光诱导光子学微结构中的光传输与光调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在过去的十年中,光波与光子学微结构相互作用吸引了人们越来越多的关注。最近人们在微加工领域取得的进展比如半导体中的制备工艺、熔石英玻璃中的飞秒激光直写技术、光折变晶体中的实时光诱导技术等大大拓宽了传统光学领域。当前的大量研究成果使人们开始掌握未来由光子学微结构带来的一系列潜在应用,比如集成光学、全光网络等。本论文基于光诱导技术,在光折变非线性晶体中建立了几种可实时调控的光子学微结构。得益于这些新型的光子学微结构的构建,成功地观测到了基于带隙导光的涡旋光线性局域、基于入射角度非线性光波的偏折、光波分束和能量单方向转移、艾里光的加速度操控以及新型光束的非线性调控。本文主要取得了以下几个方面的成果:
     首先,利用光诱导技术在光折变非线性晶体中首次构建了缺陷深度可调的单缺陷光子晶格,提出了在两种光诱导缺陷光子晶格中操控光波的方法。其一,利用线性带隙导光机制在二维缺陷中观测到了涡旋光模式。实验研究结果表明,只有在光强为非零的缺陷光子晶格中能够支持这类线性涡旋导光。其二,从理论和实验上分别观测到了非线性光波在低于某个阈值角度的情况下能被负缺陷反射。而在大于阈值角度入射时,它能够顺利地通过缺陷透射。该现象在一维和二维的光子晶格中都能发生,它提供了在阵列网络中基于角度控制光传播的技术。
     其次,研究拓展到了更复杂的缺陷光子晶格。从理论上系统地研究三缺陷光子晶格材料及其缺陷本征模,深入地讨论了材料物理参数对缺陷本征模的影响。基于该材料提出了对称三缺陷光子晶格和反对称三缺陷光子晶格。前者的应用是光波的分束和汇聚;对于后者,通过绝热地改变缺陷深度建立了能量单一转移方向的通道。此外,又讨论了在对称的三缺陷光子晶格中非线性的影响和多色光的传输特性。
     再次,利用光诱导技术在光折变非线性晶体中构建了折射率梯度分布的光子学微结构,首次从理论和实验上成功地调控了一维和二维艾里光的加速度。利用线性梯度折射率可以实现艾里光加速度的增强和减弱。艾里光在线性梯度折射率中传输时它的光学波包分布能保持不变。这种基于梯度折射率材料的艾里光加速度调控的一系列结论将为研究艾里光在多种环境中传输奠定基础。
     最后是新型光束的构建和光折变自诱导波导的研究。从已有的艾里光研究基础出发,在实验上巧妙地通过三个无限能量的艾里函数乘积构造出了局域的二维新型光波场。从实验上研究了这类新型光束的线性和非线性的传输特性。特别的,在自聚焦非线性下,这类新型光束的能量产生局域并自诱导形成波导通道,而自散焦非线性对该波包的形貌基本不产生影响。在傅里叶空间上观测发现:在自散焦作用下其空间频谱破碎成三个点,而在自聚焦作用下频谱则向中心收缩。
Light interactions with the photonic microstructures have attracted a great dealof interest in the past decade. Recent advances in microfabrication technology such assemiconductor fabrication, fs-laser-written in fused silica and lattices induced inphotorefractive crystals have broadened the field of optics. The flourish of activitywill lead to potential applications of these photonic microstructures in tomorrow’sintegrated optics and all-optical network. In this dissertation, several reconfigurablephotonic microstructures in photorefractive crystals have been created through theoptical induction technique. Based on these novel photonic microstructures, we havesuccessfully demonstrated a number of novel phenomena including vortexlocalization by bandgap guidance, angle-dependent nonlinear beam deflection, beamsplitting, one-way energy transfer passage, controlled acceleration of Airy beams andthe nonlinear evolution of the product of three Airy beams. The main achievementsare summarized as follows:
     Firstly, the optically induced photonic lattices with tunable negative defects arefirst created in photorefractive crystals. Two methods are proposed to manipulate theflow of light through the defect in the induced photonic lattice. One is that weexperimentally demonstrate linear bandgap guidance of optical vortices intwo-dimensional photonic lattices and the defect strength is set at an appropriate level.The other is that we demonstrate both theoretically and experimentally that anonlinear beam can be reflected by a negative defect in a photonic lattice if theincident angle is below a threshold value. Above this threshold angle, the beamsimply passes through the defect. This phenomenon occurs in both one-andtwo-dimensional photonic lattices, and it provides a way to use the incident angle tocontrol beam propagation in a lattice network.
     Next,the investigations are extended to more complex defect photonic lattices.We theoretically study the light propagation dynamics in tri-core photonic latticeswhich support three defect modes. The effects of physical parameters on the defectmodes are deeply discussed. Two types of tri-core photonic lattices are designed. One is called symmetric tri-core photonic lattices which can support beam splitting. Theother is called asymmetric tri-core photonic lattices which might lead to one-wayenergy delivering in an adiabatic passage. Furthermore, we also discuss the effects ofnonlinearity on the beam propagation and polymatic light propagation.
     Subsequently, we demonstrate both experimentally and theoretically controlledacceleration of one-and two-dimensional Airy beams in optically inducedrefractive-index potentials in photorefractive crystals. Enhancements as well asreduction of beam acceleration are realized by changing the index gradient, while thebeam shape is maintained during propagation through the linear optical potential. Ourresults of active acceleration manipulation in graded media are pertinent to Airy-typebeam propagation in various environments.
     Finally, we focus on the observation of a new type of beam and its self-inducedwaveguides. Beyond the Airy beams, a new localized two-dimensional field which isa product of three Airy functions with finite energy is observed. We experimentallydemonstrate linear and nonlinear propagation of the product of three Airy functions.Under self-focusing nonlinearity, the energy of the beam can be self-localized in theformation of self-induced waveguides. However,the shape of such beam structure isnearly unchanged under self-defocusing nonlinearity. Interestingly, the powerspectrum breaks up into three spots under the self-defocusing nonlinearity but it ismore localized in the central region in Fourier space in the self-focusing case.
引文
[1] Jones A L.Coupling of optical fibers and scattering in fibers.J Opt Soc Am,1965,55:261~271
    [2] Somekh S,Garmire E,Yariv A,et al.Channel optical waveguide directional couplers.ApplPhys Lett,1973,22:46~47
    [3] Yablonovitch E. Inhibited spontaneous emission in solid-state-physics andelectronics.Phys Rev Lett,1987,58:2059~2062
    [4] John S.Strong localization of photons in certain disordered dielectric superlattices.PhysRev Lett,1987,58:2486~2489
    [5] Yeh P.Optical Waves in Layered Media.2nd ed.New York:Wiley,2005.83~248
    [6] Campbell M,Sharp D N,Harrison M T,et al.Fabrication of photonic crystals for thevisible spectrum by holographic lithography.Nature,2000,404:53~56
    [7] Russell P S J.Photonic crystal fibers.Science,2003,299:358~362
    [8] Joannopoulus J D,Meade R D,Winn J N.Photonic crystals:molding the flow of light.2nded.Princeton:Princeton University Press,2008.66~93
    [9] Mekis A,Chen J C,Kurland I,et al.High transmission through sharp bends in photoniccrystal waveguides.Phys Rev Lett,1996,77:3787~3790
    [10] Kosaka H,Kawashima T,Tomita A,et al.Self-collimating phenomena in photoniccrystals.Appl Phys Lett,1999,74:1212~1214
    [11] Joannopoulus J D,Villeneuve P R,Fan S H.Photonic crystals:putting a new twist onlight.Nature,1997,386:143~149
    [12]张光寅,许京军,张心正,等.光子学微结构.南开大学学报,1999,32:58~63
    [13] Cubukcu E,Aydin K,Ozbay E,et al.Electromagnetic waves:negative refraction byphotonic crystals.Nature,2003,423:604~605
    [14] Zhu S N,Zhu Y Y,Min N B.Quasi-phase-matched third-harmonic generation in aquasiperiodic optical superlattice.Science,1997,278:843~846
    [15] Schmidt R V,Kaminow I P.Metal diffused optical waveguides in LiNbO3.Appl Phys Lett,1974,25:458~460
    [16] Findakly T,Chen C L.Diffused optical waveguides with exponential profile:effects ofmetal-clad and dielectric overlay.Appl Opt,1978,17:469~474
    [17] Noda J.Ti diffused LiNbO3waveguides and modulators.J Opt Commun,1980,1:64~73
    [18] Jackel J L,Rice C E,Veselka J J.Proton exchange in LiNbO3.Ferroelectrics,1983,50:165~170
    [19] Kip D,Gather B,Bendic H,et al.Concentration and Refractive Index Profiles of Titanium-and Iron-Diffused Planar LiNbO3Waveguides.Phys Stat Sol,1993,139:241~248
    [20] Christian E R,Wisniewski J,Kip D.Prism coupling method to excite and analyze Floquet–Bloch modes in linear and nonlinearwaveguide arrays.Opt Lett,2006,31:2768~2770
    [21] Tan Y,Chen F,Wang X L,et al.Formation of reconfigurable optical channel waveguidesand beam splitters on top of proton-implanted lithium niobate crystals using spatial darksoliton-like structures.J Phys D:Appl Phys,2008,41:102001
    [22] Watanabe W,Asano T,Yamada K,et al.Wavelength division with three-dimensionalcouplers fabricated by filamentation of femtosecond laser pulses.Opt Lett,2003,28:2491~2493
    [23] Nolte S,Will M,Burghoff J,et al.Femtosecond waveguide writing:a new avenue tothreedimensional integrated optics.Appl Phys A,2003,77:109~111
    [24] Szameit A,Dreisow F,Pertsch T,et al.Control of directional evanescentcoupling in fslaser written waveguides.Opt Express,2007,15:1579~1587
    [25] Szameit A,Bloemer D,Burghoff J,et al.Hexagonal waveguide arrays written with fs-laserpulses.Appl Phys B,2006,82:507~512
    [26] Zoubir A,Lopez C,Richardson M,et al.Femtosecond laser fabrication of tubularwaveguides in poly (methyl methacrylate).Opt Lett,2004,29:1840~1842
    [27] Davis K,Miura K,Sugimoto N,et al.Writing waveguides in glass with a fs-laser.OptLett,1996,21:1729~1731
    [28] Pertsch T,Peschel U,Lederer F,et al.Discrete diffraction in two-dimensional arrays ofcoupled waveguides in silica.Opt Lett,2004,29:468~470
    [29] Szameit A,Burghoff J,Pertsch T,et al.Discrete nonlinear localization in femtosecond laserwritten waveguides in fused silica.Opt Express,2005,13:10552~10557
    [30] Heinrich M,Szameit A,Dreisow F.Evanescent coupling in arrays of type II femtosecondlaser-written waveguides in bulk x-cut lithium niobate.Appl Phys Lett,2008,93:101111
    [31] Liu Z P,Li Y,Xiao Y F,et al.Direct laser writing of whispering gallery microcavities bytwo-photon polymerization.Appl Phys Lett,2010,97:211105
    [32] Mingaleev S F, Kivshar Y S. Nonlinear photonic crystals: toward all-opticaltechnologies.Opt Photon News,2002,13:48
    [33] Matoba O,Itoh K,Ichioka Y.Array of photorefractive waveguides for massively paralleloptical interconnections in lithium niobate.Opt Lett,1996,21:122~124
    [34] Efremidis N K,Sears S,Christodoulides D N,et al.Discrete solitons in photorefractiveoptically induced photonic lattices.Phys Rev E,2002,66:046602
    [35] Fleischer J W,Segev M,Efremidis N K,et al.Observation of twodimensional discretesolitons in optically induced nonlinear photonic lattices.Nature,2003,422:147~150
    [36] Fleischer J W,Carmon T,Segev M,et al.Observation of discrete solitons in opticallyinduced real time waveguide arrays.Phys Rev Lett,2003,90:023902
    [37] Schwartz T,Bartal G,Fishman S,et al.Transport and Anderson localization in disorderedtwo-dimensional photonic lattices.Nature,2007,446:52~55
    [38] Freedman B,Lifshitz R,Fleischer J W,et al.Phason dynamics in nonlinear photonicquasicrystals.Nature Materials,2007,6:776~781
    [39] Chen Z G,MacCarthy K.Spatial soliton pixels from partially coherent light.Opt Lett,2002,27:2019~2021
    [40] Martin H,Eugenieva E D,Chen Z,et al.Discrete solitons and soliton-induced dislocationsin partially coherent photonic lattices.Phys Rev Lett,2004,92:123902
    [41] Chen Z G,Martin H,Eugenieva E D.Formation of discrete solitons in light-inducedphotonic lattices.Opt Express,2005,13:1816~1826
    [42] Wang X,Bezryadina A,Chen Z G,et al.Observation of two-dimensional surfacesolitons.Phys Rev Lett,2007,98:123903
    [43] Birks T A,Knight J C,Russell P S J.Endlessly single-mode photonic crystal fiber.OptLett,1997,22:961~963
    [44] Birner A,Wehrspohn R B,G sele U M,et al.Silicon-based photonic crystals.Adv Mater,2001,13:377~388
    [45] Cregan R F,Mangan B J,Knight J C,et al.Single-mode photonic band gap guidance oflight in air.Science,1999,285:1537~1539
    [46] Davydov A S.Theory of contraction of proteins under their excitation.J Theor Biol,1973,38:559~569
    [47] Dahan M B,Peik E,Reichel J,et al.Bloch oscillations of atoms in an opticalpotential.Phys Rev Lett,1996,76:4508~4511
    [48] Vukusic P,Sambles J R.Photonic structures in biology.Nature,2003,424:852~855
    [49] Yeh P,Yariv A,Hong C S.Electromagnetic propagation in periodic stratified media.I.General theory.J Opt Soc Am,1977,67:423~438
    [50] Mandelik D,Eisenberg H S,Silberberg Y,et al.Band-gap structure of waveguide arraysand excitation of Floquet-Bloch solitons.Phys Rev Lett,2003,90:053902
    [51] Cohen O,Freedman B,Fleischer J W,et al.Grating-mediated waveguiding,Phys RevLett,2004,93:103902
    [52] Bartal G,Cohen O,Buljan H,et al.Brillouin zone spectroscopy of nonlinear photoniclattices.Phys Rev Lett,2005,94:163902
    [53] Terhalle B.Controlling light in optically induced photonic lattices [dissertation].Münster:Westf lische Wilhelms-Universit t Münster,2011,28~31
    [54] Christodoulides D N,Lederer F,Silberberg Y.Discretizing light behaviour in linear andnonlinear waveguide lattices.Nature,2003,424:817~823
    [55] Eisenberg H S,Silberberg Y,Morandotti R,et al.Diffraction management.Phys Rev Lett,2000,85:1863~1866
    [56] Pertsch T,Zentgraf T,Peschel U,et al.Anomalous refraction and diffraction in discreteoptical systems.Phys Rev Lett,2002,88:093901
    [57] Rosberg C R,Neshev D N,Sukhorukov A A,et al.Tunable positive and negative refractionin optically induced photonic lattices.Opt Lett,2005,30:2293~2295
    [58] Lou C B,Wang X S,Xu J J,et al.Nonlinear spectrum reshaping and gap-soliton-traintrapping in optically induced photonic structures.Phys Rev Lett,2007,98:213903
    [59] Christodoulides D N,Joseph R I.Discrete self-focusing in nonlinear arrays of coupledwaveguides.Opt Lett,1988,13:794~796
    [60] Eisenberg H S,Silberberg Y,Morandotti R,et al.Discrete spatial optical solitons inwaveguide arrays.Phys Rev Lett,1998,81:3383~3386
    [61] Efremidis N K,Sears S,Christodoulids D N,et al.Discret solitons in photorefractiveoptically induced photonic lattices.Phys Rev E,2002,66:046602
    [62] Efremidis N K,Hudock J,Christodoulides D N,et al.Two-dimensional optical latticesolitons.Phys Rev Lett,2003,91:213906
    [63] Chen Z G,Martin H,Eugenieva E D,et al.Anisotropic enhancement of discrete diffractionand formation of two-dimensional discrete-soliton trains.Phys Rev Lett,2004,92:143902
    [64] Martin H,Eugenieva E D,Chen Z G,et al.Discrete solitons and soliton-induceddislocations in partially coherent photonic lattices.Phys Rev Lett,2004,92:123902
    [65] Chen Z G,Martin H,Eugenieva E D,et al.Formation of discrete solitons in light-inducedphotonic lattices.Opt Express,2005,13:1816~1826
    [66] Fleischer J,Bartal G,Cohen O,at al.Spatial photonics in nonlinear waveguide arrays.Optexpress,2005,13:1780~1796
    [67] Lederer F,Stegeman G,Christodoulides D N,et al.Discrete solitons in optics.Phys Rep,2008,463:1~126
    [68] Kivshar Y S.Self-localization in arrays of defocusing waveguides.Opt Lett,1993,18:1147~1149
    [69] Morandotti R,Eisenberg H S,Silberberg Y,et al.Self-focusing and defocusing inwaveguide arrays.Phys Rev Lett,2001,86:3296~3289
    [70] Mandelik D,Morandotti R,Aitchison J S,et al.Gap solitons in waveguide arrays.PhysRev Lett,2004,92:093904
    [71] Neshev D N,Sukhorukov A A,Hanna B,et al.Controlled generation and steering of spatialgap solitons.Phys Rev Lett,2004,93:083905
    [72] Hadzievski L,Maluckov A,Stepic M,et al.Power controlled soliton stability and steeringin lattices with saturable nonlinearity.Phys Rev Lett,2004,93:033901
    [73] Ablowitz M J,Musslimani Z H.Discrete diffraction managed spatial solitons.Phys RevLett,2001,87:254102
    [74] Neshev D N,Sukhorukov A A,Krolikowski W,et al.Nonlinear optics and lightlocalization in periodic photonic lattices.J Nonlinear Opt Phys Mater,2007,16:1~25
    [75] Desyatnikov A S,Sagemerten N,Fischer R,et al.Two-dimensional self-trapped nonlinearphotonic lattices.Opt Express,2006,14:2851~2863
    [76] Christodoulides D N, Eugenieva E D. Blocking and routing discrete solitons intwo-dimensional networks of nonlinear waveguide arrays.Phys Rev Lett,2001,87:233901
    [77] Pertsch T,Peschel U,Lederer F.All-optical switching in quadratically nonlinearwaveguide arrays.Opt Lett,2003,28:102~104
    [78] Morandotti R,Eisenberg H S,Mandelik D,et al.Interaction of discrete solitons withstructural defects.Opt Lett,2003,28:834~846
    [79] Fedele F,Yang J K,Chen Z G.Defect modes in one-dimensional photonic lattices.OptLett,2005,30:1506~1508
    [80] Makasyuk I,Chen Z G,Yang J K.Bandgap guidance in optically-induced photonic latticeswith a negative defect.Phys Rev Lett,2006,96:223903
    [81] Wang X S,Young J,Chen Z G,et al.Observation of lower to higher bandgap transitionof one-dimensional defect modes.Opt Express,2006,14:7362~7367
    [82] Wang X S,Chen Z G,Yang J K.Guiding light in optically induced ring lattices with alow-refractive-index core.Opt Lett,2006,31:1887~1889
    [83] Wang X S,Makasyuk I,Chen Z G,et al.Guiding light in optically induced PCF-likestructures.Opt Photon News,2006,12:1227
    [84] Smirnov E,Rüter C E,Stepi M,et al.Dark and bright blocker soliton interaction indefocusing waveguide arrays.Opt Express,2006,14:11248~11255
    [85] Makris K G,Christodoulides D N,Peleg O,et al.Optical transitions and Rabi oscillationsin waveguide arrays.Opt Express,2008,16:10309~10314
    [86] Shandarova K,Ruter C,Kip D,et al.Experimental observation of Rabi oscillations inphotonic lattices.Phys Rev Lett,2009,102:123905
    [87] Lahini Y,Pozzi F,M.Sorel,et al.Effect of Nonlinearity on Adiabatic Evolution ofLight.Phys Rev Lett,2008,101:193901
    [88] Dunlap D H,Kenkre V M.Dynamic localization of a charged particle moving under theinfluence of an electric field.Phys Rev B,1986,34:3625
    [89] Longhi S,Marangoni M,Lobino M,et al.Observation of dynamic localization inperiodically curved waveguide arrays.Phys Rev Lett,2006,96:243901
    [90] Szameit A,Garanovich I L,Heinrich M,et al.Polychromatic dynamic localization incurved photonic lattices.Nature Physics,2009,5:271~275
    [91] Szameit A,Kartashov Y V,Dreisow F,et al.Inhibition of light tunneling in waveguidearrays.Phys Rev Lett,2009,102:153901
    [92] Zhang P,Egger R,Chen Z G.Optical induction of three-dimensional photonic lattices andenhancement of discrete diffraction.Opt Express,2009,17:13151~13156
    [93] Zhang P,Efremidis N K,Miller A,et al.Observation of coherent destruction of tunnelingand unusual beam dynamics due to negative coupling in three-dimensional photoniclattices.Opt Lett,2010,35:3252~3254
    [94] Zhang P,Efremidis N K,Miller A,et al.Reconfigurable3D photonic lattices by opticalinduction for optical control of beam propagation.Appl Phys B,2011,104:553~560
    [95] Xu D,Chen K P,Ohlinger K,et al.Holographic fabrication of diamondlike photoniccrystal template using two-dimensional diffractive optical elements.Appl Phys Lett,2008,93:031101
    [96] Sun X H,Tao X M,Ye T J,et al.Optics design and fabrication of3D electricallyswitchable hexagonal photonic crystal.Appl Phys B,2007,87:65~69
    [97] Jenness N J,Wulff F D,Johannes M S,et al.Three-dimensional parallel holographicmicropatterning using a spatial light modulator,Opt Express,2008,16:15942~15948
    [98] Xavier J,Rose P,Terhalle B,et al.Three-dimensional optically induced reconfigurablephotorefractive nonlinear photonic lattices.Opt Lett,2009,34:2625~2627
    [99] Xavier J, Boguslawski M, Rose P, et al. Reconfigurable optically inducedquasicrystallographic three-dimensional complex nonlinear photonic lattice Structures.AdvMater,2010,22:356~360
    [100] Segev M,Crosignanim B,Yariv A,et al.Spatial solitons in photorefractive media. PhysRev Lett,1992,68:923~926
    [101] Lou C B,Xu J J,Qiao H J,et al.Enhanced second-harmonic generation by means ofhigh-power confinement in a photovoltaic soliton-induced waveguide.Opt Lett,2004,29:953~955
    [102] Siviloglou G A,Christodoulides D N.Accelerating finite energy Airy beams.Opt Lett,2007,32:979~981
    [103] Siviloglou G A,Broky J,Dogariu A,et al.Observation of accelerating airy beams.PhysRev Lett,2007,99:213901
    [104] Polynkin P,Kolesik M,Moloney J V,et al.Curved plasma channel generation usingultraintense airy beams.Science,2009,324:229~232
    [105] Polynkin P,Kolesik M,Moloney J.Filamentation of femtosecond laser airy beams inwater.Phys Rev Lett,2009,103:123902
    [106] Bejot P,Kasparian J,Henin S,et al.Higher-order kerr terms allow ionization-freefilamentation in gases.Phys Rev Lett,2010,104:103903
    [107] Jia S,Lee J,Fleischer J W,et al.Diffusion-trapped Airy beams in photorefractivemedia.Phys Rev Lett,2010,104:253904
    [108] Chen R,Yin C,Chu X,et al.Effect of Kerr nonlinearity on an Airy beam.Phys Rev A,2010,82:043832
    [109] Hu Y,Huang S,Zhang P,et al.Persistence and break-down of Airy beams driven by aninitial nonlinearity.Opt Lett,2010,35:3952~3954
    [110] Efremidis N K.Airy trajectory engineering in dynamic linear index potentials.Opt Lett,2011,36:3006~3008
    [111] Kanshu A,Rüter C E,Kip D,er al.Optically-induced defect states in photonic lattices:formation of defect channels,directional couplers,and disordered lattices leading toAnderson-like light localization.Appl Phys B,2009,95:537~543
    [112] Szameit A,Kartashov Y V,Heinrich M,et al.Observation of two-dimensional defectsurface solitons.Opt Lett,2009,34:797~799
    [113] Born M,Wolf E.Principles of optics.7th ed.Cambridge:Cambridge University Press,1999.1~70
    [114] Ashkin A, Boyd G D, Dziedzic J M, et al. Optically-induced refractive indexinhomogeneities in LiNbO3and LiTaO3.Appl Phys Lett,1966,9:72~74
    [115]刘思敏,郭儒,许京军.光折变非线性光学及其应用.第一版.北京:科学出版社,2004.10~86
    [116] Boyd R W.Nonlinear optics.3rd ed.New York:Academic Press,2008.1~40
    [117] Yeh P.Introduction to photorefractive nonlinear optics.1st ed.New York:Wiley,1993.1~50
    [118] Kukhtarev N V,Markov V B,Odoulov S G,et al.Holo-graphic storage in electro-opticcrystals:I.steady state+II.beam coupling and light amplification.Ferroelectrics,1979,22:961~964
    [119] Christodoulides D N,Carvalho M I.Bright,dark,and gray spatial soliton states inphotorefractive media.J Opt Soc Am B,1995,12:1628~1633
    [120] Shi Z,Yang J K.Solitary waves bifurcated from Bloch-band edges in two-dimensionalperiodic media.Phys Rev E,2007,75:056602
    [121] Klinger J,Martin H,Chen Z G.Experiment on induced modulational instability of anincoherent optical beam.Opt Lett,2001,26:271~273
    [122] Chen Z G,McCarthy K.Spatial soliton pixels from partially incoherent light.Opt Lett,2002,27:2019~2021
    [123] Chen Z G,Yang J K.Nonlinear Optics and Applications.Kerala:Research Signpostpublisher,2007.103~150
    [124] Neshev D N,Alexander T J,Ostrovskaya E A,et al.Observation of discrete vortex solitonsin optically-induced photonic lattices.Phys Rev Lett,2004,92:123903
    [125] Fleischer J W,Bartal G,Cohen O,et al.Observation of vortex-ring discrete solitons in2Dphotonic lattices.Phys Rev Lett,2004,92:123904
    [126] Wang J D,Yang J K.Families of vortex solitons in periodic media.Phys Rev A,2008,77:033834
    [127] Song D H,Lou C B,Tang L Q,et al.Self-trapping of optical vortices in waveguide latticeswith a self-defocusing nonlinearity.Opt Express,2008,16:10110~10116
    [128] Meier J,Stegeman G I,Christodoulides D N,et al.Beam interactions with a blocker solitonin one-dimensional arrays.Opt Lett,2005,30:1027~1029
    [129] Morales-Molina L,Vicencio R A.Trapping of discrete solitons by defects in nonlinearwaveguide arrays.Opt Lett,2006,31:966~968
    [130] Kivshar Y S,Fei Z,Vazquez L.Resonant soliton-impurity interactions.Phys Rev Lett,1991,67:1177~1180
    [131] Mekis A,Chen J C,Kurland I,et al.High transmission through sharp bends in photoniccrystal waveguides.Phys Rev Lett,1996,77:3787~3790
    [132] Friberg S R,Weiner A M,Silberberg Y,et al.Femotosecond switching in a dual-core-fibernonlinear coupler.Opt Lett,1988,13:904~906
    [133] Yariv A,Xu Y,Lee R K,et al.Coupled-resonator optical waveguide:a proposal andanalysis.Opt Lett,1999,24:711~713
    [134] Salguetro J R,Kivshar Y S.Nonlinear dual-core photonic crystal fiber couplers.Opt Lett,2005,30:1858~1860
    [135] Wang X S,Chen Z G.Beam control and multi-color routing with spatial photonic defectmodes.Opt Express,2009,17:16927~16932
    [136] Ye F W,Kartachov Y V,Vysloukh V A,et al.Nonlinear switching of low-index defectmodes in photonic lattices.Phys Rev A,2008,78:013847
    [137] Dreisow F,Ornigotti M,Szameit A,et al.Polychromatic beam splitting by fractionalstimulated Raman adiabatic passage.Appl Phys Lett,2009,95:261102
    [138] Song D H,Wang X S,Shuldman D,et al.Observation of bandgap guidance of opticalvortices in a tunable negative defect.Opt Lett,2010,35:2106~2108
    [139] Broky J,Siviloglou G A,Dogariu A,et al.Self-healing properties of optical Airybeams.Opt Express,2008,16:12880~12891
    [140] Hu Y,Zhang P,Lou C B,et al.Optimal control of the ballistic motion of Airy beams.OptLett,2010,35:2260~2262
    [141] Kaminer I,Lumer Y,Segev M,et al.Causality effects on accelerating light pulses.OptExpress,2011,19:23132~23139
    [142] Greenfield E,Segev M,Walasik W,et al.Accelerating light beams along arbitrary convextrajectories.Phys Rev Lett,2011,106:213902
    [143] Froehly L,Courvoisier F,Mathis A,et al.Arbitrary accelerating micron-scale causticbeams in two and three dimensions.Opt Express,2011,19:16455~16465
    [144] Chávez-Cerda S,Arrizón U R,Moya-Cessa H M.Generation of Airy solitary-like wavebeams by acceleration control in inhomogeneous media.Opt Express,2011,19:16448~16454
    [145] Rose P,Diebel F,Boguslawski M,et al.Airy beam induced optical routing.arXiv,2012,1202:5724v1
    [146] Liu W,Neshev D N,Shadrivov I V,et al.Plasmonic Airy beam manipulation in linearoptical potentials.Opt Lett,2011,36:1164~1166
    [147] Berry M V, Balazs N L. Evolution of semiclassical quantum states in phasespace.J.Phys.A:Math Gen,1979,12:625~642
    [148] Morandotti R,Peschel U,Aitchison J S,et al.Experimental observation of linear andnonlinear optical bloch oscillations.Phys Rev Lett,1999,83:4756~4759
    [149] Trompeter H,Pertsch T,Lederer F,et al.Visual observation of zener tunneling.Phys RevLett,2006,96:023901
    [150] Trompeter H,Krolikowski W,Neshev D N,et al.Bloch oscillations and zener tunnelingin two-dimensional photonic lattices.Phys Rev Lett,2006,96:053903
    [151] Chremmos I,Zhang P,Prakash J,et al.Fourier-space generation of abruptly autofocusingbeams and optical bottle beams.Opt Lett,2011,36:3675~3677
    [152] Zhang P,Prakash J,Zhang Z,et al.Trapping and guiding microparticles with morphingautofocusing Airy beams.Opt Lett,2011,36:2883~2885
    [153] Dolev I,Kaminer I,Shapira A,et al.Experimental observation of self-accelerating beamsin quadratic nonlinear media.Phys Rev Lett,2012,108:113903
    [154] Bandres M A,Gutierrez-Vega J C.Airy-Gauss beams and their transformation by paraxialoptical systems.Opt Express,2007,15:16719~16728
    [155] Efremidis N K,Christodoulides D N.Abruptly autofocusing waves.Opt Lett,2010,35:4045~4047
    [156] Vallée O,Soares M.Airy functions and applications to physics.1st ed.London:ImperialCollege Press,2004.30~35
    [157] Torre A. Gaussian modulated Ai-and Bi-based solutions of the2D PWE: acomparison.Appl Phys B,2010,99:775~799
    [158] Abramochkin E,Razueva E.Product of three Airy beams.Opt Lett,2011,36:3732~3734

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700