兼养培养对三种典型微藻生长与胞内组分及脂质合成相关基因表达的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微藻生长迅速、生物量高并且富含油脂,因此是生产生物柴油的理想原料。许多微藻在兼养培养条件下与光能自养条件下相比具有更高的生长速率。在本文中对三种微藻眼点拟微绿球藻(Nannochloropsis oculata HQW03)、盐生杜氏藻(Dunaliella salina HQW04)和小球藻(Chlorella sorokiniana CS-01)在以葡萄糖为有机碳源的兼养培养条件下的生长、脂类和蛋白质含量的变化进行了研究。结果表明当培养基中葡萄糖浓度达到最适浓度时,眼点拟微绿球藻(Nannochloropsis oculata HQW03)、盐生杜氏藻(Dunaliella salina HQW04)和小球藻(Chlorella sorokiniana CS-01)的生物量分别是自养培养条件下的1.4、2.2和4.2倍。同时,脂类和蛋白质含量也有所增加(眼点拟微绿球藻:23%和201%;盐生杜氏藻:20%和43%;小球藻:86%和215%)。通过比较三种微藻脂类产量,平均每天的脂类产量以及添加葡萄糖后增加的脂类产量发现小球藻CS-01与其他两种微藻相比在许多方面都是最理想的藻种,如生长速率,脂类产量以及生产速率和葡萄糖利用率等。
     通过Real-time PCR对小球藻CS-01在不同浓度葡萄糖培养条件下的三种脂类合成相关基因(accD, accl和rbcL)的表达差异进行了研究。结果表明:异质型乙酰辅酶A羧化酶是小球藻CS-01脂类合成的关键酶,accD基因的表达水平能够反映微藻在兼养条件下稳定期脂类含量的情况;另外,编码同质型乙酰辅酶A羧化酶的accl基因的表达水平很低甚至不表达;rbcL基因的不同表达水平表明小球藻CS-01在兼养培养条件下,光能自养和化能异养生长不是独立进行的,并且有机碳源的利用可以减小光合作用效率。
Microalgae can grow extremely rapidly and are rich in oils that are a suitable feedstock for biodiesel production. Many microalgae exhibit higher growth rates under mixotrophic conditions than under photoautotrophic conditions. In the present study, three species of microalgae Nannochloropsis sp.. HQW03, Dunaliella salina HQW04 and Chlorella sorokiniana CS-01 under mixotrophic culture with glucose were compared with photoautotrophic culture in terms of growth, lipid and protein contents, The results show that with optimal concentrations of glucose for growth in the media, the biomass productivity of Nannochloropsis sp.., Dunaliella salina and Chlorella sorokiniana were found to be 1.4,2.2 and 4.2 fold of that obtained under photoautotrophic conditions; meanwhile, the contents of lipid and protein were increased (Nannochloropsis sp..:23% and 201%; Dunaliella salina:20% and 43%; Chlorella sorokiniana:86% and 215%, respectively). Upon comparison of the lipid yield, average lipid yield per day, and additional lipid yield with glucose of the three microalgae, Chlorella sorokiniana CS-01 proved to be the best organism for lipid production in many aspects, such as growth rate, lipid yield and productive rate, and glucose utilization efficiency.
     Furthermore, the expression level of accD, accl, rbcL genes in Chlorella sorokiniana CS-01 with various glucose concentrations were also studied by real-time PCR. The results show:heteromeric ACCase is one of key enzymes for lipid synthesis in Chlorella sorokiniana, as the expression level of accD can reflect lipid contents of algae in stationary phase of mixotrophic growth; Additionally, the acc1 gene coding homomeric ACCase remains constitutively expressed at low levels or even not expressed; The differential expression of the rbcL gene suggests that photoautotrophic and heterotrophic growth of Chlorella sorokiniana CS-01 cannot be proceed independently under mixotrophic conditions, and utilization of an organic carbon source will reduce the photosynthesis efficieny.
引文
[1]杨艳,卢滇楠,李春,等.面向21世纪的生物能源[J].化工进展,2002,21(5):299-302.
    [2]吴翠红.浅析我国生物柴油发展前景[J].齐鲁石油化工,2007,35(1):52-57.
    [3]Khan S.A., Rashmi, Hussain M.Z., et al. Prospects of biodiesel production from microalgae in India[J]. Renewable and Sustainable Energy Reviews,2009, 13:2361-2372.
    [4]尹红.欧盟生物柴油生产现状[J].粮食与油脂,2004,6.
    [5]朱建芳,钱伯章.生物柴油生产现状及技术进展[J].天然气与石油,2007,25(3):49-52.
    [6]苏敏光,于少明,吴克,等.生物柴油制备方法及其质量标准现状[J].包装与食品机械,2008,26(3):20-25.
    [7]宋东辉,侯李君,施定基.生物柴油原料资源高油脂微藻的开发利用[J].生物工程学报,2008,24(3):341-348.
    [8]夏金兰,万民熙,王润民,等.微藻生物柴油的现状与进展[J].中国生物工程杂志,2009,29(7):118-126.
    [9]王长海.海洋生化工程概论M].2004:化学工业出版社.
    [10]Beer L.L, Boyd E.S, Peters J.W, et al. Engineering algae for biohydrogen and biofuel production[J]. Current Opinion in Biotechnology,2009,20:264-271.
    [11]陈峰,姜悦.微藻生物技术[M].1999:中国轻工业出版社.
    [12]周华伟,林炜铁,陈涛.小球藻的异养培养及应用前景[J].氨基酸和生物资源,2005,27(4):69-73.
    [13]缪晓玲,吴庆余.藻类异养转化制备生物油燃料技术[J].可再生能源,2004,4:41-44.
    [14]张海滨,孙世春,麦康森,等.微藻异养培养技术的研究进展[J].海洋湖沼通报,2000,03:51-59.
    [15]余颖.陈必链.微绿球藻的研究进展[J].海洋通报,2005,24(6):75-80.
    [16]魏东,张学成,邹立红,等.细胞生长时期对两种海洋微藻总脂含量和脂肪酸组成的影响[J].青岛海洋大学学报,2000,30(3):503-509.
    [17]魏东,张学成,隋正红,等.氮源和N/P对眼点拟微球藻的生长、总脂含量和脂肪酸组成的影响[J].海洋科学,2000,24(7):46-51.
    [18]Xu F, Hu H.-h., Cong W, et al. Growth characteristics and eicosapentaenoic acid production by Nannochloropsis sp.. in mixotrophic conditions[J]. Biotechnology Letters,2004,26:51-53.
    [19]孔凡晶,郑绵平.盐湖杜氏藻研究的回顾与展望[J].盐业与化工,2007,36(5):27-33.
    [20]周青峰,路福平,姚汝华.杜氏藻及其应用前景[J].食品研究与开发,1996,17(3):3-6.
    [21]Garcia-Gonzalez M, Moreno J, Manzano J.C, et al. Production of Dunaliella salina biomass rich in 9-cis-β-carotene and lutein in a closed tubular photobioreactor[J]. Journal of Biotechnology,2005,115(1):81-90.
    [22]邹宁,李艳,孙东红.几种有经济价值的微藻及其应用[J].烟台师范学院学报(自然科学版),2005,21(1):59-63.
    [23]廖启斌,李文权,陈清花,等.营养盐对三角褐指藻脂肪酸含量与百分组成的影响[J].海洋环境科学,2000,19(2):6-9.
    [24]Boussiba S, Vonshak A. Astaxanthin Accumulation in the Green Alga Haematococcus pluvialis[J]. Plant and Cell Physiology,1991,32(7):1077-1082.
    [25]NaguibY.M.A. Antioxidant Activities of Astaxanthin and Related Carotenoids[J]. Phytochem Technologies,2000,48(4):1150-1154.
    [26]魏东,臧晓南.大规模培养雨生红球藻生产天然虾青素的研究进展和产业化现状[J].中国海洋药物,2001,5:4-8.
    [27]梁英,孙世春,魏建功.海水生物饵料培养技术[M].1998,青岛:青岛海洋大学出版社.16-29.
    [28]张建民,刘新宁.可利用微藻的种类及其应用前景[J].资源开发与市场,2005,21(1):65-66.
    [29]Gouveia L, Oliveira A.C. Microalgae as a raw material for biofuels production[J]. J Ind Microbiol Biotechnol,2009,36:269-274.
    [30]Mata, T.M, Martins A.n.A, Caetano N.S.Microalgae for biodiesel production and other applications:Areview[J]. Renewable and Sustainable Energy Reviews, 2010,14:217-232.
    [31]Chisti Y. Biodiesel from microalgae beats bioethanol[J]. Trends in Biotechnology, 2008,26(3):126-131.
    [32]Schenk P.M, Thomas-Hall S.R, Stephens E, et al. Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production[J]. BioEnergy Research, 2008,1:20-43.
    [33]Borowitzka M.A. Commercial production of microalgae:ponds, tanks, tubes and fermenters[J]. Journal of Biotechnology,1999,70(1-3):313-321.
    [34]刘娟妮,胡萍,姚领,等.微藻培养中的光生物反应器研究进展[J].食品科学,2006,27(12):772-777.
    [35]Brown L.M. Uptake of carbon dioxide from fuel gas by microalgae[J]. Energy Convers Manage,1996,37:1363-1367.
    [36]Yun, Y.-S, Lee S.B, Park J.M, et al. Carbon Dioxide Fixation by Algal Cultivation Using Wastewater Nutrients[J]. J. Chem. Tech. Biotechnol,1997, 69:451-455.
    [37]Sierra E, Aci'en F.G, Fern'andez J.M, et al. Characterization of a flat plate photobioreactor for the production of microalgae[J]. Chemical Engineering Journal,2008,138(2008):136-147.
    [38]刘晶磷,张嗣良.封闭式光生物反应器研究进展[J].生物工程学报,2000,16(2):119~123.
    [39]Suh I.S, Joo H.-N, Lee C.-G. A novel double-layered photobioreactor for simultaneous Haematococcus pluvialis cell growth and astaxanthin accumulation[J]. Journal of Biotechnology,2006,125(2006):540-546.
    [40]Ugwu C.U, Aoyagi H, Uchiyama H. Photobioreactors for mass cultivation of algae[J]. Bioresource Technology,2008,99(10):4021-4028.
    [41]Gao C, Zhai Y, Ding Y, et al. Application of sweet sorghum for biodiesel production by heterotrophic microalga Chlorellaprotothecoides[J]. Applied Energy,2010,87:756-761.
    [42]Xu H, Miao X, Wu Q. High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters[J]. Journal of Biotechnology,2006,126:499-507.
    [43]Wang Y, Peng J. Growth-associated biosynthesis of astaxanthin in heterotrophic Chlorella zofingiensis (Chlorophyta) [J]. World J Microbiol Biotechnol,2008, 25:1915-1922.
    [44]Heijnen J.J, Roels J.A. A macroscopic model describing yield and maintenance relationships in aerobic fermentation[J]. Biotechnol. Bioengng,1981, 23:739-745.
    [45]Xu F, Wei C, Cai Zh-L, et al. Effects of organic carbon sources on cell growth and eicosapentaenoic acid content of Nannochloropsis sp.. [J]. Journal of Applied Phycology,2004,16:499-503.
    [46]Ip P.-F, Wong K.-H, Chen F. Enhanced production of astaxanthin by the green microalga Chlorella zofingiensis in mixotrophic culture[J]. Process Biochemistry, 2004,39:1761-1766.
    [47]Liu X, Duan S, Li A. Effects of Organic Carbon Source on Growth, Biochemical Components and Fatty Acid Composition of Phaeodactylum tricornutum[J]. Chinese Journal of Biotechnology,2008,24(1):147-152.
    [48]Andrade M.R, Costa J.A.V. Mixotrophic cultivation of microalga Spirulina platensis using molasses as organic substrate[J]. Aquaculture,2007, 264:130-134.
    [49]Courchesne N.M.D, Parisien A, Wang B, et al. Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches[J]. Journal of Biotechnology,2009,141:31-41.
    [50]Dunahay T.G, Jarvis E.E, Roessler P.G. Genetic transformation of the diatoms Cyclotella cryptica and Nacicula saprophila[J]. J Phycol,1995,31:1004-1012.
    [51]Holmes R.S. Comparative genomics and proteomics of vertebrate diacylglycerol acyltransferase (DGAT), acylCoA wax alcohol acyltransferase(AWAT) and monoacylglycerol acyltransferase(MGAT) [J]. Comparative Biochemistry and Physiology, Part D,2010,5:45-54.
    [52]Li R, Yu K, Hildebrand D.F. DGAT1, DGAT2 and PDAT Expression in Seeds and Other Tissues of Epoxy and Hydroxy Fatty Acid Accumulating Plants[J]. Lipids, 2010,45:145-157.
    [53]Slocombe S.P, Cornah J, Pinfield-Wells H, et al. Oil accumulation in leaves directed by modification of fatty acid break down and lipid synthesis pathways[J]. Plant Biotechnology Journal,2009,7:694-703.
    [54]Siloto R.M.P, Truksa M, Brownfield D, et al. Directed evolution of acyl-CoA:diacylglycerol acyltransferase:Development and characterization of Brassica napus DGAT1 mutagenized libraries[J]. Plant Physiology and Biochemistry,2009,47:456-461.
    [55]Andrianov V, Borisjuk N, Pogrebnyak N, et al. Tobacco as a production platform for biofuel:overexpression of Arabidopsis DGAT and LEC2 genes increases accumulation and shifts the composition of lipids in green biomass[J]. Plant Biotechnology Journal,2010,8:277-287.
    [56]Zhang Y, Adams I.P, Ratledge C. Malic enzyme:the controlling activity for lipid production? Overexpression of malic enzyme in Mucor circinelloides leads to a 2.5-fold increase in lipid accumulation[J]. Microbiology,2007,153:2013-2025.
    [57]陈锦清,郎春秀,胡张华,等.反义PEP基因调控油菜籽粒蛋白质/油脂含 量比率的研究[J].农业生物技术学报,1999,7(4):316-320.
    [58]Li Y, Han D, Hu G, et al. Chlamydomonas starchless mutant defective in ADP-glucose pyrophosphorylase hyper-accumulates triacylglycerol[J]. Metabolic Engineering,2010, doi:10.1016/j.ymben.2010.02.002.
    [59]Garc'ia M.C.C, Miron A.S, Sevilla J.M.F, et al. Mixotrophic growth of the microalga Phaeodactylum tricornutum Influence of different nitrogen and organic carbon sources on productivity and biomass composition[J]. Process Biochemistry 2005,40:297-305.
    [60]Yu H, Jia S, Dai Y. Growth characteristics of the cyanobacterium Nostoc flagelliforme in photoautotrophic, mixotrophic and heterotrophic cultivation[J]. J Appl Phycol,2009,21:127-133.
    [61]Martinez F, Orus M. Interactions between glucose and inorganic carbon metabolism in Chlorella vulgaris strain UAM101[J]. Plant Physiol,1991, 95:1150-1155.
    [62]Marquez F, Sasaki K, Kakizono T, et al. Growth characteristics of Spirulina platensis in mixotrophic and heterotrophic cinditions[J]. J Ferment Bioeng,1993, 76:408-410.
    [63]Liu X, Duan S, Li A, et al. Effects of organic carbon sources on growth, photosynthesis, and respiration of Phaeodactylum tricornutum[J]. Journal of Applied Phycology. Journal of Applied Phycology,2009,21:239-246.
    [64]Bligh E.G, Dyer W.J. A rapid method for total lipid extraction and purification[J]. Can.J.Biochem.Physiol,1959,37:911-917.
    [65]Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Anal Biochem,1976,72:248-254.
    [66]Ren L.-J, Huang H, Xiao A.-H, et al. Enhanced docosahexaenoic acid production by reinforcing acetyl-CoA and NADPH supply in Schizochytrium sp..HX-308[J]. Bioprocess Biosyst Eng,2009,32:837-843.
    [67]Fabregas J, Maseda A, Dominguez A, et al. The cell composition of Nannochloropsis sp.. changes under different irradiances in semicontinuous culture[J]. World Journal of Microbiology and Biotechnology,2004, 20(1):31-35.
    [68]Gao C, Zhai Y, Ding Y, et al. Application of sweet sorghum for biodiesel production by heterotrophic microalga Chlorella protothecoides[J]. Applied Energy,2010,87:756-761.
    [69]Iida S, Miyagi A, Aoki S, et al. Molecular adaptation of rbcL in the heterophyllous aquatic plant Potamogeton[J]. PLoS One,2009,4(2):e4633.
    [70]Cronan J.E, Jr.Waldrop G.L. Multi-subunit acetyl-CoA carboxylases[J]. Progress in Lipid Research,2002,41(5):407-435.
    [71]Hu Q, Sommerfeld M, Jarvis E, et al. Microalgal triacylglycerols as feedstocks for biofuel production:perspectives and advances[J]. Plant Journal,2008, 54(4):621-639.
    [72]Nakkaew A, Chotigeat W, Eksomtramage T, et al. Cloning and expression of a plastid-encoded subunit, beta-carboxyltransferase gene (accD) and a nuclear-encoded subunit, biotin carboxylase of acetyl-CoA carboxylase from oil palm (Elaeis guineensis Jacq.) [J]. Plant Science,2008,175(4):497-504.
    [73]Sasaki Y, Nagano Y. Plant acetyl-CoA carboxylase:structure, biosynthesis, regulation, and gene manipulation for plant breeding[J]. Bioscience Biotechnology & Biochemistry,2004,68(6):1175-1184.
    [74]魏东,张学成.细胞生长时期对两种海洋微藻总脂含量和脂肪酸组成的影响[J].青岛海洋大学学报,2000,30(3):503-509.
    [75]Spreitzer R.J, Salvucci M.E. Rubisco:structure, regulatory interactions, and possibilities for a better enzyme[J]. Annual Review of Plant Biology,2002, 53:449-475.
    [76]Marquez F, Sasaki K, Kakizono T, et al. Growth characteristics of Spirulina platensis in mixotrophic and heterotrophic cinditions[J]. Journal of Fermentation and Bioengineering,1993,76:408-410.
    [77]Martinez F, Orus M. Interactions between glucose and inorganic carbon metabolism in Chlorella vulgaris strain UAM101[J]. Plant Physiology,1991, 95:1150-1155.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700