenn. Formation of Bragg gratings in optical fibers by a transverse holographic method [J]. Optics Letters.1989,14(5): 823-825.
    [3]A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, et al.. Long-Period fiber gratings as band-rejection filters [J]. Journal of Lightwave Technology,1996,14 (1):58-65.
    [4]V. Bhatia, A.M.Vengsarkkar. Optical fiber long-period grating sensors[J]. Optics Letters,1996,21(9):692-694.
    [5]T. Erdogan. Fiber grating spectra[J]. J.Lightwave Technol,1997,15(8):1277-1294.
    [6]T. Erdogan. Cladding-mode resonances in short and long period fiber grating filters[J]. Journal of the Optical Society of America A,1997,14(8):1760-1773.
    [7]F. Ouellete. Dispersion cancellation using linearly chirped Bragg grating filters in optical aveguides[J]. Optics Letters,1987,12(10):847-849.
    [8]V. Mizrahi, J.E.Sipe. Optical properties of photosensitive fiber phase gratins [J]. Journal of Lightwave Technology,1993,11(10):1513-1517.
    [9]C. R. Giles. Lightwave application of fiber Bragg gratings[J]. Journal of Lightwave Technology,1997,15(8):1391-1404.
    [10]Y. J. Rao. In-fiber Bragg grating sensors[J]. Measurement Science and Technology.1997,8:355-375.
    [11]A. D. Kersey, M. A. Davis, H. J. Patrick, et al.. Fiber grating sensors[J]. Journal of Lightwave Technology.,1997,15(8):1442-1463.
    [12]何伟,王昌,姜德生,等.长周期光纤光栅横向压力传感特性的研究[J].武汉理工大学学报,2()04,26(8):20-22.
    [13]童治,魏淮,简水生,等.环境折射率变化对长周期光栅特性影响的研究[J],光学学报,2002,22(9):1088-1091.
    [14]Gloge D. Weakly guiding fibers[J]. Applied Optics,1971,10(10):2252-2258.
    [15]Han Y. G., Lee B. H., Han W. T., et al.. Controllable transmission characteristics of multi-channel long period fiber gratings[J]. IEICE transactions on electronics, 2001, E84-C (5):610-614.
    [16]姜莉,张东生,袁树忠,董孝义.长周期光纤光栅光谱控制及其在EDFA增益平坦中的应用[J].光子学报,2004,33(7):810-813.
    [17]Mei Nar Ng, Kin Seng Chiang. Thermal effects on the transmission spectra of long-period fiber gratings[J]. Optics Communications,2002,208(4-6):321-327.
    [18]Shu X., Zhang L., Bennion I. Sensitivity characteristics of long-period fiber gratings [J]. Journal of Lightwave Technology,2002,20(2):255-266.
    [19]Kevin P. C., Peter R. H., Zhang J. Fabrciation of strong long-period gratings in hydrogen-free fiber with 157nm fs-laser radiation[J]. Optics Letters,2001, 26(11):771-773.
    [20]杜卫冲.用微透镜阵列在单模光纤中写入长周期光纤光栅的新方法[J].光学学报,1998,18(11):1599-1600.
    [21]Von Bibra M. L., Robers A. Fabrication of long-period fiber gratings by use of focused ion-beam irradiation [J]. Optics Letters,2001,26(11):765-767.
    [22]Von Bibra M. L., Robers A. Long-period fiber gratings made with focused ion beam irradiation [C]. Proc.14th Inter. Conf. on OFS 2000, TH6-3:604-607.
    [23]Savin S., Digonnet M. J. F., Kino G. S., et al.. Tunable mechanically induced long-period fiber gratings [J]. Optics Letters,2000,25(10):710-712.
    [24]G. Rego, J. Fernandes, J. Santos, et al.. New technique to mechanically induce long-period fibre gratings [J]. Optics Community,2003,220(1-3):111-118.
    [25]黎敏,廖延彪,赖淑荣,等.一种新型的光纤光栅制作方法[J].激光杂志,2001,22(1):24-25.
    [26]Toru Mizunami, Hideo Kawashima, Akihiko Hayashi. A flexible fabrication technique of long-period fiber gratings using a tilted amplitude mask[C]. Fiber and Optical Passive Components,2002, Proc. OFS,2002 IEEE/LEOS Workshop, 92-97.
    [27]Guan B. O., Tam H. Y., Ho S. L., et al.. Impact of Hydrogen in long-period gratings after 193nm UV inscription[C]. Proc.14th Inter. Conf. on OFS,2000, 552-555.
    [28]瞿荣辉,赵浩,方祖捷.长周期光纤光栅的制作方法和应用研究进展[J].激光与光电子学进展,1999,408(12):8-13.
    [29]K. O. Hill, B. Malo, K. A. Vineberg, et al.. Eficient mode conversion in telecommunication fiber using externally written gratings[J]. Electronics Letters, 1990,26(16):1270-1272.
    [30]D. C. Johnson, F. Bilodeau, B. Malo, et al.. Long-length, long-period rocking filters fabricated from conventional monomode telecommunications optical fiber[J]. Optics Letters,1992,17(22):1635-1637.
    [31]D. D. Davis, T. K. Gaylord, S. C. Mettler, et al.. Long-period fiber grating fabrication with focused CO2 laser pulses [J]. Electronics Letters,1998,34(3): 302-303.
    [32]Y. J. Rao, Y. P. Wang, Z. L. Ran, Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses[J]. Journal of Lightwave Technology,2003,21(5):1320-1327.
    [33]S.Y.Liu, H.Y.Tam, M.S.Demokan. Low-cost microlens array for long-period grating fabrication [J]. Electronics Letters,1999,35(1):79-81.
    [34]In. Kag. Hwang, Seok Hyun Yun, Byoung Yoon Kim. Long period fiber gratings based on period micobends[J]. Optics Letters,1999,24(18):1263-1265.
    [35]I.Sohn, J. Kim, N. Lee, et al.. Tunable gain-flattening filter using long-period fiber grating based on periodic core deformation:in Design, Fabrication, and Characterization of Photonic Devices[C]. Proc.of SPIE 2001,4594:110-117.
    [36]M. Yokota, H. Oka, T. Yoshino. Mechanically induced long period fiber grating and its application for distributed sensing [C].OFS'2002,135-138.
    [37]C. Y. Lin, L. A. Wang. Loss-tunable long period fibre grating made from etched corrugation structure [J]. Electonics Letters,1999,35(21):1872-1873.
    [38]V. I. Karpov, M. V. Grekov, et al.. Mode-field converters and long-period gratings fabricated by thermodifusion in nitrogen-doped silica-core fibers [C]. OFC'98,1998, ThG3:279-280.
    [39]艾江,叶爱伦,刘宇乔.一种新的长周期光纤光栅制作方法[J].光学学报,1999,19(5):709-712.
    [40]A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, et al.. Long-Period fiber gratings as band-rejeetion filters[J]. LightwareTechnology,1996,14(1):58-65.
    [41]Ashish M. Vengsarkar, J. Renee Pedrazznai, JustinB. Judkinsetal. Long-period fiber-grating-based gain equalizers[J]. Optics Letter,1996,21(5):336-338.
    [42]Yamasaki S, Akiyama M, Nishide K, et al.. Characteristics of long period fiber grating utilizing periodic stress relaxation under high temperature environment [C]. OFS'13,1999,3746:385-388.
    [43]B. H. Kim, T. J. Ahn, Y. Park, et al.. Measurement of refractive index change due to CO2 laser irradiation using an LPG pair in optical fibers [C]. APOC'2001, 2001,4579:286-295.
    [44]D. P. Hand, P, St. J.Russell. Photoinduced refractive-index changes in germano-silicate fibers [J]. Optics Letters,1990,15(2):102-104.
    [45]J. P. Bernardin, N. M. Lawandy. Dynamics of the formation of Bragg grating in Germanosilicate optical fibers [J]. Optics Letters,1990,15(3):194-199.
    [46]Yuki Kondo, Kentaro Nouchi, Tsuneo Mitsuyu, et al.. Fabrication of long-period fiber gratings by focused irradiation of infrared femtosecond laser pulses[J]. Optics Letters,1999,24(10):646-648.
    [47]Yuki Kondo, Kentaro Nouchi, Tsuneo Mitsuyu.Fabrication of long-period fiber gratings by focused irradiation of infrared femtosecond laser pulses[J]. Optics Letters,1999,24(10):646-648.
    [48]M. Dubov, I. Bennion, S. A. Slattery.30-dB long-period fibre grating inscription by high-intensity femtosecond 352 nm laser pulses[J]. ECOC 2005, v3-613.
    [49]T. Allsop, M. Dubov, A. Martinez, et al.. Bending Characteristics of Fiber Long-Period Gratings With Cladding Index Modified by Femtosecond Laser[J]. Journal of Lightwave Thechnology,2006,24(8):3147-3154.
    [50]Alexey I. Kalachev, Vincent Pureur, David N. Nikogosyan. Investigation of long-period fiber gratings induced by high-intensity femtosecond UV laser pulses[J]. Optics Communications,2005,246(1-3):107-105.
    [51]Tom Allsop, Kyriacos Kalli, Kaiming Zhou, et al.. Characterisation of femtosecond laser inscribed long period gratings in photonic crystal fibre [C]. The International Society for Optical Engineering,2008,6990:699001.
    [52]Rita Zanlorensi Visneck Costa, Ricardo Canute Kamikawachi, Marcia Muller, et al. Thermal characteristics of long-period gratings 266 nm UV-point-by-point induced[J]. Optics Communications,2009,282(5):816-823.
    [53]Shujing Liu, Wei Jin, Long Jin, et al.. Fabrication of long-period fiber gratings by using of a femtosecond laser source[C]. Optoelectronics and Communications Conference,2009, Hongkong WQ6.1-2.
    [54]Shujing Liu, Long Jin, Wei Jin, et al.. Fabrication of Long-Period Gratings by Femtosecond Laser-Induced Filling of Air-Holes in Photonic Crystal Fibers[J]. IEEE Photonics Technology letters,2010,22(22):1635-1637.
    [55]Christian Voigtlander, Daniel Richter, Jens Thomas. Inscription of high contrast volume Bragg gratings in fused silicawith femtosecond laser pulses[J]. Applied Physics, A,2011,102(1):35-38
    [56]Benye Li, LanJiang, SumeiWang, et al.. Femtosecond laser fabrication of long period fiber gratings and applications in refractive index sensing[J]. Optics & Laser Technology,2011,43(8):1420-1423.
    [57]Sung-Hak Cho, Hiroshi Kumagai, Katsumi Midorikawa. Fabrication of internal diffraction gratings in planar silica plates using low-density plasma formation induced by a femtosecond laser[J]. Nuclear Instruments and Methods in Physics Research B,2002,197(1-2):73-82.
    [58]A.II Kalachev, D. N. Nikogosyan. Inscription of long-period fibre gratings by high-intensity femtosecond radiation at 211 nm[C]. Conference on Lasers and Electro-Optics Europe,2005:549.
    [59]Woosung Ha, Kyunghwan Oh. Fabrication and Characterization of a Broadband Long-Period Grating on a Hollow Optical Fiber with Femtosecond Laser Pulses[J]. Journal of the Korean Physical Society,2008,53(6):3814-3817.
    [60]T. Allsop, K. Kalli, K. Zhou,et al.. Long period gratings written into a photonic crystal fibre by a femtosecond laser as directional bend sensors[J]. Optics Communications,2008,281(15):5092-5096
    [61]Thomas Allsop, Mykhaylo Dubov, Vladimir Mezentsev, et al.. Inscription and characterization of waveguides written into borosilicate glass by a high-repetition-rate femtosecond laser at 800nm[J]. Applied Optics,2010, 49(10):1938-1950.
    [62]Patrick Kelleher, David N. Nikogosyan. Inscription of narrow-band fibre Bragg gratings with 264 nm femtosecond pulses[J]. Optical Fiber Technology,2010, 16(4):212-216
    [63]K. L. N. Deepak, S. Venugopal Rao, D. Narayana Rao. Effects of thermal treatment on femtosecond laser fabricated diffraction gratings in polystyrene[J]. Applied Surface Science,2011,257 (22):9299-9305.
    [64]Jun Ma, Wei Jin, Long Jin. Temperature Characteristics of Microfiber Long Period Gratings Fabricated by a Femtosecond Infrared Laser[C].21st International Conference on Optical Fiber Sensors,2011.
    [65]Zhang Nan, Yang Jian-Jun, Wang Ming-Wei, et al.. Fabrication of Long-Period Fibre Gratings Using 800 nm Femtosecond Laser Pulses[J]. Chin. Physics Letters,2006,23(12):3281-3284.
    [66]S. Ruan, Y. Huang, C. Du, et al.. Laser Direct Writing of Long Period Fiber Grating by 800 NM Femtosecond Laser Pulses[J]. Journal of Nonlinear Optical Physics and Materials,2008,17(4):425-433.
    [67]朱学华,潘玉寨.基于飞秒激光直写光纤光栅的掺镱光纤激光器[J].强激光与粒子束,2011,23(4):934-938.
    [68]孙伟胜,施解龙,陈园园,杨清.含耐高温涂覆层长周期光纤光栅的温度特性研究[J].光子学报,2011,40(10):1090-1493.
    [69]王英.飞秒激光制作体光栅及新型光纤传感器件的实验研究[D].武汉,华中科技大学,2010.
    [70]Lam P. K., Stevenson A. J., Love J. D. Bandpass spectra of evanescent coupler with long period fiber grating [J]. Electron. Letters,2000,36(11):967-969.
    [71]Chen W. T., Wang L. A. Laser-to-fiber coupling scheme by utilizing a lensed fiber integrated with a long-period fiber grating [J]. IEEE Photonics Technology Letters,1998,12(5):501-503.
    [72]Chen W. T., Wang L. A. Optical coupling between single-mode fibers by utilizing long-period fiber gratings[J]. Eletron, Letter,1999,35(5):421-423.
    [73]B. J. Eggleton, R. E. Slusher, J. B. Judkins, et al.. All-optical switching in long-period fiber gratings[J]. Optics Letters,1997,22(12):883-885.
    [74]Yokota M., Oka H., Yoshino T. Mechanically induced long period fiber grating and its application for distributed sensing[C]. Proc.14th Inter. Cong, on OFS 2000,4185:135-138.
    [75]Patrick H. J., Williams G. M., Kersey A. D., et al.. Hybrid fiber Bragg grating/ long period fiber grating sensor for strain/temperature discrimination [J]. IEEE Photo. Technology Letters,1996,8(9):1223-1225.
    [76]Bhatia V., Burford M. K., Zabaronick, et al.. Strain and refractive index sensors using temperature-insensitive long-period grating[C]. Proc.11th Inter. Conf. on OFS,1996,13-17.
    [77]Y. P. Wang, Y. J. Rao, Z. L. Ran, et al.. Bend-insensitive long-period fiber grating sensors[J]. Optics and Lasers in Engineering,2003,21(10):233-239.
    [78]Allsop T., Zhang L., Webb D. J., et al.. Discrimination between strain and temperature effects using first and second-order diffraction from a long-period grating[J]. Optics Communications,2002,211:103-108
    [79]张自嘉,王昌明.长周期光纤光栅的轴向应变传感特性研究[J].传感技术学报,2007,20(5):1003-1006.
    [80]Y. Liu, L. Zhang, J. A. R.Williams, and I. Bennion. Optical bend sensor based on measurement of resonance mode splitting of long-period fiber grating[J]. IEEE Photon. Technology Letters,2000,12(5):531-533.
    [81]L. Zhang, Y. Liu, L. Everall, J. A. R. Williams, et al.. Design and realization of long-period grating devices in conventional and high birefringence fibers and their novel applications as fiber-optic load sensors [J]. IEEE J. Select. Topics Quantum Electron,1999,5(5):1373-1379.
    [82]X. Shu, L. Zhang, I. Bennion. Sensitivity characteristics of long period fiber gratings [J]. J.Lightwave Technology,2002,20(2):255-266.
    [83]S. W. James, R. P. Tatam. Optical fiber long-period grating sensors: Characteristics and applications [M], Measurement Science Technology,2003, 14(5):49-61.
    [84]廖毅,饶云江,胡永明,等.低成本长周期光纤光栅传感系统[J].光子学报,2007,36(4):702-705.
    [85]Wang Yiping, Rao Yunjiang, Hu Aizi, et al.. A Novel Long Period Fiber Grating Torsion Sensor[J]. Acta Optical Sinica,2002,22(19):1096-1099.
    [86]Guan Baiou, H. Y. Tam, S. L. Ho. Study on Strain/Temperature Two Parameters Sensing with a Single Fiber Grating [J].Chinese Journal Laser,2001,28(4): 372-374.
    [87]Wang Muguang, Wei Huai, Tong Zhi, et al.. Simultaneous measurement of strain and temperature using a single dual-period fiber grating [J]. Acta Optical Sinica, 2002,22(7):867-869.
    [88]Lee, B. H., Nishii. J. Self-interference of long-period fiber grating and its application as temperature sensor[J]. Electronics Letters.1998,34(21): 2059-2060.
    [89]V. Bhatia, A. M. Vengsarkkar. Optical fiber long-period grating sensors[J]. Optics Letters,1996,21(9):692-694.
    [90]H. J. Patrick, A. D. Kersey, F. Bucholtz. Analysis of the response of long period fiber gratings to external index of refraction[J]. Journal of Lightwave Technology,1998,16(9):1606-1612.
    [91]V. Bhatia, D. Campbell, R. O. Claus, A.M.Vengsarkar. Simultaneous strain and temperature measurement with long-period gratings[J]. Optics Letter,1997, 22(6):648-650.
    [92]B. H. Lee, J. Nishii. Self-interference of long-period fibre grating and its application as temperature sensor [J]. Electronics Letters,1998,34(21):2059-2060.
    [93]胡兴柳,梁大开,陆观,曾捷.基于单长周期光纤光栅光谱特性的温度和应变同时区分测量[J].光谱学与光谱分析,2010,30(3):851-854.
    [94]王义平.新型长周期光纤光栅特性研究[D].重庆,重庆大学,2003.
    [95]王义平,饶云江,冉曾令,等.对弯曲不敏感的长周期光纤光栅传感器[J].光子学报,2002,31(6):725-728.
    [96]王义平,饶云江,胡爱姿,等.长周期光纤光栅扭曲传感器[J].光学学报,2002,22(9):1096-1099.
    [97]王义平,饶云江,曾祥楷.长周期光纤光栅弯曲特性的模式耦合理论分析[J].光子学报,2002,31(10):1205-1208.
    [98]C. Y. Lin, L. A. Wang, A wavelength and loss-tunable band-rejection filter based on corrugated long-period fiber grating [J]. Photonics Technology Letters, IEEE, 2001,13(4):332-334.
    [99]Qiushun Lia, Ying Qianb, Yongsen Yub, et al. Actions of sodium nitrite on long period fiber grating with self-assembled polyelectrolyte films[J]. Optics Communications,2009,282(12):2446-2450.
    [100]赵洪霞,鲍吉龙,陈莹.弯曲曲率对长周期光纤光栅透射谱特性的影响[J].中国激光,2008,35(5):722-725.
    [101]张自嘉,王昌明.长周期光纤光栅的轴向应变传感特性研究[J].传感技术学报,2007,20(5):1003-1006.
    [102]M. Yamada, K. Sakuda. Analysis of almost-periodic distributed feedback slab waveguides via a fundamental metric approach[J]. Application Optics,1987, 26(16):3474-3478.
    [103]H. J. Patrick, G. M. Williams, A. D. Kersey, et al.. Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination, Photonics[J]. Technology Letters, IEEE,1996,8(9):1223-1225.
    [104]贾宏志,李育林,忽满利.长周期光纤光栅传感器温度和应变灵敏度分析[J].光子学报,1999,28(8):711-714.
    [105]刘云启,葛春风,赵东晖,等.长周期光纤光栅强度型温度传感研究[J].光子学报,1999,28(4):356-359.
    [106]刘云启,赵东晖,葛春风,等.长周期光纤光栅温度和应力传感特性研究[J].光子学报,1999,28(2)142-145.
    [107]王彦,梁大开,周兵.基于长周期光纤光栅微弯特性的智能结构振动监测[J].仪器仪表学报,2008,29(6):1154-1158.
    [108]H. J. Patrick, A. D. Kersey, F. Bucholtz. Analysis of the Response of Long Period Fiber Gratings to External Index of Refraction[J]. Lightwave Technology, 1998,16(9):1606-1612.
    [109]Duhem O., Henninot J. F., Warenghem M., Douay M. Demonstration of long period grating efficient couplings with an external medium of a refractive index higher than that of silica[J]. Application Optics,1998,37(31):7223-7228.
    [110]R. Hou, Z. Ghassemlooy, A. Hassan, et al.. Modeling of long-period fiber grating response to refractive index higher than that of cladding[J]. Measurement Science and Technology,2001,12(10):1709-1713.
    [111]Chong J., Shum P., Haryono H, et al.. Measurements of refractive index sensitivity using long-period grating refractometer[J]. Optics Communications, 2004,229(1-6):65-69.
    [112]Falciair, Mignania, Vanninia. Long period gratings as solution concentration sensors[J]. Sensors and Actuators B:Chemical,2001,74(1-3):74-77.
    [113]Kim D. W., Zhang Y., Cooper K. L., et al.. In-fiber reflection mode interferometer based on a long-period grating for external refractive-index measurement[J]. Applied optics,2005,44(26):5368-5373.
    [114]Ignacio Del Villar, Ignacio R. Matias, Francisco J. Arregui. Enhancement of sensitivity in long-period fiber gratings with deposition of low-refractive index materials[J]. Optics Letter,2005,30(18):2363-2365.
    [115]朱涛,饶云江,莫秋菊,王久玲.高频C02激光脉冲写入超长周期光纤光栅特性研究[J].物理学报,2007,56(9):5287-5292.
    [116]王久玲,饶云江,朱涛,宋韵.C02激光脉冲边缘写入的长周期光栅折射率特性研究[J].光学学报,2007,27(10):1730-1734.
    [117]李洪刚,李恩荣,盛秋琴.长周期光纤光栅拐点对外界折射率的敏感性[J].南 开大学学报(自然科学版),2007,40(5):68-71.
    [118]Qiushun Li, Xulin Zhang, YongSen Yu, et al.. Enhanced sucrose sensing sensitivity of long period fiber grating by self-assembled polyelectrolyte multilayers[J].Reactive and Functional Polymers,2011,71(3):335-339.
    [119]Rindorf L., J. B. Jensen, M. Dufva, et al.. Photonic crystal fiber long-period gratings for biochemical sensing[J]. Optics Express,2006,14(18):8224-8231.
    [120]Xuejun Cui, Zhengxia Chen, Qiushun Li. Role of fluorocarbon surfactant in the preparation of polytetrafluoroethylene-modified polyacrylate emulsion[J].2007, 105(4):2138-2145.
    [121]Rindorf.L., O.Bang, Highly sensitive refractometer with a photonic crystal fiber long-period grating. Optics Letters,2008,33(6):563-565.
    [122]宋韵,朱涛,饶云江.基于非对称折变型超长周期光纤光栅的湿度传感器[J].中国激光.2009,36(8):2042-2045.
    [123]顾铮先,张江涛.基于双峰谐振效应的镀金属长周期光纤光栅液体浓度传感器[J].光学学报,2011,31(3):21-27.
    [124]张洪波,沈竹,皇海,李福太.用双周期光纤光栅实现温度和应变的同时测量[J].光学与光电技术,2003,1(5):16-19.
    [125]DaPeng Zhou, Li Wei, WingKi Liu, et al.. Simultaneous measurement for strain and temperature using fiber Bragg gratings and multimode fibers[J]. Applied Optics,2008,47(10):1668-1672.
    [126]Guoyong Sun, Dae Seung Moon, Youngjoo Chung. Simultaneous temperature and strain measurement using two types of high-birefringence fibers in Sagnac loop mirror[J]. Photonics Technology Letters.2007,19(24):2027-2029.
    [127]O. Frazao, J. L. Santos, J. M. Baptista. Strain and Temperature Discrimination Using Concatenated High-Birefringence Fiber Loop Mirrors[J]. IEEE Photonics Technology Letters,2007,19(16):1260-1262.
    [128]DP. Zhou, L. Wei, WK. Liu, et al.. Simultaneous measurement of strain and temperature based on a fiber Bragg grating combined with a high-birefringence fiber loop mirror[J]. Optics Communications,2008,281(18):4640-4643.
    [129]K. Srimannarayana, MS. Shankar, RLNS. Prasad, et al.. Fiber Bragg grating and long period grating sensor for simultaneous measurement and discrimination of strain and temperature effects[J]. Optica Applicata,2008,38(3):601-608.
    [130]H. M. Kim, T. H. Kim, D. S. Moon. Simultaneous measurement of temperature and strain using long-period fiber grating inscribed in photonic crystal fiber combined with Sagnac loop mirror[C]. Opto-Electronics and Communications Conference,2008:1-2.
    [131]芦吉云,梁大开,张晓丽.双长周期光栅调制的光纤光栅光谱分析及其在智能结构监测中的应用[J].光谱学与光谱分析,2009,29(12):3429—3433.
    [132]詹亚歌,陆青,向世清,等.优化光纤光栅传感器匹配光栅解调方法的研究[J].光子学报,2004,33(6):711-715.
    [133]Xiufeng Yang, Chun-Liu Zhao, Qizhen Peng, et al.. FBG sensor interrogation with high temperature insensitivity by using a HiBi-PCF Sagnac loop filter[J]. Optics Communications,2005,250(1-3):63-68.
    [134]郑立林,王莲芬,张瑜,刘皓淳.用可调谐F-P滤波器实现分布式应变与温度同时测量系统[J].红外与激光工程,2007,36(z1):614-616.
    [135]Kamineni Srimannarayana, Madhuvarasu Sai Shankar, Ravinuthala L.N.et al. Fiber Bragg grating and long period grating sensor for simultaneous measurement and discrimination of strain and temperature effects[J]. Optica Applicata,2008,38(3):601-608.
    [136]卓仲畅,K.M.JB.,王东伟,高卓.基于取样光纤光栅实现应变和温度的同时测量[J].光电子技术,2009,29(2):89-91.
    [137]Chun-Liu Zhao, Jiarong Zhao, et al.. Simultaneous strain and temperature measurement using a highly birefringence fiber loop mirror and a long-period grating written in a photonic crystal fiber[J]. Optics Communications,2009, 282(20):4077-4080.
    [138]何万迅,施文康,叶爱伦.长周期光纤光栅耦合常数的研究[J].光学技术,2002,28(6):535-538.
    [139]张自嘉,施文康,高侃,等.长周期光纤光栅(LPFGs)的谱结构研究[J].光子学报,2004,33(11):1308-1311.
    [140]舒学文,朱雪梅,王青林.长周期光纤光栅谐振波长的特性研究[J].光学学报,2000,20(8):1100-1105.
    [141]Michael L Dockney, Stephen W James, et al. Fiber Bragg gratings fabricated using a wavelength tuneable laser source and a phase mask based interferometer [J]. Measurement Science,1996,7(4):445-448.
    [142]K. O. Hill, B. Malo, F. Bilodeau,.et al.. Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask[J]. Applied Physics. Letter,1993,62(10):1035-1038.
    [143]Shane Eaton, Haibin Zhang, Peter Herman, et al.. Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate[J]. Optics Express,2005,13(12):4708-4716.
    [144]Martinez. A., Dubov. M., Khrushchev. I., et al. Photo induced Modifications in Fiber Gratings Inscribed Directly by Infrared Femtosecond Irradiation[J]. Photonics Technology Letters, IEEE,2006,18(11):2266-2268.
    [145]张玲,苗飞,冯德军,等.飞秒激光对光纤布拉格光栅的曝光实验研究[J].中国激光,2011,38(5):0505006-1-0505006-6.
    [146]张自嘉,施文康,高侃,等.热光系数与长周期光纤光栅的温度灵敏度研究[J].光学技术,2004,30(5):525-528.
    [147]Shu Xuewen, Zhang Ian, Bennion Ian. Sensitivity Characteristics of Long Period Fiber Gratings[J]. Journal of Lightwave Technology,2002,20(2): 255-266.
    [148]于清旭,宋世德,张桂菊,等.C02激光对称烧写长周期光纤光栅的方法研究[J].光电子·激光,2004,15(11):1372-1375.
    [149]宋世德.长周期光纤光栅的特性及传感应用研究[D].大连,大连理工大学.2006.
    [150]关寿华,于清旭,宋世德,郑建洲.长周期光纤光栅温度特性的理论与实验研究[J].传感技术学报,2007,20(3):543-545.
    [151]梁辉,曾庆科,秦子雄.长周期光纤光栅的折射率敏感特性[J].应用光学,2011,32(1):111-114.
    [152]欧启标,罗文志,咸锦照.镀膜长周期光纤光栅的折射率传感特性[J].光散射学报,2011,23(3):213-218.
    [153]Sean D. Puckett, Gilbert E. Pacey. Detection of water in jet fuel using layer-by-layer thin film coated long period grating sensor[J]. Talanta,2009, 78(1):300-304.
    [154]罗德新.光纤陀螺技术在工程结构监测中的应用研究[D].武汉,武汉理工大学,2005.
    [155]王立辉.消偏型光纤陀螺仪关键技术研究[D].哈尔滨,哈尔滨工程大学,2009.
    [156]冯彩霞.基于高双折射光纤Sagnac环的可调谐梳状滤波器研究[D].北京,北京交通大学,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700