精密柔性抛物壳智能结构系统及其主动控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着空间技术的飞速发展,各类航天器及其有效载荷结构的智能化、一体化要求不断提高,基于智能材料的结构电子学系统及其主动控制问题已经成为各交叉学科研究的重点。尽管近20年来国内外关于压电层合板壳智能结构控制方面的研究已经逐渐展开,但是针对具有典型空间应用背景的柔性旋转抛物壳智能结构的系统研究还处于起步阶段,还有很多关键技术亟待突破。本研究在国家自然科学基金项目“薄壁回转结构动力学建模及形状智能控制研究”和“光致伸缩耦合柔性回转结构的非接触精密控制研究”的共同支持下,以精密光学仪器和空间天线系统中薄壁曲面构件的振动控制为背景,采用理论分析、数值仿真和系统模型试验相结合的方法开展压电层合精密柔性抛物壳智能结构系统及其振动主动控制研究,为此类智能结构的具体应用提供理论依据和技术支持。
     本文从微分几何与弹性板壳理论出发,基于Love-Kirchhoff薄壳假设和一阶剪切变形理论分析了弹性旋转抛物壳单元的力学模型;依据多功能混合板壳理论和压电本构方程,讨论了压电-弹性层合壳体结构所涉及的力、电能场转换及耦合作用关系,得出压电层合壳体单元的合成力和力矩基本表达式;基于Hamilton原理、线性压电理论和薄壳理论基本假设推导出具有一般性的压电层合双曲率壳智能结构系统动力学方程。
     考虑到双曲率弹性壳的振动特性在数学上很难求解,在分析了三种常见的振动简化理论的基础上,本文对压电层合抛物壳智能结构系统动力学方程和应变表达式进行了无矩简化;同时,针对旋转抛物壳在空间天线系统中所处的自由边界条件,提出一组基于无矩简化的自由柔性抛物壳振动模态形状函数;通过弹性壳模型的理论振型仿真和实验模态测试结果的对比,研究了自由边界柔性抛物壳连续体的低阶模态振动特性。
     基于正压电效应、Gauss理论、开环假设和Maxwell方程,推导出具有一般性的层合壳分布传感信号方程;利用自由边界旋转抛物的模态形状函数,得出模态传感信号表达式,并确定由不同子午线、圆周方向薄膜应变构成的分布传感信号分量;结合典型的旋转抛物壳参数,仿真分析了不同传感信号分量的作用和模态敏感性,参数评价了传感器布局对传感信号幅值的影响.
     在压电层合壳力-电耦合模型的基础上,本文给出了无矩简化的旋转抛物壳智能结构系统控制方程,并应用模态正交性和模态展开方法将系统控制方程转换到模态域;引入Love控制算子和单位阶跃函数,推导出分布式作动器模态控制力表达式,以横向振动为主探讨了作动器子午线/圆周方向上薄膜和弯曲控制分量的作用;通过数值仿真,分析了柔性抛物壳上空间分布的压电作动器的微控行为、有效面积和规格化控制效应,进而为分布式作动器布局和构型提出了设计参考。
     根据压电薄膜传感/作动器的基本性能和工作特点,设计了用于微弱传感信号调理和作动器高压激励的集成电路模块,基于VC开发出多路信号采集、分析、处理与主动控制的系统软件,建立起压电层合柔性抛物壳智能结构的系统实验平台;通过对试验模型分布传感与激励的开环测试,验证了系统的有效性和可靠性,试验数据也证实了传感与激励信号理论分析中的规律性结论。
     通过对硬件系统的参数辨识,建立了各环节的传递函数,然后按照极点配置方法和正位置反馈方法设计系统控制器,并分别对压电层合抛物壳的低阶独立模态和耦合模态进行振动控制实验,实验结果表明控制算法增大了系统阻尼,抑制了振动幅值,实现了对结构振动的主动控制。最后,针对空间抛物壳智能结构系统受外界扰动的随机性和控制能量有限性,提出了一种自适应模态控制模式,实验证明该方法可以在随机激励条件下准确地判定最佳激励位置并有效地施加主动控制。
With the rapid development of space technologies, the requirement for integrated and intelligent structures applied to various space vehicles, structures and their payloads has been continuously raised. Therefore, the structronic system and active control, based on smart materials and intelligent control systems, have been becoming one of the mainstream research and development activities. Although the research on active control of piezoelectric laminated smart shell structures has been carried out in the last two decades precision control of smart flexible paraboloidal shells of revolution, especially applied to space structures, has just begun and needs to strive to make a technological breakthrough. Supported by the National Science Fund of China projects“Research on Dynamic Modeling and Smart Shape Control of Thin Structure of Revolution”and“Research on Non-contact Precise Control of Flexible Photostrictive Coupled Shells of Revolution,”with the background of vibration control of thin shell components in the precision optical apparatus and space antenna systems, this research focuses on developing precision smart flexible paraboloidal shell and its active vibration control system, by way of theoretical analysis, numerical simulation, and laboratory demonstration. This research provides theoretical fundamentals, practical implementation, for design applications of this class of smart paraboloidal shell structures.
     This paper begins with the theories of differential geometry and elastic plate and shell, and analyzes component mechanical model of elastic paraboloidal shell of revolution, based on Love-Kirchhoff’s shell assumption and the theory of first order shear deformation; According to the theory of multifunctional hybrid shells and piezoelectric constitutive equation, the switch between force and electricity field and their coupling relations in the piezo-elastic laminated shell structure are fully discussed, thus coming to a basic resultant force and moment expression of piezoelectric laminated shell component; Based on the Hamilton’s principle, the linear piezoelectric theory and basic assumption of thin shell theory, the systemematic dynamic equations of generic piezoelectric laminated smart double curvature shell structure is deduced.
     In consideration of the difficulty in finding a solution to the vibration feature of double curvature elastic shell in the filed of mathematics, the systematic dynamic equations of the piezoelectric laminated shell smart structure and the strain expressions are simplified by Membrane approximation in this paper, after the analysis of the three common vibration approximation theories. Meanwhile, concerning the free boundary condition of the paraboloidal shell of revolution in space antenna, a series of vibration mode shape functions of free flexible paraboloidal shell is proposed based on the membrane approximation theory. By comparing the results among the theoretical modal shape simulation and experiment modal test of the elastic shell model, the characteristics of the low modal shapes of membrane paraboloidal shell continuum with free boundary condition are investigated.
     Based on positive piezoelectric effect, Gauss theory, open loop assumption and Maxwell equation, the distributed sensing signal equation of the general laminated shell is derived; using the mode shape function of paraboloidal shell with free boundary condition, the modal sensing signal is formulated, and distributed sensing signal components consist of different membrane strains in the meridianal and circumferential direction are defined. In combination with the typical parameters of paraboloidal shell of revolution, the effects of various sensing signal components and their mode sensitivity are analyzed; the magnitude of the sensing signal influenced by the layout of sensors is evaluated.
     On the basis of piezoelectric laminated shell mechanical-electrical coupling modeling, this paper raises the system governing equations of membrane paraboloidal shell of revolution smart structure, and transfers the equations to modal domain by applying modal orthogonality and modal expansion method. By introducing Love control operator and unit step function, the modal control force expression of distributed actuator is deduced, and mainly grounded on transverse vibration, the membrane and bending control components in meridianal and circumferential direction are discussed. Through the numerical simulation, this paper has respectively analyzed the micro-control action, effective area and normalized control action of distributed piezoelectric actuator laminated on the flexible paraboloidal shells, thereby making a guidelines to distributed actuator layout and configuration design.
     According to the basic function and characteristics of PVDF film sensor/actuator, the circuit modules are devised to be applied to the adjustment of microscopic sensing signal and to the high voltage actuation. In consequence of the system software that is developed by VC and aims at collection, analysis and processing of the multiplex signals, as well as the active control, the system experiment platform of piezoelectric laminated flexible paraboloidal shell smart structure is built. Through the open loop test on the distributed sensing and actuation of the experimental model, the availability and reliability of the system are verified, and the experimental data also prove the regular conclusions in the theoretical analysis of sensing and actuation signal.
     Through the parameter identification on the hardware system, the transfer functions of all links are established, and in terms of the pole placement and positive position feedback method, two kinds of controllers were designed, which have been put into use to the vibration control experiments, focusing on the low independent mode and coupled modes in piezoelectric laminated paraboloidal shell respectively. The experiment data show that these control methods enlarge the system damping and restrain the amplitude of vibration, making the active control come true. Finally, in accordance with random of the environment excitation of the space paraboloidal shell structure system and the limitation of the control energy, this paper proposes a self-adaptive modal control method. The experiment proves that, in the case of random excitation, the method can accurately judge the prefect actuator position, and effectively exert the active control on the smart structure.
引文
1 G. S. Nurre, R. S. Ryan and H. N. Scofield. Dynamics and Control of Large Space Structures. Journal of Guidance. 1984, 7(5):514~526
    2 D. C. Hyland, J. L. Junkins and R. W. Longman. Active Control Technology for Large Space Structures. Journal of Guidance. 1993, 16(5):801~821
    3邱志成.智能结构及其在振动主动控制中的应用.航天控制. 2002, (4):8~15.
    4黄文虎,王心清,张景绘等.航天柔性结构振动控制的若干新进展.力学进展. 1997, 27(1): 5~16
    5李俊宝,张景绘.振动工程中智能结构的研究进展.力学进展. 1999, 29(2):165~177
    6江冰,李兴丹,吴代华. Smart结构及其应用.力学进展. 1994, 24(3):353~361.
    7杜善义.先进复合材料与航空航天.复合材料学报. 2007, 24(1):1~12
    8马治国,闻邦椿,颜云辉.智能结构的若干问题与进展.东北大学学报(自然科学版). 1998, 19(5):513~516
    9杨亲民.智能材料的研究与发展.功能材料. 1999, 30 (6):575~581
    10余海湖,赵愚,姜德生.智能材料与结构的研究及应用.武汉理工大学学报. 2001, 23(11):37~41
    11 R. L. Forward, C. J. Swigert. Electronic Damping of Orthogonal Bending Modes in a Cylindrical Mast. Journal of Spacecraft and Rockets. 1981, 18(1):5~17
    12张令弥.智能结构研究的进展与应用.振动、测试与诊断. 1998, 18(2):79~84.
    13蒋宇平,秦嵘,朱林崎.智能结构的发展和应用.宇航材料工艺. 1998, (4):15~17
    14 F. T. Calkins, J. H. Mabe. Multilayer PVDF Actuators for Active Flow Control. 42nd AIAA/ASME/ASCE/AHS/ASC Structures Structural Dynamics and Materials Conference and Exhibit. 2001. Seattle, WA. AIAA-2001-1560
    15 G. W. Butler, F. T. Calkins. Initial Attempts to Suppress Jet Noise Using Piezoelectric Actuators. 9th AIAA/CEAS Aeroacoustics Conference and Exhibit. 2003. Hilton Head, South Carolina. AIAA 2003-3192
    16 E. F. Sheta, R. W. Moses, L. J. Huttsell and V. J. Harrand. Active Control of F/A-18 Vertical Tail Buffeting Using Piezoelectric. 44th AIAA/ASME/ ASCE/AHS Structures, Structural Dynamics and Materials Conference. 2003. Norfolk, Virginia. AIAA 2003-1887
    17 G. S. Agnes, J. W. Wagner. Adaptive Structures Technology for Membrane Optical Surfaces. 42nd AIAA/ASME/ASCE/AHS/ASC Structures StructuralDynamics and Materials Conference and Exhibit. 2001. Seattle, WA. AIAA-2001-1199
    18 P. C. Chen, D. D. Liu and L. M. Auman. Body-Flexure Control with Smart Actuation for Hypervelocity Missiles. 44th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics and Materials Conference. 2003. Norfolk, Virginia. AIAA-2003-1965
    19吴克恭.埋入压电材料的智能复合材料结构振动主动控制理论和实验研究.西北工业大学博士论文. 2003: 2~27
    20郭保全,侯宏花,潘玉田.智能材料和结构的应用及展望.科技情报开发与经济. 2005, 15(6):131~132
    21陶宝祺,刘果,袁慎芳.智能材料结构的研究进展.南京航空航天大学学报. 1995, 27(1):14~26
    22黄尚廉,陶宝祺,沈亚鹏.智能结构系统——梦想、现实与未来.中国机械工程. 2000, 11(1):32~35
    23 http://www.capcomespace.net
    24 http://www.astro.utu.fi/tuorla/new/mirror.shtml
    25 Y. K. Lin, F. A. Lee. Vibrations of Thin Paraboloidal Shells of Revolution. Journal of Applied Mechanics. 1960, 27(4):743~746
    26 W. H. Hoppmann, W. E. Baker. Extensional Vibration of Elastic Orthotropic Shells, J. Appl. Mech. 1961, 28: 229~237
    27 W. H. Hoppmann, M. I. Cohen, and V. X. Kunukkasseril. Elastic Vibrations of Paraboloidal Shells of Revolution. Journal of the Acoustic Society of America. 1964, 36(2):349~353
    28 J. T. S. Wang, C. Lin. On the Differential Equations of the Axisymmetric Vibration of Paraboloidal Shells of Revolution. 1967. NASA CR-932
    29 P. G. Glockner, K. Z. Tawardros. Experiments on Free Vibration of Shells of Revolution. Experimental Mechanics. 1973, 13(10):411~421
    30 W. L. Shoemaker, S. Utku. On the Vibration of Spinning Paraboloids. Journal of Sound and Vibration. 1986, 111(2):279~296
    31 A. Kayran, J. R. Vinson and E. S. Ardic. A Method for the Calculation of Natural Frequencies of Orthotropic Axisymmetrically Loaded Shells of Revolution. Journal of Vibration and Acoustics. 1994, 116:16~25
    32 J. H. Kang, A. W. Leissa. Free Vibration Analysis of Complete Paraboloidal Shells of Revolution with Variable Thickness and Solid Paraboloids from a Three-dimensional Theory. Computers and Structures. 2005, 83:2594–2608
    33 Omar J. Al-khatib. Vibration of Paraboloidal Shells. Tennessee Technological University PhD Dissertation. 2006: 7~14
    34罗祖道,潘纪浩.抛物旋转扁壳的轴对称弯曲.力学学报. 1963, (3):200~218
    35叶开沅.弹性薄板薄壳理论.兰州大学. 1981
    36孙博华.抛物旋转扁壳的一般弯曲问题.力学学报. 1989, 21(2):245~249
    37李锡恩.抛物线形旋转薄壳结构内力计算实例分析.上海工程技术大学学报. 1994, 8(2):66~72
    38林霄映,刘莉.抛物线旋转面天线在轴向过载下的应力分析.弹箭与制导学报. 1999, (4):45~48
    39陈塑寰,姚国凤,刘中生. Riccati方程的分块迭代算法及在智能结构形状控制中的应用.固体力学学报. 2000, 21(1):66~70
    40张志良,程昌钧.旋转薄壳转点频段的轴对称振动解.固体力学学报. 2006, 27(2): 630~636
    41陈星文,张若京.旋转薄壳自由振动中3类广义相关函数的求解.计算机辅助工程. 2008, 17(1): 36~38
    42 W. P. Mason. Piezoelectric Crystals and Their Application to Ultrasonics. NY Nostrand. 1950
    43 W. G. Cady. Piezoelectricity. New York: Dover Pub. 1964
    44 H. F. Tiersten. Linear Piezoelectric Plate Vibrations. New York: Plenum. 1969
    45 C. K. Lee. Theory of Laminated Piezoelectric Plates for the Design of Distributed Sensors and Actuators. Part 1: Governing Equations and Reciprocal Relationships. Journal of the Acoustic Society of America. 1990, 87(3):1144~1158
    46 C. k. Lee, F. C. Moon. Laminated Piezopolmer Plates for Torsion and Bending Sensors and Actuators. Journal of the Acoustic Society of America. 1989, 85(6):2432~2439
    47 H. S. Tzou. Piezoelectric Shells (Distributed Sensing and Control of Continua). Kluwer Academic Publishers. Boston, Dordrecht. 1993:18~55
    48 M. C. Dokmeci. Theory of Vibration of Coated Thermopiezoelectric Laminate. Journal Math Phys. 1978, 19(1):109~126
    49 B. Pletner, H. Abramovich. Consistent Methodology for the Modeling of Piezoelaminated Shells. AIAA Journal. 1997, 35(8):1316~1326
    50 D. H. Robbins, J. N. Reddy. Analysis of Piezo-electrically Actuated Beams Using a Layerwise Displacement Theroy. Computers and Structures. 1991, 41(2):265~279
    51 P. Heyliger. Static Behavior of Laminated Elastic Piezoelectric Plates. AIAA Journal. 1994, 32:2481~2484
    52 P. Bisegna, F. Maceri. An Exact Three-dimensional Solution for Simply Supported Rectangular Piezoelectric Plates. ASME Journal. Applied Mechanics.1996, 63:628~637
    53 F. Ashida, T. R. Tauchert and N. Noda. Potential Function Method for Piezothermoelastic Problems of Solids of Crystal Class 6mm in Cylindrical Coordinates, J. Therm Stress. 1994, 17:361~375
    54 C. Q. Chen, Y. P. Shen. Piezothermoelasticity Analysis for Circular Cylindrical Shell Under the State of Axisymmetric Deformation. Int J Engineering Science. 1996, 34(14):1585~1600
    55 C. Q. Chen, Y. P. Shen and X. M. Wang. Exact solution of orthotropic cylindrical shell with piezoelectric layers under cylindrical bending,Int J Solids & Structures. 1996, 33(3):4481~4491
    56伍晓红,沈亚鹏,陈常青等.压电梯度薄壳的高阶理论解.复合材料学报. 2003, 20(5):100~107
    57 H. J. Ding, B. L. Chen. General Solutions for Coupled Equations for Piezoelectric Media Int. Journal Solids Structures. 1996, 33(16):2283~2298
    58丁皓江,陈伟球,徐荣桥.压电板壳自由振动的三维精确分析.力学季刊. 2001, 22(1) :1~9
    59代锋,郑世杰,王晓雪.功能梯度材料板壳多场耦合主动控制仿真.中国机械工程. 2007, 18(1): 105~108.
    60王小兵等.热机电耦合智能板结构的一类有限元模型.应用力学学报. 2008, 25(2): 263~267
    61 T. Bailey, J. E. Hubbard. Distributed Piezoelectric-Polymer Active Vibration Control of a Cantilever Beam. Journal of Guidance. 1985, 8(5):605~611
    62 S. E. Burke, J. E. Hubbard. Active Vibration Control of a Simply Supported Beam Using a Spatially Distributed Actuator. IEEE Control System Magazine. 1987, (7):25~30
    63 H. S. Tzou. Integrated sensing and adaptive vibration suppression of distributed systems. Recent development in control of nonlinear and distributed parameter systems. December 1988, ASME-DSC-Vol.(10)0:52~58
    64 H. S. Tzou, C. I. Tseng. Distributed piezoelectric sensor/actuator design for dynamic measurement/control of distributed parameter systems: a finite element approach. Journal of sound and vibration. 1990, 138(1):17~34
    65 A. Shah, L. Lenning, S. Bibyk and U. Ozguner. Flexible Beam Modeling with Analog VLSI Circuits, ASME, Adaptive Structure and Composite Materials: Analysis and Application. 1994, AD-45/MD-54:261~265
    66 E. F. Crawley. Intelligent Structures for Aerospace: A Technology Overview and Assessment. AIAA Journal. 1994, 32(8):1689~1699
    67 H. S. Tzou, M. Gadre. Theoretical analysis of a multi-layered thin shell coupled with piezoelectric shell actuators for distributed vibration control. Journal ofsound and vibration. 1989, 132(3):433~450
    68 H. S. Tzou, J. P. Zhong and J. J. Hollkamp. Spatially Distributed Orthogonal Piezoelectric Shell Actuators (Theory and Applications). Journal of Sound and Vibration. 1994, 177(3):363~378
    69 V. Birman, A. Simonyan. Theory and Applications of Cylindrical Sandwich Shells with Piezoelectric Sensors and Actuators. Smart Materials and Structures. 1994, 3(4):391~396
    70 J. Callahan, H. Baruh. Modal Sensing of Circular Cylindrical Shells Using Segmented Piezoelectric Elements. Smart Materials and Structures. 1999, 8(1):125~135
    71 J. Qiu, J. Tani. Vibration Control of a Cylindrical Shell Using Distributed Piezoelectric Sensors and Actuators. J. of Intel. Material Sys & Struc. 1995, 6(4):474~481
    72 A. R. Faria, S. F. M. Almeida. Axisymmetric Actuation of Composite Cylindrical Thin Shells with Piezoelectric Rings. Smart Materials and Structures. 1998, 7(6):843~850
    73 H. S. Tzou, Y. Bao and V. B. Venkayya. Parametric Study of Segmented Transducers Laminated on Cylindrical Shells. Journal of Sound and Vibration. 1996, 197(2):225~249
    74 S. K. Ghaedi, A. K. Misra. Active Control of Shallow Spherical Shell Using Piezoelectric Sheets. Proceeding of SPIE-The International Society for Optical Engineering. 1999:890~912
    75 V. Birman, et al. Axisymmetric Dynamics of Composite Spherical Shells with Active Piezoelectric/Composite Stiffeners. Acta Mechanica. 2000,
    76 H1.4 1S(.1 T):z7o1u~,8 D3 . W. Wang and W. K. Chai. Dynamics and Distributed Control of Conical Shells Laminated with Full and Diagonal Actuators, 2002,
    77 H2.5 6S(.1 T):z6o5u~,7 D9 . W. Wang. Micro-sensing Characteristics and Modal Voltages of Piezoelectric Laminated Linear and Nonlinear Toroidal Shells. Journal of Sound and Vibration. 2002, 254(2):203~218
    78 H. S. Tzou, D. W. Wang and I. Hagiwara. Distributed Dynamic Signal Analysis of Piezoelectric Laminated Linear and Nonlinear Toroidal Shells. Proceedings of 2001 ASME International Mechanical Engineering Congress and Exposition. 2001. New York
    79 H. S. Tzou, P. Smithmaitrie and J. H. Ding. Sensor Electromechanics and Distributed Signal Analysis of Piezoelectric-elastic Spherical Shells, Mechanical System and Signal Processing. 2002, 16:185~199
    80 P. Smithmaitrie, H. S. Tzou. Micro-control Action of Actuator Patches Laminated on Hemispherical Shells. Journal of Sound and Vibration. 2004,277:691~710
    81 H. S. Tzou, J. H. Ding. Micro-control Actions of Distributed Actuators Laminated on Deep Paraboloidal Shells. JSME Int. J., Series C. 2002, 45(1):8~15
    82 H. S. Tzou, J. H. Ding. Distributed Modal Voltages of Nonlinear Paraboloidal Shells with Distributed Neurons. ASME Transactions. Journal of Vibration and Acoustics. 2004, 126:47~53
    83 J. H. Ding, H. S. Tzou. Micro-electromechanics of Sensor Patches on Free Paraboloidal Shell Structronic Systems. Mechanical System and Signal Processing. 2004, 18:367~380
    84黄海,孙文俊.考虑平整性要求的板壳自适应结构静变形控制.宇航学报. 2001, 22(4):71~75
    85王小兵,陈建军,高伟等.智能板结构的动力有限元模型的建立与仿真.电子机械工程. 2004, 20(4):61~64
    86詹训慧.分布式压电智能结构的建模与振动控制.国防科技大学博士论文. 2007: 2~11
    87丁根芳,王建国,覃艳.自感知压电层合梁的数值分析与数值模拟.工程力学. 2006,23 (2) : 131~136
    88王建国,丁根芳,覃艳.层状压电智能梁板结构的形状最优控制研究.应用力学学报. 2008,25(1): 315~321
    89陈勇,陶宝祺,刘果等.压电复合材料薄壳结构振动主动控制.压电与声光. 1998, 20(4):228~232
    90 S. L. Padula, R. K. Kincaid. Optimization Strategies for Sensor and Actuator Placement. 1999, NASA/TM-1999-209126
    91 K. Choe, H. Baruh. Actuator Placement in Structural Control. Journal of Guidance, Control and Dynamics. 1991, 15(1): 40~46
    92 L. R. Clark, C. R. Fuller. Optimal Placement of Piezoelectric Actuators and Polyvinylidene Fluoride Errors Sensors in Active Structural Acoustic Countrol Approaches. Journal of the Acoustical Society of America. 1992, 92:1521~1533
    93 S. M. Yang, Y. J. Lee, Vibration Suppression with Optimal Sensor/ Actuator Location and Feedback Gain. Smart Materials and Structures. 1993, 2:232~239.
    94 J. Holnicki-Szule. Optimal Location of Actuators for Active Damping of Vibration. AIAA Journal. 1993, 31 (7):1275~1279
    95 T. M. Lim. Actuator/sensor Placement for Modal Parameter Identification of Flexible Structures. Modal Analysis: the International Journal of Analytical and Experimental Modal Analysis. 1993, 8(1): 1~13
    96 Y. K. Kang, H. C. Park, W. Hwang and K. S. Han. Optimum Placement ofPiezoelectric Sensor/actuator for Vibration Control of Laminated Beams. AIAA Journal, 1996, 34(9): 1921~1926
    97 Z. H. Lai, J. K. Huang and C. Mei. Shape and Placement of Piezoelectric Sensors for Panel Flutter Limit Cycle Suppression. AIAA Journal. 1996, 34(4):136~140
    98 A. M. Sadri, J. R. Wright and R. J. Wyne. Modeling and Optimal Placement of Piezoelectric Actuators in Isotropic Plates Using Genetic Algorithms. Smart Materials and Structures. 1999, 8:490~498
    99 M. Reynier, A. K. Hisham. Sensor Location for Updating Problems. Mechanical System and Signal Processing. 1999, 13(2):297~314
    100曹宗杰,闻邦椿,陈塑寰.智能结构振动控制中压电传感器与执行器位置的拓扑优化.振动工程学报. 2001, 14(1):90~95
    101王威远,魏英杰,王聪等.压电智能结构传感器/作动器位置优化研究.宇航学报. 2007, 28(4):1025~1029
    102陈勇.压电自适应结构振动控制技术研究.南京航空航天大学博士论文. 1998
    103孙东昌,张洪华,吴洪鑫等.压电智能材梁振动控制中致动片优化配置与实验.中国空间科学技术. 1999, (6):46~52
    104刘福强,张令弥.作动器与传感器优化配置的逐步消减法.宇航学报. 2000, 21(3):64~69
    105邱志成.挠性板振动抑制的敏感器与驱动器优化配置.宇航学报. 2002, 23(4):30~36
    106黄维平,刘娟,李华军.基于遗传算法的传感器优化配置.工程力学. 2005, 22(1):113~117
    107白冰,常军,刘正兴.梁振动控制中压电作动器的位置优化准则.上海交通大学学报. 2005,39 (2) : 288~292
    108曾光,李东旭.空间智能桁架作动器/传感器位置优化中的遗传算法应用.宇航学报. 2007, 28(2):461~464
    109詹训慧,王永.考虑粘贴效应和测量噪声的压电作动器/传感器优化配置.振动与冲击. 2008, 27(2): 143~146
    110王锋,唐国金,李道奎.考虑扰动输入/性能输出分布式作动/传感器配置优化.航空学报. 2007, 28(11):111~114
    111陶宝祺.智能材料结构.北京.国防工业出版社. 1997
    112 J. L. Fanson and T. K. Caughey. Positive Position Feedback Control for Large Space Structures. AIAA Journal. 1990, 28:717–724
    113 K. Bani-Hani, J. Ghaboussi and S. P. Schneider. Experimental Study ofIdentification and Control of Structures Using Neural Networks part1: Identification. Earthquake engineering and structural dynamics. 1999, 28(9):995~1018
    114 K. Bani-Hani, J. Ghaboussi and S. P. Schneider. Experimental Study of Identification and Control of Structures Using Neural Networks. part2: Control, Earthquake Engineering and Structure Dynamic, 1999, 28(9):1019~1039
    115 G. W. Housner. Structural Control: Past, Present, Future. Journal of Engineering Mechanics. 1997, 123(9):897~971
    116 C. R. Fuller. Active Control of Broad Band Structural Vibration Using the LMS Adaptive Algorithm. Journal of Sound and Vibration. 1993, 166(2):283~299
    117 J. Rodellar. Response Analyses of Buildings with a New Nonlinear Base Isolation System. Proceedings of the first world conference on structural control[C]. Los Angeles: International Association for Structural Control. 1994, TP1:31~40
    118 M. A. Abraham, J. R. Morgan. Gain Scheduled Adaptive Control of a Hybrid Structure. Proceedings of the first world conference on structural control[C]. Los Angeles: International Association for Structural Control, 1994, TP4:3~12
    119 R. A. Burdisso. Structural Attenuation due to Seismic Inputs with Active/ Adaptive System. Proceedings of the first world conference on structural control[C]. Los Angeles: International Association for Structural Control, 1994, TA4:3~12
    120 L. C. Robert, Clark, R. William, Saunders and P. G. Gary. Adaptive Structures: Dynamic and Control. Wiley-Interscience. 1998
    121莫凡芒,孙庆鸿,陈南.遗传算法在结构振动主动控制中的应用研究.噪声与振动控制. 2003, (2):11~16
    122阎石,林皋,黎海林.人工神经网络在结构振动控制中应用.大连理工大学学报. 2000, 40(5):589~592
    123余跃庆,周刚,方道星.基于模糊PID融合的柔性机械臂振动压电主动控制研究.中国机械工程. 2008, 19(15):1836~1841
    124 J. Q. Mao, Q. Z. Bu. Low Order H∞Robust Controller Design for Active Vibration control. The fourth International Conference on Control and Automation. 2003. Montreal, Canada. 311~314
    125鲁民月,顾仲权,杨铁军.简化的结构振动自适应前馈控制方法研究.振动与冲击. 2005, 24(1):89~93
    126陈文英,阎绍泽,褚福磊.免疫遗传算法在智能桁架结构振动主动控制系统优化设计中的应用. 2008, 44(2):196~200
    127杨拥民,张华,胡政.正位置反馈的多模态振动主动控制实验.振动工程学报. 2005, 18(3):355~359
    128沈少萍.特征模型自适应控制方法在悬臂梁振动主动控制中的应用.振动与冲击. 2007, 26(11): 115~119
    129董兴建,刘龙,孟光等.基于有限元和系统辨识的智能结构主动控制.振动工程学报. 2005, 18(3):329~334
    130邱志成.基于加速度反馈的挠性智能结构振动主动控制.机械工程学报. 2008, 44(3): 143~151
    131邱志成.基于自适应滤波的压电智能挠性悬臂板振动控制研究.系统仿真学报. 2006, 18(5):1311~1318
    132胡庆雷,马广富.改进型正位置反馈/变结构卫星姿态主动控制.振动工程学报. 2007, 20(4):324~329
    133吴连元.板壳理论.上海交通大学出版社. 1989:179~249
    134 Soedel. Vibrations of Shells and Plates. Marcel Dekker, Inc. 1981:8~54
    135曹志远.板壳振动理论.中国铁道出版社. 1983:358~370
    136刘人怀.板壳力学.机械工业出版社. 1990:160~173
    137 Jesper B?cklund. Free Vibration Analysis of Rocket Nozzles Using Enerfy Methods. LULE? TEKNISKA UNIVERSITET. Master thesis. 1998
    138董维杰.压电自感知执行器理论与应用研究.大连理工大学博士论文. 2003.
    139 V. Sethi, G.B. Song. Multimodal Vibration Control of a Flexible Structure Using Piezoceramics. Advanced Intelligent Mechatronics Proceedings. 2005, IEEE/ASME International Conference, 005:851~856
    140孙浩,杨智春,于哲峰.基于极点配置参数优化的压电分流阻尼抑振研究.西北工业大学学报. 2006, 24(1):106~110
    141 M. Sharma, S.P. Singh and B.L. Sachdeva. Modal Control of a Plate Using a Fuzzy Logic Controller. Smart Materials and Structures. 2007, 16:1331~1441.
    142李普,胡如夫,尹垚.振动系统鲁棒μ-synthesis控制试验研究.振动与冲击. 2007, 26(4):161~164
    143 J. Lin. A Vibration Absorber of Smart Structures Using Adaptive Networks in Hierarchical Fuzzy Control. Journal of Sound and Vibration. 2005,287:683~705
    144蒋建平,李东旭.压电复合梁高阶有限元模型与主动振动控制研究.动力学与控制学报. 2007, 5(2):141~146
    145胡如夫,李普,陈南等.基于H∞的振动系统多输入多输出鲁棒控制仿真.东南大学学报. 2005, 35(6):894~897
    146陈光.密集模态挠性结构的多变量实验辨识及自适应逆控制.中国科技学技术大学博士学位论文. 2006
    147 T. K. Caughey, C. J. Goh. Analysis and Control of Quasi-Distributed Parameter System. California Inst of Technoligy, Pasadena, CA, Dynamics Lab Report, DYNL-82-3, 1982
    148张薇,张菊香.基于PPF的柔性悬臂梁主动振动控制.噪声与振动控制. 2008, 3: 6~9
    149 V. Sethi, G. B. Song and P. Z. Qiao. System Identification and Active Vibration Control of a Composite I-beam Using Smart Materials. Structure Control Health Monitor, 2006, 13:868~884

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700