高分辨光腔衰荡光谱研究部分大气分子的振转谱带
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分子光谱学自从诞生以来,就是研究分子内部结构和性质最重要的手段之一,在物理、化学、天文以及环境科学等研究领域发挥着重要的作用。关于大气分子吸收光谱的研究,可以帮助人们更好地认识大气辐射平衡,此外对于行星大气的研究也有着重要的作用。在众多的吸收光谱技术中,光腔衰荡光谱技术由于其很高的灵敏度,近年来得到快速的发展。本论文的主要工作,就是利用光腔衰荡光谱技术研究部分大气分子的振转光谱。我们获得了大量新的光谱数据,并大大提高了一些大气分子光谱数据的精度。
     第一章简单介绍高分辨振转光谱学的研究概况、高分辨分子吸收光谱技术、几种常见的分子光谱线型函数以及线形多原子分子的红外振转光谱理论。
     第二章介绍一套可以用液氮冷却的低温差分吸收光谱装置,并用它测量了81K温度下甲烷同位素CH3D在1.58μm波段6099-6530cm-1的吸收光谱,最小可探测吸收系数αmin≈5×10-8cm-1.实验共测得液氮温度下6099-6530cm-1范围内的9000多条谱线,同时测量了室温下6200-6400cm-。范围内的5500条跃迁谱线。通过拟合同一条谱线两个不同温度下的强度,推算出这条跃迁谱线的下态能级,进而可以模拟81K到294K之间任意温度的光谱。其结果将有助于构建此波段的CH3D的光谱理论模型。这对于土卫六等富含甲烷的行星大气研究有着重要意义。
     第三章介绍利用连续光腔衰荡光谱技术测量了13C1602气体分子在806nm附近的三个振动谱带,分别是两个冷带10051.00001、10052-00001以及一个热带11151.01101。对这三个谱带的谱线进行分析,得到谱线的位置、强度以及上态能级的振转参数,其结果的精度比文献结果提高了约一个量级。
     第四章研究N2O气体在6950-7653cm-1的连续光腔衰荡光谱,探测到最小吸收系数αmin≈5×10-8cm-1.能探测到的最小的谱线强度为1×10-29cm/molecule。实验共测得7203条谱线,其中包含氧化二氮的四种同位素分子14N14N16O、14N15N16O、15N14N16O和14N14N18O,谱线的位置精度达1×10-3cm-1。根据有效哈密顿模型预测值,对实验所得谱线进行归属,共得到95个谱带,其中大部分谱带都是第一次被发现,通过拟合可以得到各谱带上态的振转参数。
     第五章介绍高灵敏、高精度的光腔衰荡光谱技术(CRDS)及其应用。由于具有很长的有效吸收光程(可以达到几十公里),CRDS技术具有很高的探测灵敏度。为了同时实现高精度测量,我们发展了通过超稳腔来对扫描激光的频率进行锁频和定标的技术,使得对所测谱线的位置能够达到亚MHz的测量精度。利用这套光谱仪,在低气压室温条件下,我们测量了H216O分子在784-795nm的73条强度大于1×10-25cm-1/(molecule-·m-2)的谱线,谱线位置的相对精度达到1×10-9。同时我们也测量了室温下12C16O2分子在782nm附近的10051-00001谱带的55条谱线的绝对位置、压力位移系数、强度和自碰撞加宽系数。
Molecular spectroscopy is one of the most important methods to study the internal structure and properties of molecules and it plays an important role in physical, chemi-cal, astrophysical and environmental studies. In particular, the absorption spectroscopy of atmospheric molecules helps us to understand the balance of the atmospheric radi-ation and the atmospheres of planet. Among different spectroscopy techniques, the Cavity Ring-down Spectroscopy(CRDS) has been developed quickly in recent years because of its high sensitivity. The present work is mainly devoted to the study of ro-vibrational spectrum of some atmospheric molecules using CRDS. We obtained a lot of new spectroscopy dada and the results also improved the accuracy of the spectral data of some atmospheric molecules.
     In chapter1,1will introduce a brief overview of the high-resolution ro-vibrational molecular spectroscopy, high-resolution absorption spectroscopy technologies, some common profile functions of the molecular spectroscopy and the theory of IR ro-vibrational spectroscopy of the linear molecule.
     In chapter2, a setup which can be cooled down with liquid nitrogen will be pre-sented. It was used in some differential absorption spectroscopy measurements. Spec-trum of CH3D has been recorded at81K around1.58μm (6099-6530cm-1) using differential absorption spectroscopy (αmin≈5×10-8cm-1). In total, more than9000transitions at liquid nitrogen temperature in the6099-6530cm-1and5500transitions at room temperature in the6200-6400cm-1have been obtained. The empirical lower state energies of the transitions were derived from the ratio of the line intensities at different temperatures. The absorption spectrum of CH3D at temperature between81K and294K can be simulated using these data. The results will help to build the model of the CH3D spectrum in the considered region and of great interests for the study of methane-rich atmospheres of planets such as Titan's.
     In chapter3,1will present the study of absorption spectrum of13C16O2near806nm using a continuous-wave cavity ring-down spectrometer. Two cold bands of10051-00001and10052-00001, one associated hot band11151-01101have been observed in this region. The line positions, intensities and ro-vibrational spectroscopic parameters of the upper states are determined from fitting of the transitions. The accuracy of these results is one order of magnitude better than that in literatures.
     In chapter4, the study of absorption spectrum of N2O between6950-7653cm-1using CW-Cavity Ring-down Spectroscopy will be presented. The typical noise equiv-alent absorption, in the order of αmin≈5×10-8cm-1, allowed for the detection of lines with intensity as low as1×10-29cm/molecule. The positions of7203lines of four isotopologues (14N14N16O,14N15N160,15N14N160and14N14N18O) were mea-sured with a typical accuracy of1×10-3cm-1. The transitions were ro-vibrationally assigned on the basis of the global effective Hamiltonian models developed for each isotopologue. More than95bands were obtained, most of them being newly report-ed. The ro-vibrational parameters of the upper states are determined from fits of the transitions.
     In chapter5, we focus on the high-sensitivity and high-precision cavity ring-down spectroscopy. In order to achieve high-precision, a continuous-wave cavity ring-down spectrometer with sub-MHz absolute frequency accuracy has been built using a thermo-stabilized Fabry-Perot interferometer made of ultra-low-expansion glass. Us-ing low sample pressure, the positions of73H216O lines in the spectral range of784-795nm intensities larger than1×10-25cm-1/(moleculecm-2) have been determined. The relative accuracy of the absolute frequency is estimated to be1x10-9.12C16O2lines of the10051-00001band at room temperature near782nm have also been recorded by the CW cavity ring-down spectrometer. Positions, pressure shift coefficients, intensi-ties and self-broadening coefficients of the55lines have been precisely determined.
引文
Adams W S, Dunham T.1932. Absorption bands in the infra-red spectrum of venus. Astron. Soc. Pac.,44:243.
    Adel A.1937. Note on the temperature of venus. Astrophys. J.,86:337.
    Andreev B A, Burenin A V, Karyakin E N, Krupnov A F, Shapin S M.1976. Sub-millimeter wave spectrum and molecular constants of N2O [J]. J. Mol. Spectrosc., 62:125-148.
    Battle M, Bender M L, Tans P P, White J W C, Ellis J T, Conway T, Francey R J.2000. Global carbon sinks and their variability inferred from atmospheric O2 and δ13C [J]. Science,287:2467-2470.
    Bertseva E, Campargue A, Perevalov V I, Tashkun S A.2004. New observations of weak overtone transitions of N2O by ICLAS-VECSEL near 1.07 μm [J]. J. Mol. Spectrosc.,226:196-200.
    Bertseva E, Kachanov A A, Campargue A.2002. Intracavity laser absorption spec-troscopy of N2O with a vertical external cavity surface emitting laser [J]. Chem. Phys. Lett.,351:18-26.
    B6zard B, Nixon C A, Kleiner I, Jennings D E.2007. Detection of 13CH3D on Titan [J]. Icarus,91:397-400.
    Boussin C, Lutz B L, de Bergh C, Hamdouni A.1998. Line intensities and self-broadening coefficients for the 3v2 band of monodeutrated methane [J]. J. Quant. Spectrosc. Radiat. Transfer.,60:501-514.
    Boussin C, Lutz B L, Hamdouni A, de Bergh C.1999. Pressure broadening and shift coefficients for H2, He and N2 in the 3v2 band of 12CH3D retrieved by a multispec-trum fitting technique [J]. J. Quant. Spectrosc. Radiat. Transfer.,63:49-84.
    Brown L R.2005. Empirical line parameters of methane from 1.1 to 2.1μm [J]. J. Quant. Spectrosc. Radiat. Transfer.,96:251-270.
    Campargue A, Bailly D, Teffo J L, Tashkun S A, Perevalov V I.1999. The v1+5v3 dyad of 12CO2 and 13CO2 [J]. J. Mol. Spectrosc.,193:204-212.
    Campargue A, Charvat A, Permogorov D.1994. Absolute intensity measurements of CO2 overtone transitions in the near-infrared [J]. Chem. Phys. Lett.,223:567-572.
    Campargue A, Mikhailenko S, Liu A W.2008. ICLAS of water in the 770 nm trans-parency window(12746-13558 cm-1). Comparison with current experimental and calculated databases. J. Quant. Spectrosc. Radiat. Transfer.,109:2832-2845.
    Campargue A, Permogorov D, Bach M, Abbouti Temsamani M, Vander Auwera J, Herman M, Fujii M.1995. Overtone spectroscopy in nitrous oxide [J]. J. Chem. Phys.,103:5931-5938.
    Campargue A, Wang L, Kassi S, Masat M, Votava O.2010a. Temperature dependence of the absorption spectrum of CH4 by high resolution spectroscopy at 81 K:(II) the Icosad region (1.49-1.30μm) [J]. J. Quant. Spectrosc. Radiat. Transfer.,111:1141-1151.
    Campargue A, Wang L, Liu A W, Hu S M, Kassi S.2010b. Empirical line parameters of methane in the 1.63-1.48 μm transparency window by high sensitivity Cavity Ring Down Spectroscopy [J]. Chem. Phys.,373:203-210.
    Chedin A.1979. The carbon dioxide molecule:potential, spectroscopic, and molecular constants from its infrared spectrum [J]. J. Mol. Spectrosc.,76:430-491.
    Cheng C F, Sun Y R, Pan H, Lu Y, Li X F, Wang J, Liu A W, Hu S M.2012a. Cavity ring-down spectroscopy of Doppler-broadened absorption line with sub-MHz abso-lute frequency accuracy. Optics Express,20(9):9956-9961.
    Cheng C F, Sun Y R, Pan H, Wang J, Liu A W, Campargue A, Hu S M.2012b. Electric-quadrupole transition of H2 determined to 10-9 precision. Phys. Rev. A, 85(2):024,501.
    Ciais P, Denning A S, Tans P P, Berry J A, Randall D A, Collatz G J, Sellers P J, et al. 1997. A three-dimensional synthesis study of δ18O in atmospheric CO2.1. surface fluxes [J]. J. Geophys. Res. Atmos.,102:5857-5872.
    Coustenis A, Achterberg R, Conrath B, Jennings D, Marten A, Gautier D, Nixon C, Flasar F, Teanby N, et al.2007. The composition of Titan's stratosphere from Cassini/CIRS mid-infrared spectra [J]. Icarus,189:35-62.
    Daumont L, Vander Auwera J, Teffo J L, Perevalov V I, Tashkun S A.2007. Line inten-sity measurements in 14N26O and their treatment using the effective dipole moment approach. II. the 5400-11000 cm-1 region [J]. J. Quant. Spectrosc. Radiat. Transfer., 104:342-356.
    de Bergh C, Courtin R, Bezard B, Coustenis C, Lellouch E, Hirtzig M, Rannou P, Drossart P, Campargue A, Kassi S, Wang L, Boudon V, Nikitin A, Tyuterev V.2012. Applications of a new set of methane line parameters to the modeling of Titan's spectrum in the 1.58 μm window [J]. Plan. Space Sci.,61:85-98.
    de Bergh C, Lutz B L, Owen T, Brault J, Chauville J.1986. Monodeuterated methane in the outer solar system. II. its detection on Uranus at 1.6 microns [J]. Astrophys. J.,311:501-510.
    de Bergh C, Lutz B L, Owen T, Chauville J.1988. Monodeuterated methane in the outer solar system. III. its abundance on Titan [J]. Astrophys. J.,329:951-955.
    de Bergh C, Lutz B L, Owen T, Maillard J P.1990. Monodeuterated methane in the outer solar system. IV. its detection and abundance on Neptune [J]. Astrophys. J., 355:661-666.
    Ding Y, Macko P, Romanini D, Perevalov V I, Tashkun S A, Teffo J L, Hu S M, Campar-gue A.2004. High sensitivity cw-cavity ring down and fourier transform absorption spectroscopies of 13CO2 [J]. J. Mol. Spectrosc.,226:146-160.
    Ding Y, Perevalov V I, Tashkun S A, Teffo J L, Bertseva E, Campargue A.2003. Weak overtone transitions of N2O around 1.05μm by ICLAS-VECSEL [J]. J. Mol. Spec-trosc.,220:80-86.
    Domyslawska J, Wojtewicz S, Lisak D, Cygan A, Ozimek F, Stec K, Radzewicz C, Trawinski R S, Ciurylo R.2012. Cavity ring-down spectroscopy of the oxygen B-band with absolute frequency reference to the optical frequency comb [J]. J. Chem. Phys.,136:024,201.
    Flaud J M, Camy-Peyret C, Bykov A, Naumenko O, Petrova T, Scherbakov A, et al. 1997. The high-resolution spectrum of water vapor between 11600 and 12750 cm-1. J. Mol. Spectrosc.,183:300-309.
    Furtenbacher T, Cssszar A G.2008. On employing H216O, H217O, H218O, and D216O lines as frequency standards in the 15-170 cm-1 window. J. Quant. Spectrosc. Radiat. Transfer.,109:1234-1251.
    Galatry L.1961. Simultaneous effect of doppler and foreign gas broadening on spectral lines. [J]. Phys. Rev.,122:1218-1223.
    Gamache R R, Kennedy S, Hawkins R, Rothman L S.2000. Total internal partition sums for molecules in the terrestrial atmosphere [J]. J. Mol. Struct.,517-518:407-425.
    Gao B, Jiang W, Liu A W, Lu Y, Cheng C F, Cheng G S, Hu S M.2010. Ultra sensitive near-infrared cavity ring down spectrometer for precise line profile measurement. [J]. Rev. Sci. Instrum.,81:043,105.
    Gao B, Kassi S, Campargue A.2009. Empirical low energy values for methane transi-tions in the 5852-6181 cm-1 region by absorption spectroscopy at 81 K [J]. J. Mol. Spectrosc.,253:55-63.
    Giusfredi G, Bartalini S, Borri S, Cancio P, Galli I, Mazzotti D, Natale P D. 2010. Saturated-absorption cavity ring-down spectroscopy [J]. Phys. Rev. Lett., 104:110,801.
    Golubiatnikov G Y, Markov V N, Guarnieri A, Knochel R.2006. Hyperfine structure of H216O and H218O measured by lamb-dip technique in the 180-560 Ghz frequency range. J. Mol. Spectrosc.,240:251-254.
    Herzberg G.1945. Molecular Spectra And Molecular Structure [B]. Van Nostrand Reinhold Company,1st ed.
    Herzberg G, Herzberg L.1953. Rotation-vibration spectra of diatomic and simple polyatomic molecules with long absorbing paths. J. Opt. Soc. Am.,43:1037-1044.
    Hodges J T, Layer H P, Miller W W, Scace G E.2004. Frequency-stabilized single-mode cavity ring-down apparatus for high-resolution absorption spectroscopy [J]. Rev. Sci. Instrum.,75(4):849-863.
    Jacquinet-Husson N, Crepeau L, Armante R, Boutammine C, Chedin A, Scott N A, et al.2011. The 2009 edition of the GEISA spectroscopic database. J. Quant. Spectrosc. Radiat. Transfer.,112:2395-2445.
    Kalmar B, O'Brien J J.1998. Quantitative intracavity laser spectroscopy measurements with a Ti:sapphire laser:absorption intensities for water vapor lines in the 790-800 nm region. J. Mol. Spectrosc.,192:386-393.
    Karlovets E V, Perevalov V I.2011. Calculation of the carbon dioxide effective dipole-momen tparameters of the qJ and q2J types for rare isotopologues [J]. Atmos. O-ceanic. Opt.,24:101-106.
    Kassi S, Gao B, Romanini D, Campargue A.2008. The near infrared (1.30-1.70^m) absorption spectrum of methane down to 77 K [J]. Phys. Chem. Chem. Phys., 10:4410-4419.
    Kassi S, Macko P, Naumenko O, Campargue A.2005. The absorption spectrum of wa-ter near 750 nm by cw-CRDS:contribution to the search of water dimer absorption. Phys. Chem. Chem. Phys.,7:2460-2467.
    Kassi S, Romanini D, Campargue A.2009. Mode by mode CW-CRDS at 80 K: application to the 1.58μm transparency window of CH4 [J]. Chem. Phys. Lett., 477:17-21.
    Lepere M.2004. Line profile study with tunable diode laser spectrometers. [J]. Spec-trochimica Acta Part A,60:3249-3258.
    Lisak D, Hodges J T.2007. High-resolution cavity ring-down spectroscopy measure-ments of blended H2O transitions. Appl. Phys. B,88:317-325.
    Liu A W, Kassi S, Malara P, Romanini D, Perevalov V I, Tashkun S A, Hu S M, Cam-pargue A.2007a. High sensitivity CW-cavity ring down spectroscopy of N2O near 1.51 μm (I) [J]. J. Mol. Spectrosc.,244:33-47.
    Liu A W, Kassi S, Perevalov V I, Hu S M, Campargue A.2009. High sensitivity CW-cavity ring down spectroscopy of N2O near 1.51 μm (III) [J]. J. Mol. Spectrosc., 254:20-27.
    Liu A W, Kassi S, Perevalov V I, Tashkun S A, Campargue A.2007b. High sensitivity CW-cavity ring down spectroscopy of N2O near 1.51 μm (II) [J]. J. Mol. Spectrosc., 244:48-62.
    Liu A W, Kassi S, Perevalov V I, Tashkun S A, Campargue A.2011. High sensitivity CW-cavity ring down spectroscopy of N2O near 1.28 μm [J]. J. Mol. Spectrosc., 267:191-199.
    Lu Y, Mondelain D, Kassi S, Campargue A.2011. The CH3D absorption spectrum in the 1.58 μm transparency window of methane:empirical line lists at 81 K and 294 K and temperature dependence [J]. J. Quant. Spectrosc. Radiat. Transfer.,112:2683-2697.
    Lu Y, Mondelain D, Liu A W, Perevalov V I, Kassi S, Campargue A.2012. High sensitivity CW-cavity ring down spectroscopy of N2O between 6950 and 7653 cm-1 (1.44-1.31 μm):I.line positions [J]. J. Quant. Spectrosc. Radiat. Transfer.,113:749-762.
    Lucchesini A, Gozzini S.2005. Diode laser overtone spectroscopy of CO2 at 780 nm. J. Quant. Spectrosc. Radiat. Transfer.,96:289-299.
    Lucchesini A, Gozzini S.2007. Diode laser spectroscopy of CO2 at 790 nm. J. Quant. Spectrosc. Radiat. Transfer.,103:74-82.
    Lutz B L, de Bergh C, Maillard J P.1983. Monodeuterated methane in the outer solar system, i. Spectroscopic analysis of the bands at 1.55 and 1.95 microns [J]. Astro-phys. J.,273:397-409.
    Macko P, Romanini D, Mikhailenko S N, Naumenko O V, Kassi S, Jenouvrier A, et al. 2004. High sensitivity CW-cavity ring down spectroscopy of water in the region of the 1.5μm atmospheric window [J]. J. Mol. Spectrosc.,227:90-108.
    Maric M, McFerran J J, Luiten A N.2008. Frequency-comb spectroscopy of the D1 line in laser-cooled rubidium [J]. Phys. Rev. A,77:032,502.
    Matsushima F, Odashima H, Iwasaki T, Tsunekawa S, Takagi K.1995. Frequency-measurement of pure rotationa ltransitions of H2O from 0.5 to 5 THz. J. Mol. Struct., 352:371-378.
    Mazzotti F, Naumenko O V, Kassi S, Bykov A D, Campargue A.2006. ICLAS of weak transitions of water between 11300 and 12850 cm-1.comparison with FTS databases. J. Mol. Spectrosc.,239:174-181.
    Michael J T, Jones R J, Moll K D, Ye J, Lalezari R.2005. Precise measurements of optical cavity dispersion and mirror coating properties via femtosecond combs. Optics Express,13(3):882-888.
    Miller C E, Brown L R.2004. Near infrared spectroscopy of carbon dioxide I.16O12C16O line positions. J. Mol. Spectrosc.,228:329-354.
    Mondelain D, Kassi S, Wang L, Campargue A.2011. The 1.28 μm transparency win-dow of methane (7541-7919 cm-1):empirical line lists and temperature dependence (80-300 K) [J]. Phys. Chem. Chem. Phys.,17:7985-7996.
    Morville J, Romanini D, Kachanov A A, Chenevier M.2004. Two schemes for trace detection using cavity ringdown spectroscopy [J]. Appl. Phys. B,78:465-476.
    Ni H Y, Song K F, Perevalov V I,Tashkun S A, Liu A W, Wang L, Hu S M.2008. Fourier-transform spectroscopy of 14N15N16O in the 3800-9000 cm-1 region and global modeling of its absorption spectrum [J]. J. Mol. Spectrosc.,248:41-60.
    Nikitin A V, Thomas X, Regalia L, Daumont L, Von der Heyden P, Tyuterev V I G, Wang L, Kassi S, Campargue A.2011. Assignment of the 5v4 and v2+4v4 band systems of 12CH4 in the 6287-6550 cm-1 region [J]. J. Quant. Spectrosc. Radiat. Transfer.,112:28-40.
    Oshika H, Toba A, Fujitake M, Ohashi N.1999. Newly observed vibrational bands of N2O in 1.3μm region [J]. J. Mol. Spectrosc.,179:324-325.
    Pan H, Cheng C F, Sun Y R, Gao B, Liu A W, Hu S M.2011. Laser-locked, continu-ously tunable high resolution cavity ring-down spectrometer [J]. Rev. Sci. Instrum., 82(10):103,110.
    Pan H, Li X F, Lu Y, Liu A W, Perevalov V I, Tashkun S A, Hu S M.2013. Cavity ringdown spectroscopy of 18O and 17O enriched carbon dioxide near 795 nm [J]. J. Quant. Spectrosc. Radiat. Transfer.,114:42-44.
    Penteado P F, Griffith C A, Greathouse T K, de Bergh C.2005. Measurements of CH3D and CH4 in Titan from infrared spectroscopy [J]. Astrophys. J.,629.L53-L56.
    Perevalov B V, Kassi S, Romanini D, Perevalov V I, Tashkun S A, Campargue A.2006. CW-cavity ringdown spectroscopy of carbon dioxide isotopologues near 1.5 μm [J]. J. Mol. Spectrosc.,238:241-255.
    Perevalov V I, Lobodenko E I, Lyulin O M, Teffo J L.1995. Effective dipole moment and band intensities problem for carbon dioxide [J]. J. Mol. Spectrosc.,171:435-452.
    Perevalov V I, Tashkun S A.2008. CDSD-296 (carbon dioxide spectroscopic data-bank):Updated and enlarged version for atmospheric applications. in:10th hitran database conference, cambridge ma, usa, available from:ftp://ftp.iao.ru/pub/CDSD-2008/.
    Perevalov V I, Tashkun S A, Kochanov R V, Liu A W, Campargue A.2012. Global modeling of the line positions of 14N26O within the framework of the polyad model of effective Hamiltonian [J]. J. Quant. Spectrosc. Radiat. Transfer.,113:1004-1012.
    Rautian S G, Sobel'man II.1967. The effect of collisions on the doppler broadening of spectral lines. [J]. Sov. Phys. Usp.,9(5):701-716.
    Rothman L S, Gordon I E, Barbe A, Benner D C, Bernath P F, Birk M, et al.2009. The Hitran 2008 molecular spectroscopic database [J]. J. Quant. Spectrosc. Radiat. Transfer.,110:533-572.
    Rothman L S, Gordon I E, Barber R J, Dothe H, Gamache R R, Goldman A, et al. 2010. HITEMP,the high-temperature molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transfer.,111:2139-2150.
    Rothman L S, Hawkins R L, Wattson R B, Gamache R R.1992. Energy levels, inten-sities, and linewidths of atmospheric carbon dioxide bands. [J]. J. Quant. Spectrosc. Radiat. Transfer.,48:537-566.
    Rothman L S, Rinsland C P, Goldman A, Massie S T, Edwards D P, Flaud J M, et al. 1998. The Hitran molecular spectroscopy database and hawks(Hitran atmospheric workstation) [J]. J. Quant. Spectrosc. Radiat. Transfer.,60:665-710.
    Schermaul R, Learner R C M,Newnham D A, Williams R G, Ballard J,Zobov N F, et al.2001.The water vapor spectrum in the region 8600-15000 cm-1:experimental and theoretical studies for a new spectral line database. I. laboratory measurements. J. Mol. Spectrosc.,208:32-42.
    Sciamma-O'Brien E, Kassi S, Gao B, Campargue A.2009. Experimental low energy values of CH4 transitions near 1.33 μm by absorption spectroscopy at 81 K [J]. J. Quant. Spectrosc. Radiat. Transfer.,110:951-963.
    Song K F, Liu A W, Ni H Y, Hu S M.2009. Fourier-transform spectroscopy of 15N14N16O in the 3500-9000 cm-1 region [J]. J. Mol. Spectrosc.,255:24-31.
    Song K F, Lu Y, Tan Y, Gao B, Liu A W, Hu S M.2011. High sensitivity cavity ring down spectroscopy of CO2 overtone bands near 790 nm [J]. J. Quant. Spectrosc. Radiat. Transfer.,112:761-768.
    Sowers T.2006. Late quaternary atmospheric CH4 isotope record suggests marine clathrates are stable [J]. Science,311:838-840.
    Sun Y R, Pan H, Cheng C F, Liu A W, Zhang J T, Hu S M.2011. Application of cavity ring-down spectroscopy to the boltzmann constant determination [J]. Opt. Express, 19:19,993-20,002.
    Tashkun S A, Perevalov V I, Kochanov R V, Liu A W, Hu S M.2010. Global fittings of 14N15N16O and 15N14N16O vibrational-rotational line positions using the effective Hamiltonian approach [J]. J. Quant. Spectrosc. Radiat. Transfer.,111:1089-1105.
    Tashkun S A, Perevalov V I, Teffo J L, Tyuterev V G.1999. Global fit of 12C16O2 vibrational-rotational line intensities using the effective operator approach [J]. J. Quant. Spectrosc. Radiat. Transfer.,62:571-598.
    Teffo J L, Lyulin O M, Perevalov V I, Lobodenko E I.1998. Application of the ef-fective operator approach to the calculation of 12C16O2 line intensities [J]. J. Mol. Spectrosc.,187:28-41.
    Teffo J L, Perevalov V I, Lyulin O M.1994. Reduced effective Hamiltonian for global treatment of rovibrational energy levels of nitrous oxide [J]. J. Mol. Spectrosc., 168:390-403.
    Teffo J L, Sulakshina O N, Perevalov V 1.1992. Effective Hamiltonian for rovibrational energies and line intensities of carbon dioxide [J]. J. Mol. Spectrosc.,156:48-64.
    Tennyson J, Bernath P F, Brown L R, Campargue A, Csaszar A G, Daumont L, et al. 2013. IUPAC critical evaluation of the rotational-vibrational spectra of water vapor. Part III:energy levels and transition wavenumbers for H216O. J. Quant. Spectrosc. Radiat. Transfer.,117:29-58.
    Tolchenov R, Tennyson J.2008. Water line parameters from refitted spectra constrained by empirical upper state levels:study of the 9500-14500 cm-1 region. J. Quant. Spectrosc. Radiat. Transfer.,109:559-568.
    Toth R A.1994. Measurements of H216O line positions and strengths:11610 to 12861 cm-1. J. Mol. Spectrosc.,166:176-183.
    Toth R A.1999. Line positions and strengths of N2O between 3515 and 7800 cm-1 [J]. J. Mol. Spectrosc.,197:158-187.
    Ulenikov O N, Bekhtereva E S, Albert S, Bauerecker S, Hollenstein H, Quack M.2010. High resolution infrared spectroscopy and global vibrational analysis for the CH3D and CHD3 isotopomers of methane [J]. Mol. Phys.,108:1209-1240.
    Van Herpen M M J W, Ngai A K Y, Bisson S E, Hackstein J H P, Woltering E J, Harren F J M.2006. Optical parametric oscillator-based photoacoustic detection of CO2 at 4.23μm allows real-time monitoring of the respiration of small insects [J]. Appl. Phys.,82:665-669.
    Vlasova A V, Perevalov B V, Tashkun S A, Perevalov V I.2006. Global fittings of the line positions of the rare isotopic species of the nitrous oxide molecule. in:Proceed-ings of the XVth symposium on high-resolution molecular spectroscopy.
    Votava O, Masat M, Pracna P, Kassi S, Campargue A.2010. Accurate determination of low state rotational quantum numbers (J<4) from planar-jet and liquid nitrogen cell absorption spectra of methane near 1.4 micron [J]. Phys. Chem. Chem. Phys., 12:3145-3155.
    Wang L, Kassi S, Liu A W, Hu S M, Campargue A.2010. High sensitivity absorption spectroscopy of methane at 80 K in the 1.58μm transparency window:Tempera-ture dependence and importance of the CH3D contribution [J]. J. Mol. Spectrosc., 261:41-52.
    Wang L, Kassi S, Liu A W, Hu S M, Campargue A.2011. The 1.58μm transparency window of methane (6165-6750 cm-1):empirical line list and temperature depen-dence between 80 K and 296 K [J]. J. Quant. Spectrosc. Radiat. Transfer.,112:937-951.
    Wang L, Perevalov V I, Tashkun S A, Gao B, Hao L Y, Hu S M.2006. Fourier transform spectroscopy of N2O weak overtone transitions in the 1-2μm region [J]. J. Mol. Spectrosc.,237:129-136.
    Weirauch G, Campargue A.2001. Spectroscopy and intensity measurements of the 3v1+3v3 tetrad of 12CO2 and 13CO2 [J]. J. Mol. Spectrosc.,207:263-268.
    Weirauch G, Kachanov A A, Campargue A, Bach M, Herman M, Vander Auwera J. 2000. Refined investigation of the overtone spectrum of nitrous oxide [J]. J. Mol. Spectrosc.,202:98-106.
    Wojtewicz S, Lisak D, Cygan A, Domyslawska J, Trawinski R S, Ciurylo R.2011. Line-shape study of self-broadened O2 transitions measured by pound-drever-hall-locked frequency-stabilized cavity ring-down spectroscopy [J]. Phys. Rev. A., 84:032,511.
    Yang X K, Petrillo C J, Noda C.1993. Photoacoustic detection of N2O and CO2 overtone transitions in the near-infrared. Chem. Phys. Lett.,214:536-540.
    Ye J, Swartz S, Jungner P, Hall J L.1996. Hyperfine structure and absolute frequency of the 87Rb 5P3/2 state [J]. Opt. Lett.,21 (16):1280-1282.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700