光致伸缩层合结构振动无线主动控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统驱动器需要硬线连接来传输控制信号,当外界环境存在附加的电磁场时,传统驱动器往往受外界电磁场影响,光致伸缩驱动器由于不需要硬线连接从而能完美解决受外界电磁场影响的问题。光致伸缩驱动器可直接将光能转化为机械能,在柔性结构的振动主动控制方面具有可观的发展前景。目前,柔性结构板直接使用光致伸缩驱动器进行振动控制还处于研究阶段。
     本文采用光电材料作为结构的驱动器,采用遗传算法优化单对及双对驱动器尺寸及位置,并着重对不同模态的振动控制方法进行了深入研究,同时还考虑了不同边界条件梁的振动控制。引入模态控制力的概念,它受模态阶数,驱动器布置,以及驱动器极化方向的影响。本采用二进制编码优化模态控制力最大,在此基础上考虑新的光强算法。进一步考虑板结构的振动主动控制,同样采用优化单片和双片驱动器的结果比较结果。在此基础上,探讨了双片驱动器多阶振动主动控制的可行性。为了改善结构振动控制的效果,选用结构振动能量和控制信号能量作为控制目标函数的LQR控制算法作了初步研究。引入二进制编码的GA和LQR算法相结合,在限制驱动器的电场强度不超过饱和电场强度情况下最大化闭环阻尼系数。仿真算例表明了使用优化的驱动器布置能有效的控制结构的前几阶模态,同时也可以看出驱动器优化布置能有效降低系统振动。
The traditional actuators require hard-wired connections to transmit the control signals. When the operating environments contain external electromagnetic field, often there is electromagnetic interference using the traditional electromechanical transducers. The optically driven distributed opto-electromechanical actuators were born to remedy this problem. Photostrictive actuator, which can directly turn light energy into mechanical energy, is a new promising photoactuation technique for active vibration control of flexible structures. Photonic control of flexible plates using discrete Photostrictive actuators is investigated.
     In this paper, Photostrictive elements are employed as structural actuators. This paper used the method of genetic algorithms to optimize the location and size of one and two pairs of actuators. We also have a deep research on the vibration control of different modes. Beam with different boundary condition is considered. The modal force index function, which has taken into account the mode number, the spatial distribution, and the dimension of the Photostrictive actuator, is established. A binary-coded GA was used to maximize the modal force index. Based on these results, a new definition of the light intensity is developed. The analytical solution shows the new control method can be more effective. On the other hand, the active vibration control of plate is considered. In this part we also use GA to optimize the location and size of one and two patches of actuators. Base on the responses from analysis of plate, we consider the method of using two patches of photostrictive actuators to control multiple vibration modes of the plate. Velocity feedback control and acceleration feedback are used in the active vibration control of plate. In order to improve the effectiveness of the vibration control for plate structure, this paper made some analysis of the linear quadratic regulator (LQR) control method, which chooses the vibration energy of the structure and the control signal energy for the object function. A binary-coded GA based improved LQR control scheme has been incorporated, which maximizes the closed loop damping while keeping the actuator electric field within limit. Analytical solutions and numerical results demonstrate that the use of strategically positioned actuator patches can effectively control the fundamental modes that dominate the structural vibration. It also shows that by properly positioned the actuators the system performance can be improved.
引文
[1]顾仲权,马扣根,陈卫东.振动主动控制,北京:国防工业出版社,1997:1~21.
    [2]董聪,夏人伟.智能结构设计与控制中的若干核心技术问题.力学进展.1996,26(2):166~178.
    [3] Rogers, C.A., Ed. Smart materials, structures, and mathematical issues. Technomic Publishers, 1988:107~118.
    [4] Tzou, H.S., Anderson, G.L. Intelligent structural systems. Kluwer academic publishers, 1992: 157~180.
    [5] Tzou, H.S, Guran, A., Anderson, G.L. Intelligent structural systems. Kluwer Academic publishers, 1992: 157~180.
    [6]李超,李琳.磁致伸缩材料作动器用于主动振动控制的实验研究.航空动力学报.2003,18(1):134~139.
    [7] Baily, T., Hubbard, J.E. Distributed Piezoelectric Polymet Active vibration control of a Cantilever Beam. Journal of Guidance, Control, and Dynamics. 1985, 8(5):605~611.
    [8] Crawley, E.F., De Luis. Use of Piezoelectric Actuators as Elements of Intelligent Structures. AIAA Journal. 1987,25(10): 1373~1385.
    [9] Tzou, H.S. Active Vibration Control of Flexible Structures Bia Converse Piezoelectricity. Developments in Mechanics. 1987,(14): 1201~1206.
    [10] Fridkin, V.M. Photoferroelectrics. Springer Verlag. 1979: 321~326.
    [11] Brody, P.S. Optomechanical Bimorph Actuator. Ferroelectrics. 1983, (50): 27~32.
    [12] Uchino, K. Photostrictive Actuator. Proceedings IEEE Ultrasonics Symposium. 1990,(5):721~723.
    [13] Morikawa, Y., Nakada, T., Cao, D. H. Estimation of Dynamic Characteristics of Bimorph Type Optical Actuator and Proposal of Opto Pneumatic Servo System. Journal of Mechanical Engineering Laboratory (Japanese). 1993,(47):237~246.
    [14] Tzou, H.S, Ye, R. Piezothermoelasticity and Precision Control of Piezoelectric Laminates: Theory and Finite Element Analysis. ASME Journal of Vibration and Acoustics. 1994, 116(4): 489~495.
    [15] Liu, B., Tzou, H.S. Photodeformation and Light Temperature Electric Coupling of Optical Actuators: Part 1: Parameter Calibration and Part 2: Vibration Control. Proceedings of ASME Aerospace Division. 1996:663~678.
    [16] Tzou, H.S, Chou, C.S. Nonlinear Opto-electro-mechanics and Photo-deformation of Optical Actuators. Journal of Smart Materials and Structures. 1996,(5):230~235.
    [17] Tzou, H.S, Liu, B. Study of Spatially Distributed Opto Mechanical Shell Actuators Activecontrol of Vibration and Noise. ASME International Congress. 1996,(93):305~314.
    [18] Tzou, H.S, Bao, J.H., David C. Opto-piezothermoelastic Actions and Micro-control Sensitivity Analysis of Cylindrical Opto-mechanical Shell Actuators. Journal of theoretical and applied mechanics. 2002,(3):775~796.
    [19] Dongchang Sun, Liyong Tong. Modeling of wireless remote shape control for beams using nonlinear photostrictive actuators. International Journal of Solids and Structures. 2007,(44):672~684.
    [20] Shoko KIKUCHI, Kenta TAKAGI, Ryuzo WATANABE. Photostrictive Characteristics of Fine-Grained PlZT Ceramics Derived from Mechanically Alloyed Powder. Journal of the Ceramic Society of Japan. 2004, 112(10):572~576.
    [21] H. H. Yue, Z. Q. Deng, H. S. Tzou. Non-contact precision actuation and optimal actuator placement of hybrid photostrictive beam structure systems. ASME IDETC2007 Proceeding, LasVegas USA, 2007.
    [22] Shih, H. R.., Tzou, H. S., etc. Structural Vibration Control Using Spatially Configured Opto-Electromechanical Actuator. Journal of Sound and Vibration. 2005, 284(1):361~378.
    [23] Shih, H.R., Tzou, H.S. Wireless Control of Parabolic Shells Using Photostrictive Actuators. Proceedings of IMECE2006, Chicago, USA, 2006:1~10.
    [24] Shih, H.R., Tzou, H.S. Photostrictive Actuators for Photonic Control of shallow Spherical Shells. Smart Materials and Structures. 2007, (6):712~1717.
    [25] Uchino, K. Micro. Walking machine Using Piezoelectric Actuators. Journal of Robotics and Mechatronics. 1989,(12):44~47.
    [26] Poosanaas, P., Tonooka, K., Uchino, P. Photostrictive Actuators, Mechatronics. 2000,(6):467~487.
    [27]柏朝晖,巴学巍.锆钛酸铅镧(PLZT)陶瓷材料的纤维结构和性能.长春理工大学学报.2005, 28(2):79~83.
    [28]程达明.PLZT光致伸缩陶瓷的制备及其性能与组分关系研究,[硕士学位论文].北京:清华大学,2005.
    [29]苗彬彬,王君,陈江涛,闫鹏勋.铁电PLZT薄膜的最新研究进展.人工晶体学报,2006,35(3):539~544.
    [30]厉宝增.关于光电陶瓷PLZT稀土掺杂的发光特性研究及其电光特性的应用,[博士学位论文].合肥:中国科学技术大学,2007.
    [31]郑鑫森,郑芝凤,束慧君,敖海宽.PLZT陶瓷中的光致伏特效应的研究.工程材料,1991,22(6):351~335.
    [32]张显奎,李洪人,许耀铭.PLZT陶瓷的光伏效应研究.功能材料,1996,27(4):311~314.
    [33] Zhen Luo, Quantian Luo, Liyong Tong, Wei Gao, Chongmin Song. Shape morphing of laminated composite structures with photostrictive actuators via topology optimization. Composite Structures, 2011, 93(2): 406~418.
    [34]王凌.智能优化算法及其应用.北京:清华大学出版社,2001:25~64.
    [35]胡海岩,孙久厚,陈怀海.机械振动与冲击.北京:航空工业出版社.2008: 125~136.
    [36] K.J.巴斯.工程分析中的有限元法.北京:机械工业出版社. 1982: 455~457.
    [37]钟万勰,吴志刚,谭述君.状态空间控制理论与计算.北京:科学出版社.2007: 301~347.
    [38]唐纪晔,黄海,夏人伟.压电复合材料层合板自适应结构的振动控制,计算力学学报,200年第17卷第4期.
    [39]常军,陈敏,刘正兴.弹性板振动的多模态主动控制,力学季刊,2004年第25卷第1期.
    [40]李国勇.最优控制理论与应用.北京:国防工业出版社.2008:156~178.
    [41]梅生伟,申铁龙,刘康志.现代鲁棒控制理论与应用.北京:清华大学出版社.2003:144~153.
    [42]万百五,韩崇昭,蔡远利.控制论——概念、方法与应用.北京:清华大学出版社.2005:178~192.
    [43]葛宝明,林飞,李国国.先进控制理论及其应用.北京:机械工业出版社.2007:133~152.
    [44] Tarapada Roy and Debabrata Chakraborty. Genetic algorithm based optimal control of smart composite shell structures under mechanical loading and thermal gradient. Smart Mater. Struct. 18(2009).
    [45] Jingjun Zhang, Lili He, Ercheng Wang, Ruizhen Gao. The design of LQR controller based on independent mode space for active vibration control. Advances in Computation and Intelligence. Third International Symposium, ISICA 2008:649-658.
    [46] M. Tadi. An LQR-Control Problem for a Multicomponent Flexible Structure. Applied Mathematics and Optimization, v 35, n 3, 1997:331-351.
    [47]胡寿松,王执铨,胡维礼.最优控制理论与系统.北京:科学出版社.2005:355~378.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700