高能固体燃料和铝/水基燃料的燃烧特性及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃烧是人类获取能量最主要的方式,在世界能源消耗的总量中,燃烧提供了其中的绝大部分。随着人类社会的发展,不但对能源的需求日益加剧,同时对燃料的性能也提出了更多更高的要求。
     高能固体燃料(即NEPE推进剂)集中了双基推进剂和复合推进剂的优点,不仅能量高、低温延伸率大,而且工艺性能、安全性能也较好,代表着当代固体燃料的发展方向。但是,高能固体燃料在燃烧性能方面存在的诸多问题亟待解决,比如能量性能与燃烧性能之间的矛盾,燃速与压强指数之间的矛盾等。因此,需要进一步深入研究高能固体燃料及其各组分的热分解和燃烧特性,在实验研究的基础上探讨其燃烧机理,寻求解决以上问题的途径,提高它的综合性能。
     铝/水基燃料是采用金属铝作为燃烧剂,水作为氧化剂的一种新型高能燃料。它具有非常高的能量密度,一般是固体火箭发动机燃料的四倍以上,而且克服了固体火箭发动机工作时间较短、可控性能差的缺点。另外,它还是一种新概念的绿色环保型燃料,其燃烧产物污染非常小,属于环境友好的燃料。在能源需求日趋紧张和环境污染问题日益突出的今天,铝/水基燃料的研究具有很大的吸引力。
     本论文选取高能固体燃料和铝/水基燃料作为研究对象,通过各种实验方法对这两类燃料及其主要组分的热分解和燃烧特性进行系统的研究。在实验研究的基础上,深入探讨它们的热分解和燃烧机理。主要研究内容和结果概括如下:
     (1)将10%纳米铝粉和纳米镍粉添加到高能固体燃料的粘合剂聚乙二醇(PEG)中,利用热分析和红外光谱等实验方法研究在惰性和空气气氛中纳米金属粉对PEG热分解过程的影响,并利用色谱一质谱联用技术(GC/MS)对PEG降解产物进行鉴定和分析。惰性气氛中的实验结果显示,纳米铝粉由于具有很大的比表面积,其表面可以吸附大量PEG降解产物并能促使这些产物发生进一步的反应,从而显著提高了PEG在惰性气氛中降解的热释放量。纳米镍粉因为自身具备优良的催化性能,因此促进了PEG降解过程中的C-C键断裂和自由基加氢反应,从而显著改变了PEG各类降解产物的相对含量。空气气氛中的实验结果显示,纳米铝粉的添加使PEG热氧降解前期的热释放放缓,而后期的热释放显著加强。纳米镍粉的添加使PEG在熔融后就开始缓慢放热,而且有效地促进了PEG分子中的键断裂,使PEG的热氧降解过程提前完成。
     (2)将10%的纳米Co_3O_4添加到PEG中,利用热分析、红外光谱和在线裂解—色谱—质谱技术(Py—GC/MS)研究纳米Co_3O_4对PEG热降解的影响。惰性气氛中的实验结果显示,纳米Co_3O_4会吸附PEG的降解产物,这些产物在纳米Co_3O_4的催化下进一步发生降解从而吸收更多热量。纳米Co_3O_4的添加使PEG在惰性气氛中的热降解机理发生了改变,不但产生了具有环醚端基团的降解产物,还使各种产物的相对含量发生了显著改变。空气气氛中的研究表明,纯PEG和添加了纳米Co_3O_4的PEG的热失重过程都经历了三个阶段,分别对应于PEG端基团的氧化、PEG主链的断裂以及大分子产物的氧化分解。添加纳米Co_3O_4可以使空气气氛中PEG降解过程释放出更多热量,这是因为纳米Co_3O_4吸附了PEG的降解产物并将其催化降解成小分子产物,这些小分子产物的氧化反应可以进一步释放出热量。实验结果显示空气中PEG主链在300℃时已经开始断裂并在350℃前完成整个热降解过程,纳米Co_3O_4的添加并没有对这一过程产生影响。
     (3)在粘合剂PEG降解产物相关研究的基础上,选取两种典型的PEG降解产物(1,4-二氧六环和乙二醇二甲醚)进行燃烧实验。利用同步辐射—光电离质谱技术对它们的燃烧产物和反应中间体进行定性和定量分析,同时获取了它们的火焰温度曲线。1,4-二氧六环和乙二醇二甲醚的火焰中分别检测到近20种和30种燃烧中间体。与其他含氧烃燃料相对比,这两种燃料火焰中检测到的中间体数目相对较少,分子量也普遍较小。实验结果分析表明燃料的分子结构对燃烧中间体的形成有着很重要的影响,燃料裂解产生的初始中间体的浓度要明显高于其他中间体,这使得1,4-二氧六环和乙二醇二甲醚火焰中的C_1和C_2中间体的浓度要远大于C_3和C_4中间体。1,4-二氧六环的环状结构使其燃烧特性明显区别于非环状含氧烃燃料。
     (4)设计和制备了含不同配比高氯酸铵(AP)/奥克托金(HMX)的高能固体燃料(PEG/NG/BTTN/AP/HMX)样品,利用多种实验方法考察AP/HMX配比对高能固体燃料热分解和燃烧特性的影响。实验结果显示,由于氧化剂AP和HMX的分解存在“连锁互动”机制,它们之间的热分解可以相互促进使各自分解过程提前。氧化剂AP的添加能使高能固体燃料燃面上方的暗区变薄或消失。随着AP含量的增加,火焰区的反应激烈程度增强,火焰亮度增强。样品的燃速随压强的增加而提高,同一个压强下燃速随AP含量的增加而提高,这说明改变氧化剂AP/HMX配比是调整高能固体燃料燃烧特性的一个有效途径。熄火表面分析显示燃面上HMX比AP和PEG更容易分解,当AP和HMX同时存在时,燃面区域的反应比只存在单一氧化剂时激烈。
     (5)以PEG/NG/BTTN/AP/HMX(AP/HMX=1/3)为基础配方,研究铝粉添加(5%和15%)对高能固体燃料热分解和燃烧性能的影响。实验结果显示,只有当铝粉添加达到一定比例时才会对高能固体燃料的热分解产生明显影响,添加5%铝粉对其热分解的影响非常有限,而添加15%铝粉后影响相当明显。添加铝粉后高能固体燃料的火焰形貌变化显著,火焰温度也明显升高。压强的增大有利于铝粉的充分燃烧,而铝粉燃烧产物Al_2O_3扩散形成的烟雾也随之增多。低压下铝粉含量的增加会导致高能固体燃料的燃速稍微降低,同时,铝粉含量的增加使得燃面能量升高,不但促进了燃面上氧化剂的快速分解燃烧,还增加了燃面的反应层厚度。
     (6)设计和制备了基础配方(只含铝粉和水)以及分别添加10%氧化剂(HMX或CL-20)的铝/水基燃料样品,利用多种实验技术考察氧化剂添加对铝/水基燃料在空气气氛中燃烧性能的影响。实验结果显示,添加HMX比CL-20更有利于铝粉的彻底燃烧,对燃面温度的提高效果也更为显著。同时,添加CL-20的铝/水基燃料的热量传递较为迅速,引燃燃料表面也更加快速,其燃速也有显著提高。
     (7)为了提高铝/水基燃料的燃速等燃烧性能,选取甲基丙烯酸甲酯(MMA)作为铝/水基燃料的有机添加剂。首先,利用同步辐射—光电离质谱技术对纯MMA的燃烧产物和中间体进行定性和定量分析,并对它的燃烧特征进行讨论分析。研究发现MMA的燃烧在一定程度上避免或减少了其他含氧燃料燃烧产生的对环境和人类健康有害的物质(如乙醛)。其次,通过多种实验手段研究了添加10%MMA对铝/水基燃料在空气气氛中燃烧性能的影响,实验结果显示,添加MMA后铝/水基燃料的燃烧火焰存在扩散现象,燃速显著提高,这不仅与MMA本身易燃易挥发有关,还与MMA燃烧过程中产生的大量中间体有关。研究同时表明,添加MMA的铝/水基燃料的燃烧残渣中活性铝含量有所增高,说明MMA的添加不利于铝粉的充分燃烧,这很有可能是因为MMA的燃烧需要消耗大量的氧气,使得铝粉的氧化燃烧在一定程度上受到抑制。
Combustion is the most important method for human to gain energy,and it provides the overwhelming majority of energy consumption in the world.As the developing of human society,not only the requirement of energy is increased but also more and higher demands about the performances of fuels are raised.
     High-energy solid fuel(NEPE propellant) possesses the advantages of double-base and composite propellants.High-energy solid fuel not only has high energy and large elongation in low temperature,but also has good technical and security property;thereby,it represents the development trend of modern solid fuels. However,there also are a series of problems about the combustion performances of high-energy solid fuel,such as contradiction between energy performance and combustion characteristic,contradiction between burning rate and pressure exponent, and so on.Therefore,it is necessary and important to carry out in-depth investigations on the thermal decomposition and combustion of high-energy solid fuel and its main components.Based on the experimental results,the combustion mechanism and effective means of solving the above problems would be discussed,aiming at improving the comprehensive performances of high-energy solid fuel.
     Al/H_2O based fuel is one kind of new high-energy fuels,which adopts Al as the fuel and H_2O as the oxidant.The energy density of Al/H_2O based fuel is quite large, about four times larger than that of solid rocket fuels,and it avoids some disadvantages of solid rocket fuels like short working time and poor controllability.In addition,Al/H_2O based fuel is one kind of green fuels,whose combustion products have low pollution and are very friendly to environment.Nowadays,it is special attractive to investigate Al/H_2O based fuel,as energy storage and environmental pollution are becoming more and more serious.
     High-energy solid fuel and Al/H_2O based fuel are chosen as the research projects in this dissertation;and a variety of experimental techniques are adopted in the researches.Based on the systematical studies of these two fuels,their thermal decomposition and combustion mechanisms are discussed.The contents and findings of the researches in this dissertation are summarized as following.
     (Ⅰ) 10%nano-Al and nano-Ni are added respectively into PEG(binder of high-energy solid fuel).TG/DTA and in-situ FTIR are adopted to study the effects of nano metals on the thermal degradation of PEG both in inert and air atmosphere, while GC/MS is employed to identify the volatile products from thermal degradation of PEG.The experimental results for PEG thermal degradation in inert atmosphere show that,nano-Al can absorb large numbers of products from PEG thermal degradation due to its large specific surface area,and the heat release is evidently increased in the PEG thermal degradation process.Nano-Ni addition remarkable changes the relative contents of the products from PEG thermal degradation in inert atmosphere,as nano-Ni can promote the cleavage of C-C bond and hydrogenation of radicals,due to its excellent catalysis capabilities.The experimental results in air atmosphere show that,with nano-Al addition the heat release is slowed down in the early period but is accelerated in the late period of the PEG thermal degradation. Nano-Ni addition not only makes the PEG degradation begin as soon as melted,but also makes the PEG thermooxidative degradation process complete much earlier than pure PEG in air atmosphere.
     (Ⅱ) 10%nano-Co_3O_4 is added into PEG,and a variety of experimental techniques such as TG/DTA,in-situ FTIR and online Py-GC/MS are adopted to study the effects of nano-Co_3O_4 on the thermal degradation of PEG both in inert and air atmosphere. The experimental results for PEG thermal degradation in inert atmosphere show that, nano-Co_3O_4 can absorb products from PEG thermal degradation and make them decompose on its surface;as a result,PEG degradation absorbs more heat than that for pure PEG in inert atmosphere.Nano-Co_3O_4 addition changes the mechanism of PEG degradation in inert atmosphere,not only leads to the forming of products with cycloether end group,but also changes the relative contents of the products from PEG degradation.The experimental results in air atmosphere show that,the mass loss of PEG thermal degradation undergoes three steps both for pure PEG and with Nano-Co_3O_4 addition;and these three steps are corresponding to the oxidation of PEG end groups,cleavage of PEG backbone and decomposition of large products from PEG degradation.Nano-Co_3O_4 addition makes PEG thermal degradation release more heat,because nano-Co_3O_4 can make large products from PEG degradation decompose to small ones and the reaction between these small products and oxygen in air atmosphere can release additional heat.The experimental results also show that the cleavage of PEG backbone begins at 300℃and the whole thermal degradation is completed at 350℃in air atmosphere;and this process are not evidently changed by nano-Co_3O_4 addition.
     (Ⅲ) Two typical products(1,4-dioxane and 1,2-dimethoxyethane) of PEG thermal degradation are chosen as the fuels in the combustion experiments,based on the above experimental results about the products identifying from PEG thermal degradation.Molecular beam mass spectrometry combined with tunable synchrotron vacuum ultraviolet photoionization is adopted to identified combustion products and intermediates in 1,4-dioxane and 1,2-dimethoxyethane flames.About 20 and 30 intermediate species are identified in 1,4-dioxane and 1,2-dimethoxyethane flames respectively,and their mole fraction profiles are evaluated.Compared with reported oxygenated hydrocarbons,the numbers of intermediates species in these two flames are rather small,and these intermediates always have rather small molecular weight. The experimental results show that the formations of intermediates,both hydrocarbons and oxygenated hydrocarbons,are closely linked to the structure of fuels.Species produced from H atom abstraction and beta scission of fuels usually have much higher concentrations than others,therefore the concentrations of C_1 and C_2 intermediates are much larger than those of C_3 and C_4 intermediates.The cyclic structure of 1,4-dioxane leads to the prominent difference in combustion characteristics between 1,4-dioxane and the non-cyclic oxygenated hydrocarbons.
     (Ⅳ) High-energy solid fuel(PEG/NG/BTTN/AP/HMX) samples with different ratios of AP/HMX are designed and prepared,and a variety of experimental techniques are adopted to study the effects of AP/HMX ratio on the thermal decomposition and combustion performances of high-energy solid fuel.The experimental results show that the thermal decomposition of AP and HMX can promotes each other because of the "linkage-mutualism" mechanism between them, and this makes the thermal decomposition of both AP and HMX begin and complete much earlier.AP addition makes the dark zone above the burning surface to become thinner or even disappear.With the increase of AP content,the reaction in the flame area becomes fiercer and the flame brightness becomes stronger.The burning rate of high-energy solid fuel increases as the pressure increases,and the burning rate increases as the AP content increases under fixed pressure,which shows that changing AP/HMX ratio is an effective method to adjust the burning rate of high-energy solid fuel.The analysis of quenched surface shows that HMX is easier to decompose than AP and PEG in the burning surface,and when AP and HMX are both existent,the reaction in the burning surface is much fiercer than that when one of them is absent.
     (Ⅴ) 5%and 15%Al powders are added into high-energy solid fuel (PEG/NG/BTTN/AP/HMX,AP/HMX=1/3) respectively,and the effects of Al addition on the thermal decomposition and combustion performances of high-energy solid fuel are studied.The experimental results show that,only when the added Al reaches a certain ratio the thermal decomposition of high-energy solid fuel can be markedly influenced.Structural features of flame are changed evidently and flame temperature is increased markedly,after adding Al powders.With pressure increasing, the Al powders burn more sufficiently and the Al_2O_3 smog becomes thicker.With the Al content increasing,the burning rate of high-energy solid fuel decreases slightly under low pressure while the heat in the burning surface increases.The increasing of the heat on the burning surface not only leads to oxidants decomposition and higher burning rate faster,but also makes the reaction layer thicker.
     (Ⅵ) Al/H_2O based fuel samples without additive and with 10%oxidant(HMX or CL-20) are designed and prepared,and a series of experiment are carry out to study the effects of the oxidants on the combustion performances of Al/H_2O based fuel.The experimental results show that compared with CL-20 addition,HMX addition not only makes Al powders burn much thoroughly but also has better effect in increasing the temperature of burning surface.The experimental results also show that,CL-20 addition makes the heat transfer faster and increases of the burning rate are more markedly than that with HMX addition.
     (Ⅶ) Methylmethacrylate(MMA) is chosen as the organic addition of Al/H_2O based fuel,for the sake of improving the combustion performances such as burning rate.First,molecular beam mass spectrometry combined with tunable synchrotron vacuum ultraviolet photoionization is adopted to identify combustion products and intermediates in fuel-rich MMA flame,and about 30 combustion intermediates including isomeric species are observed.Mole fraction profiles of the intermediates in the flame are obtained,and the combustion characteristics of MMA are analyzed and discussed.The experimental results show that the combustion of MMA not only reduces soot emission but also has low concentration of some potential toxic by-products.Second,the effects of MMA addition(10%) on the combustion performances of Al/H_2O based fuel in air atmosphere are studied.The experimental results show that the flame of Al/H_2O based fuel becomes diffused and the burning rate increases markedly after adding MMA.These changes are not only because MMA is inflammable and volatile,but also related to the large numbers of intermediates in MMA combustion.The experimental results also show that,the content of activated Al in the combustion residue of Al/H_2O based fuel increases after adding MMA,which shows that MMA addition is bad for the efficiency of Al powders combustion.This is because the combustion of MMA consumes lots of oxygen,leading to the restrain of Al powders combustion.
引文
白木兰,董峰.三种新型催化剂对HMX热分解的催化作用研究[J].兵工学报(火炸药专集),1988(2):50-55.
    岑可法.高等燃烧学[M].杭州:浙江大学出版社,2002.
    陈福泰,谭惠民,罗运军等.B_(12)H_(12)[N(C_2H_5)_4]_2对NEPE推进剂燃烧性能的影响[J].火炸药学报,2000,3:19-21.
    陈鲁英,杨培进,张林军等.,CL-20炸药性能研究[J].火炸药学报,2003,26(3):65-67.
    陈雪莉,王瑛,王宏等.铝粉含量及粒径对CMDB推进剂性能的影响[J].含能材料,2008,16(6):721-723.
    高东磊,朱慧,张炜等.纳米铝粉在固体推进剂中的应用研究[J].含能材料,2004,12(1):154-156.
    江治,李疏芬,赵凤起等.纳米金属粉对HMX热分解特性的影响[J].推进技术,2002,23(3):258-261.
    焦继革,周克,张炜.铝粉形态对低燃速丁羟推进剂燃烧性能的影响[J].含能材料,2000,8(2):72-74.
    李芳,张为华,张炜等.铝基水反应金属燃料性能初步研究[J].国防科技大学学报,2005,27(4):4-7.
    李吉祯,樊学忠,刘小刚.AP和铝粉对AP—CMDB推进剂燃烧性能的影响[J].火炸药学报,2008,31(4):61-63.
    李静峰,司馥铭.NEPE推进剂燃烧性能调节技术研究[J].含能材料,2002,10(1):4-9.
    李疏芬,江治,赵凤起等.纳米金属粉对高氯酸铵热分解动力学的影响[J].化学物理学报,2004,17(5):623-628.
    李疏芬,方狲.AP与HMX作用的“连锁互动”机制[J].推进技术,2002,23(1):79-83.
    李疏芬,牛和林,张钢锤等.NEPE推进剂激光点火特性[J].推进技术,2002,23(2):172-175.
    李疏芬,金乐骥.铝粉粒度对含铝推进剂燃烧特性的影响[J].含能材料,1996,4(2):68-74.
    李晓萌,刘云飞,姚维尚等.低铝含量NEPE推进剂燃烧性能研究[J].火炸药学报,2003,26(2):50-52.
    刘磊力,李凤生,谈玲华等.纳米金属粉对高氯酸铵热分解特性的影响[J].应用化学,2004,21(5):488-492.
    罗善国,陈富泰,谭惠民等.推进剂组分对聚醚聚氨酯粘合剂热氧降解的影响(Ⅰ)硝酸酯增塑剂的影响[J].推进技术,1999,20(2):88-94.
    马凤国,季树田,吴文辉等.纳米氧化铅为燃烧催化剂的应用研究[J].火炸药学报,2002,25(2):13-15.
    马振叶,李凤生.大比表面积α-Fe_2O_3的制备及其催化性能研究[J].固体火箭技术,2006,29(4):286-288.
    马振叶,李凤生,崔平等.纳米Fe_2O_3的制备及其对高氯酸铵热分解的催化性能[J].催化学报,2003 24(10):795-798.
    马政生.交联改性双基推进剂(XLDB)燃烧性能的改善及机理研究[J].西北大学学报(自然科学版).1995,25,(6):636-640.
    牛和林,朱济,李疏芬.超细铝粉对NEPE推进剂燃烧性能的影响[J].飞航导弹,2001,(4):52-54.
    庞爱民,郑剑.高能固体推进剂技术未来发展展望[J].固体火箭技术,2004,27(12);289-293.
    庞爱民,王北海,田德余.高能硝胺推进剂的压强指数分析[J].现代防御技术,2000,28(2):34-38.
    潘清,汪渊,赵凤起等.NEPE推进剂的热分解研究(Ⅳ)[J].固体火箭技术,2003,26(4):45-47.
    司馥铭.聚氧化乙烯粘合剂推进剂力学性能研究[J].固体火箭技,2004,27(1):53-56.
    唐松青,龚华,陈力等.降低NEPE推进剂燃速压强指数的新型催化剂[J].北京理工大学学报,1995,15(6):28-31.
    汪亮.燃烧实验诊断学[M].北京:国防工业出版社,2005.
    王基镕,李疏芬.NEPE中铅盐催化剂活性物质的损失[J].推进技术,2002,23(2):168-171.
    王克秀,李葆萱,吴心平.固体火箭推进剂及燃烧[M].北京:国防工业出版社,1983.
    王申,金韶华,成思源等.含CL-20的NEPE推进剂能量水平分析[J].火炸药学报,2002(1):12-15.
    王天放.新型高能燃料叠氮缩水甘油聚醚/硼和铝/水基燃料的燃烧特性研究[D].[博士],合肥:中国科学技术大学,2003.
    王瑛,孙志华,赵凤起等.NEPE推进剂燃烧机理研究[J].火炸药学报,2000,23(4):24-26.
    武湃,朱慧,张炜等.GAP贫氧推进剂及其组分的热失重特性研究[J].含能材料,2002,10(1):18-20.
    吴芳,王世英,庞爱民.降低NEPE推进剂燃速的途径探讨[J].固体火箭技术,2002,25(2):48-51.
    阎文斌.微量气体定量分析的新方法:光腔衰荡光谱[J].低温与特气,2007,25(11):35-38.
    阎子峰.纳米催化技术[M].北京:化学工业出版社,2003.
    杨锐,王晶,黄超群等.同步辐射单光子电离在燃烧研究中的应用[J].科学通报,2005,50(15):1570-1574.
    姚瑞刚,罗秉和.HMX高压热分解规律初探[J].火炸药学报,1986(2):3-6.
    张平.燃烧诊断学[M].北京:兵器工业出版社,1986.
    张仁.固体推进剂的燃烧与催化[M].长沙:国防科技大学出版社,1992.
    张汝冰,刘宏英,李凤生.含能催化复合纳米材料的制备研究[J].火炸药学报,2000,23(3): 9-12.
    张晓宏,龙村,王铁成等.纳米级氧化铅对双基推进剂燃烧性能影响的研究[J].火炸药学报,2002,25(2):39-41.
    赵凤起,李上文,汪渊等.NEPE推进剂的热分解(Ⅰ)粘合剂的热分解[J].推进技术,2002,23(3):249-251.
    赵凤起,陈沛,杨栋等.纳米金属粉对RDX热分解特性的影响[J].南京理工大学学报,2001,25(4):420-423.
    甄开吉,王国申,毕颖丽等.催化作用基础[M].北京:科学出版社,2005.
    郑剑.新型含能材料—CL-20[J].推进技术,1994,15(1):65-72.
    钟世云,许乾慰,王公善.聚合物降解与稳定化[M].北京:化学工业出版社,2002.
    朱慧,张炜,王春华等.GAP贫氧推进剂组分的常压热分解特性研究[J].火炸药学报,2001,24(1):57-59
    朱慧,张仁.HMX/HTPB推进剂的热分解[J].固体火箭技术,1990(2):49-54
    朱慧,张仁.催化剂对HMX/AP/HTPB推进剂热分解特性的影响[J].航空动力学报,1990(2):155-158.
    Arisawa H,Brill TB.Flash pyrolysis of polyethyleneglycol part Ⅰ:Chemometric resolution of FTIR spectra of the volatile products at 370-550℃[J].Combust.Flame 1997,109:87-104.
    Attal B,Debarre D.Resonance-enhanced coherent anti-Stokes Raman-scattering in C2[J].Rev.Phys.Appl.1983,18:39-50.
    Attal B,Schmidt SC.Resonance CARS of OH in high-pressure flames[J].J.Quant.Spectrosc.Radiat.Transfer.1990,43:351-364.
    Beatrice C,Bertoli C,Giacomo ND.New findings on combustion behavior of oxygenated synthetic diesel fuels[J].Combust.Sci.Technol.1998,137:31-50.
    Biordi JC.Molecular beam mass spectrometry for studying the fundamental chemistry of flames [J].Prog.Energy Combust.Sci.,1977,3:151-173.
    Braithwaite PC,Hatch RL,Lee K,et al.Development of high performance CL-20 explosives[J].Proceedings of 29~(th) International Conference of ICT,Karlsruhe,1998.
    Bulewicz EM,Padley P.Spectroscopic studies of C2,CH and OH radicals in low pressure acetylene+oxygen flames[J].Prog.R.Soc.A,1970,315,129-146.
    Bulewicz EM,James CG,Sugden TM.Photometric investigations of alkali metals in hydrogen flame gases.Ⅱ.The Study of Excess Concentrations of Hydrogen Atoms in Burnt Gas Mixtures [J].Prog.R.Soc.A,1956,235,89-106.
    Chen BQ,Evans JRG,Holding S.Decomposition of poly(ethylene glycol) in nanocomposites[J].J.App.Polym.Sci.,2004,94:548-552.
    Cool TA,Wang J,Hansen N,et al.Photoionization mass spectrometry and modeling studies of the chemistry of fuel-rich dimethyl ether flames[J].Proc.Combust.Inst.2007,31(1):285-293.
    Cool TA,McIlroy A,Qi F,et al.Photoionization mass spectrometer for studies of flame chemistry with a synchrotron light source[J].Rev.Sci.Instrum.2005,76:094102.
    Cool TA,Nakajima K,Mostefaoui TA,et al.Enols are common intermediates in hydrocarbon oxidation[J].Science 2005,308:1887-1889.
    Cool TA,Nakajima K,Taatjes CA,et al.Photoionization mass spectrometric studies and modeling of fuel-rich allene and propyne flames[J].Proc.Combust.Ins.2005,30:1681-1688.
    Cool TA,Wang J,Nakajima K,et al.Photoionization cross sections for reaction intermediates in hydrocarbon combustion[J].Int.J.Mass.Spectrom.2005,247:18-27.
    Cool TA,Nakajima K,Mostefaoui TA,et al.Selective detection of isomers with photoionization mass spectrometry for studies of hydrocarbon flame chemistry[J].J.Chem.Phys.2003,119(16):8356-8365.
    Cool TA,Song XM,Goodwin PM.26~(th) Symposimum on combustion[M].Pittsbergh:The Combustion institute,1988.
    Davenas A.Solid rocket propulsion technology[M],Oxford:Bergman Press,1993.
    Dayma G,Gail S,Dagaut P.Experimental and kinetic modeling study of the oxidation of methyl hexanoate[J].Energy Fuels 2008,22(3):1469-1479.
    Dokhan A,Price EW,Seitzman JM,et al.The effects of bimodal aluminum with ultrafine aluminum on the burning rates of solid propellants[J].Proceedings of the Combustion Institute 2002,29:2939-2946.
    Dreier T,Ewart P.Coherent Techniques for measurements with intermediate concentrations[M].In Kohse-Hoinghasu K,Jeffries JB.(Ed.) Applied Combustion Diagnostics.New York:Taylor and Francis.2002.
    Eckbreth AC,Hall RJ.Combustion diagnosis by coherent anti-Stokes Raman spectroscopy(CARS)[J].Combust.Sci.Technol.1981,25:175-192.
    Eckbreth AC.CARS Thermometry in practical combustors[J].Combust.Flame,1980,39:133-147.
    Edward A,Ramana G,Ravi P.Optimum Design of a supercavitating torpedo considering overall size,Shape and Structural Configuration[J].Int.J.Solids Struc.2006,43:642-657.
    Fang C,Li SF.Experimental Research of the Effects of superfine aluminum powders on the combustion characteristics of NEPE propellants[J].Propell.Explos.Pyrot.2002,27(1):34-38
    Fang C,Li SF.Synergistic interaction between AP and HMX[J].J.Energ.Mat.2002,20(4):311-321.
    Fares MM,Hacaloglu J,Suzer S.Characterization of degradation products of polyethylene oxide by pyrolysis mass-spectrometry[J].Eur.Polym.J.1994,30(7):845-850.
    Fenimore CP.Chemistry of premixed flames[M].New York:MacMillan,1964.
    Foote JP,Lineberry JT,Thompson BR.Investigation of aluminum particles combustion for underwater propulsion applications[J],AIAA 1996-23086.
    Gail S,Sarathy SM,Thomson MJ,et al.Experimental and chemical kinetic modeling study of small methyl esters oxidation:Methyl(E)-2-butenoate and methyl butanoate[J].Combust.Flame 2008,155(4):635-650.
    Gail S,Thomson MJ,Sarathy SM,et al.A wide-ranging kinetic modeling study of methyl butanoate combustion[J].Proc.Combust.Inst.2007,31(1):305-311.
    Han S,Kim C,Kwon D.Thermal/oxidative degradation and stabilization of polyethylene glycol[J].Polymer 1997,38:317-323.
    Han S,Kim C,Kwon D.Thermal-degradation of poly(ethyleneglycol)[J].Polym.Degrad.Stab.1995,47:203-208.
    Herbinet O,Pitz WJ,Westbrook CK.Detailed chemical kinetic oxidation mechanism for a biodiesel surrogate[J].Combust.Flame 2008,154(3):507-528.
    Huang CQ,Wei LX,Yang B,et al.Lean premixed gasoline/oxygen flame studied with tunable synchrotron vacuum UV photoionization[J].Energy Fuels 2006,20(4):1505-1513.
    Ingenito A,Bruno C.Using aluminum for space propulsion[J].J.Propul.Power 2004,20(6):1056-1063.
    Ivanov VG,Gavrilyuk OV,Glazkov OV.Specific features of the reaction between ultrafine aluminum and water in a combustion regime[J].Combust.Explos.Shock Waves 2000,36(2):213-219.
    Jiang Z,Li SF,et at.Research on the combustion properties of propellants with low content of nano metal powders[J].Propell.Explos.Pyrot.2006,31:139-147.
    Jiang Z.,Wang TF.,Li SF.,et at.Thermal behavior of ammonium perchlorate and metal powers of different grade[J].J.Them.Anal.Cal.2006,85(2):315-320.
    Joan C.Biordi Molecular beam mass spectrometry for studying the fundamental chemistry of flames[J].Prog.Enger.Combust.Sci.,1977,3:151-173.
    Kaskan WE.Hydroxyl Concentrations in rich hydrogen-air flames held on porous burners[J].Combust.Flame,1958,2:229-243.
    Kishore K,Sunitha MR.Mechanism of catalytic activity of transition metal oxides on solid propellant burning rate[J].Combust.Flame 1978,33:311-314.
    Kishore K,Verneker VRP,Sunitha MR.Effect of catalyst concentration on burning rate of composite solid propellants[J].AIAA J.1977,15(11):1649-1651.
    Kohse-Hoinghasu K,Jeffries JB.Applied combustion diagnostics[M].London:Taylor and Francis,2002.
    Koizumi H.Predominant decay channel for superexcited organic molecules[J].J.Chem.Phys.1991,95:5846-5852.
    Korobeinichev OP,Bolshova TA.,Paletsky AA.Modeling the chemical reactions of ammonium dinitramide(ADN) in a flame[J].Combustion and Flame 2001,126(1-2):1516-1523
    Korobeinichev OP.Mass spectrometric study of combustion and thermal decomposition of GAP[J].Combustion and Flame 2002,129(1-2):136-150.
    Koshland CP.Impacts and control of air toxics from combustion[J].Proc.Combust.Inst.1996,26:2049-2065.
    Kubota N.Combustion mechanism of HMX[J].Propell.Explos.Pyrot.1989,14(1):6-11.
    Kuo KK,Summerfield M.Fundamentals of solid-propellant combustion[M],Progress in Astronautics Vol.90.New York:AIAA Inc,1984.
    Lai WC,.Liau WB.Thermo-oxidative degradation of poly(ethylene glycol)/poly(L-lactic acid) blends[J].Polymer,2003,44:8103-8109.
    Lattimer RP.Mass spectral analysis of low-temperature pyrolysis products from poly(ethylene glycol)[J].J.Anal.Appl.Pyrol.2000,56(1):61-78.
    Lee WW.Aluminum powder/water reaction ignited by electrical pulsed power[R].AD-A269323.
    Li YY,Wei LX,Tian ZY,et al.A comprehensive experimental study of low-pressure premixed C3-oxygenated hydrocarbon flames with tunable synchrotron photoionization[J].Combust.Flame 2008,152(3):336-359.
    Li YY,Huang CQ,Wei LX,et al.An experimental study of rich premixed gasoline/O_2/Ar flame with tunable synchrotron vacuum ultraviolet photoionization[J].Energy Fuels 2007,21(4):1931-1941.
    Linstrom PJ,Mallard WG.NIST Chemistry Webbook.National Institute of Standard and Technology:Gaithersburg MD,2005(http://webbook.nist.gov).
    Liu LL,Li FS,Tan LH,et al.Effects of metal and composite metal nanopowders on the thermal decomposition of ammonium perchlorate(AP) and the ammonium perchlorate/hydroxyterminated polybutadiene(AP/HTPB) composite solid propellant[J].Chinese J.Chem.Eng.2004,12(4):595-598.
    Madorsky SL,Straus S,J Polym Sci.1959,36:183-194.
    Mccarty KP,Isom KB,Jacox JL.Nitramine propellant combwtion[M].AIAA paper,1979.
    McIlroy A,Jeffries JB.Cavity ringdown spectroscopy for concentration measurements[M].In Kohse-Hoinghasu K,Jeffries JB.(Ed.) Applied combustion diagnostics.New York:Taylor and Francis.2002.
    McIlroy A.Laser studies of small radicals in rich methane flame:OH,HCO,and ~1CH_2[J].Israel J Chem.,1999,39:55-62.
    Mcllroy A.Direct measurement of ~1CH_2 in flames by cavity ringdown laser absorption spectroscopy[J].Chem.Phys.Lett.,1998,296:151-158.
    Metcalfe WK,Dooley S,Curran HJ,et al.Experimental and modeling study of C_5H_(10)O_2 ethyl and methyl esters[J].J.Phys.Chem.A 2007,111(19):4001-4014.
    Meyer R.Explosives[M].Weinheim:VCH Verlag Chemie,1997.
    Miller JA,Melius CF.Kinetic and thermodynamic issues in the formation of aromatic compounds in flames of aliphatic fuels[J].Combust.Flame 1992,91(1):21-39.
    Moss JT,Berkowitz AM,Oehlschlaeger MA,et al.An experimental and kinetic modeling study of the oxidation of the four isomers of butanol[J].J.Phys.Chem.A 2008,112(43):10843-10855.
    Muhamed S,etal.1,3,3-trinitroazetidine(TNAZ).Study of thermalbehaviour.Part Ⅱ[J].J.Energ.Mater.2001,19:241-254.
    Nelson LS.Steam Explosions of single drops of pure and alloyed molten aluminum[J].Nucl.Engine.Design 1995,155:413-425.
    Okeefe A,Deacon DAG.Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources[J].Rev.Sci.instrum.1988,59(12):25442-2551.
    Osswald P,Struckmeier U,Kasper T,et al.Isomer-specific fuel destruction pathways in rich flames of methyl acetate and ethyl formate and consequences for the combustion chemistry of esters[J].J.Phys.Chem.A 2007,111(19):4093-4101.
    Ostmark H,Bemm U,Bergman H,et al.N-guanylurea-dinitramide:a new energetic material with low sensitivity for propellants and explosives applications[J].Thermochimica Acta,2002,384:253-259.
    Palopoli SF,Brill TB.Thermal decomposition of energetic materials 52.On the foam zone and surface chemistry of rapidly decomposing HMX[J].Combustion and Flame 1991,87(1):45-60
    Patil DG,Brill TB.Thermal decomposition of energetic materials 53.Kinetics and mechanism of thermolysis of hexanitrohexazaisowurtzitane[J].Combustion and Flame 1991,87(2):145-151..
    Pielichowski K,Flejtuch K.Non-oxidative thermal degradation of poly(ethylene oxide):kinetic and thermoanalytical study[J].J.Anal.Appl.Pyrol.2005,73(1):131-138.
    Qi F,Yang R,Yang B.et al.Isomeric identification of polycyclic aromatic hydrocarbons formed in combustion with tunable vacuum ultraviolet photoionization[J].Rev.Sci.Instrum.2006,77:084101.
    Realat M,Bouchardy P,Taran JP,et al.Precision of multiplex CARS temperature measurements[J].Appl.Opt.1985,24:1012-1022.
    Robinson JC,Sveum NE,Neumark DM.Determination of absolute photoionization cross sections for isomers of C_3H_5:allyl and 2-propenyl radicals[J].Chem.Phys.Lett.2004,383:601-605.
    Robinson JC,Sveum NE,Neumark DM.Determination of absolute photoionization cross sections for vinyl and propargyl radicals[J].J.Chem.Phys.2003,119(11):5311-5317.
    Santacesaria E,Morini A,Carra,S.Ammonium perchlorate decomposition in the presence of metallic oxides[J].Combust.Flame 1978,31:17-23.
    Sarathy SM,Gail S,Syed SA,et al.A comparison of saturated and unsaturated C_4 fatty acid methyl esters in an opposed flow diffusion flame and a jet stirred reactor[J].Proc.Combust.Inst.2007,31(1):1015-1022.
    Sarner SF.Propellant chemistry[M],New York:Reinhold,1966.
    Schroeder MA,Fifer RA,Miller MS,et al.2001.Condensed-phase processes during combustion of solid gun propellants.I.Nitrate ester propellants[J].Combustion and Flame 126(1-2):1569-1576.
    Shen SM,Leu AL,Chen SI,et al.Therrmal-characteristics of GAP,GAP/BDNPA/BDNPF and PEG/BDNPA/BDNPF and the energetic composites thereof[J].Thermochim.Acta 1991,180:251-268.
    Smyth KC,Taylor PH.Dection of the methyl radical in a methane/air diffusion flame by multiphoton ionization spectroscopy[J].Chem.Phys.Lett.,1985,122:518-521.
    Snavely DL,Dubsky J.Near-IR spectra of polyethylene,polyethylene glycol,and polyvinylethyl ether[J].J.Polym.Sci.Pol.Chem.1996,34:2575-2579.
    Song KH,Nag P,Litzinger TA,Haworth DC.Effects of oxygenated additives on aromatic species in fuel-rich,premixed ethane combustion:a modeling study[J].Combust.Flame 2003,135(3):341-349.
    Song J,Fischer CH,Schnabel W.Features of the thermooxidative destruction of PMMA[J].Polym.Degrad.Stab.1992,36:261-266.
    Taatjes CA,Hansen N,Osborn DL,et al.“Imaging”combustion chemistry via multiplexed synchrotron-photoionization mass spectrometry[J].Phys.Chem.Phys.Chem.2008,10:20-34.
    Voorhees KJ,Baugh SF,Stevenson DN.An investigation of the thermal degradation of polyethylene glycol)[J].J.Anal.Appl.Pyrol.1994,30:47-57.
    Wang TF,Li SF,Lin ZK,et al.Experimental study of laminar lean premixed methylmethacrylate/oxygen/argon flame at low pressure[J].J.Phys.Chem.A2008,112(6):1219-1227.
    Warnatz J,Maas U,Dibble RW.Combustion:Physical and chemical fundamentals,modeling and simulation,experiments,pollutant formation[M].Berlin,Heidelberg,New York:Springer-Verlag,2001.
    Westbrook CK,Pitz WJ,Curran HJ.Chemical kinetic modeling study of the effects of oxygenated hydrocarbons on soot emissions from diesel engines[J].J.Phys.Chem.A 2007,110(21):6912-6922.
    Yang B,Oβwald P,Li YY,et al.Identification of combustion intermediates in isomeric fuel-rich premixed butanol-oxygen flames at low pressure[J].Combust.Flame 2007,148:198-209.
    Yang B,Li YY,Wei LX,et al.An experimental study of the premixed benzene/oxygen/argon flame with tunable synchrotron photoionization[J].Proc.Combust.Inst.2007,31(1):555-563.
    Zenin A,Finjakov S.Physico-kinetical combustion mechanisms of new solid mixed compositions[M].35~(th) International annual conferece of ICT 2004.
    Zhao FQ,Chen P,Yang D,et al..Effects of nanometer metal powders on thermal decomposition characteristics of RDX[J].J.Nanjing Univ.Sci.Technol.2001,25(4):420-423.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700