P25薄膜光催化降解水中喹啉及其中间产物的微生物抑制效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光催化技术能够有效解决水中多种人工合成有机物的持久性污染问题,其与生物处理技术的联合应用在污水处理领域展现出明显的优势。然而,受粉体光催化剂使用过程中回收困难,且光催化氧化耗时长、能耗大等问题,限制了其在实际工程中的应用。众多研究显示,难降解有机物经过光催化处理后,其出水仍具有一定的微生物抑制性。据此,本项目以典型化工原料喹啉为研究对象,利用光催化技术与生物处理技术相结合,系统研究了光催化材料制备、喹啉的光催化降解行为及其出水对活性污泥的影响,主要成果如下:
     以制备磁分离型粉体催化剂为目标,采用沉积-沉淀法在纳米Fe_3O_4表面负载Au颗粒,制备了系列FeO_x/Au催化剂。经过煅烧后部分Fe_3O_4被氧化生成α-Fe_2O_3提高了光催化活性,但仍具有良好的磁分离效果。表面负载Au能够增强FeO_x/Au的光催化活性,但其对水中喹啉的降解速率明显低于Deguessa P25 TiO_2。
     在不加粘结剂的前提下采用浸渍涂布法在多孔镍基片上负载P25 TiO_2,制备成一种多孔镍基P25薄膜。保持负载浓度为10 wt.%时制备的P25薄膜具有最佳的光催化活性,其原因是薄膜具有大比表面积和多孔结构,表面存在大量微裂痕,而且热处理并没有明显改变P25 TiO_2的晶相,并促使基片上Ni以金属镍和氧化镍共存体(比例为12 at.%)扩散到薄膜表面。
     相应地,以10 wt.%浓度制备的P25薄膜为光催化组件,设计并制作了一种连续流内循环光催化反应器,分别考察了初始浓度、光照时间、光强、曝气量等条件下对水中喹啉去除效果的影响。结果表明:增大光照强度、曝气量和延长反应时间能够明显提高水中喹啉的光催化降解率,反应温度和初始浓度不是主要的控制步骤。保持初始溶液pH=4时水中喹啉的去除效率最高。
     水中喹啉的光催化降解符合Langmuir- Hinshelwood动力学模型,这说明水中喹啉的光催化氧化过程主要发生在P25薄膜的表面,光生电子-空穴派对的直接还原和氧化是水中喹啉初步降解的主要步骤。增大初始浓度有助于提高水中有机物的去除率,但会降低喹啉的去除速率,这主要是受产物竞争吸附和竞争氧化自由基的影响;水中喹啉的降解活化能为16.9kJ/mol,表观吸附常数为0.024 L/mg。水中喹啉光催化降解动力学的表达式为: r_a=0.35×10~(-3)exp(-16906/RT)I_a~(0.53)×1.29C_(o2_/(1+1.29C_(o2))×0.024C_q/(1+0.024C_(q0))
     HPLC和GC/MS分析结果显示喹啉光催化降解产物中包括2-和3-吡啶甲醛、2-和3-乙酰吡啶以及2-羟基喹啉。在有氧条件下TiO_2表面的喹啉存在一条可能的降解途径:首先是TiO_2吸附氧分子的接受光生电子生成O_2~-,其在水相中具有一定的存活时间从而可以参与喹啉的光催化过程,其吸收的光生电子向TiO_2表面活性点位释放时,也会出现向相邻吸附位置的喹啉分子中-2位释放,从而在-2位引入氧基并在氧化物种作用下生成2-羟基喹啉,这样增大了吡啶环上-3位电荷密度促使该点位被氧化,最终导致吡啶环在2,3-位开环,生成一系列苯系物。
     以活性污泥为受试物,检验了喹啉光催化降解30min和60min时,对可培养细菌和酶活性的影响,结论显示光催化降解30min出水不利于活性污泥中可培养细菌的生长,受总生物量降低的影响,脱氢酶、蛋白酶活性明显下降。喹啉水溶液经过60min光催化降解后,并没有抑制水中细菌的生长,活性污泥中存在土著菌群具有专性降解或共代谢降解喹啉及其中间产物的特性。
     进一步构建连续流光催化-生物处理组合实验模型,研究了喹啉水溶液的降解过程,当光催化降解时间为60min时,组合系统出水中CODCr值保持在50mg/L左右,具有稳定的去除效率。当降解时间调整为30min时,出水CODCr值上升到90mg/L,且出水呈现粉红色。最后利用PCR-DGGE技术分析了喹啉水溶液光催化氧化后对活性污泥中微生物群落结构的影响,结果显示光催化30min的喹啉水溶液对活性污泥中微生物具有抑制性,微生物物种多样性下降,未培养细菌Clostridium sp.适应低营养基质条件使种群数量增大,而Sphingopyxis granuli sp.能够优先利用或共代谢喹啉水溶液光催化出水中的有机物从而发育成为新的优势种群,其作为可培养土著细菌可以直接从活性污泥中筛选并获得具有高效降解性的纯菌株。
Persistent pollution of multiple artificially synthesized organic compounds could be effectively solved by photocatalytic technology, while its combined with biological treatment technique shows a optimum advantage in the wastewater treatment. However, there exist some problems limit its application in practice, such as the difficult of recycled powder catalyst, the long time oxidation and high energy consumption, and so on. A great deal of lab-scale research proved that the wastewater contained many refractory organic matter still has inhibitory effect on microorganism after photocatalytic oxidation. Therefore, this research present an introduction of two photocatalysts, a newly three-dimensional photocatalytic reactor and a combined treatment of photocatalysis and biological technology. As a typical chemical raw material, quinoline, which contains a fused-ring result in hardly biodegradation, was selected for the research target. The research mainly aimed at the preparation of photocatalyst, photocatalytic degradation behavior and the biological effect of photocatalytic effluent. The main results are summarized as follow:
     In order to synthesize a segragative powder photocatalyst, nanomater Au was coated on the surface of superparamagnetic iron oxide (SPIN) to prepare a FeO_x@Au photocatalyst by a facile deposition-precipitation method. Although part of SPIN was oxidized intoα-Fe_2O_3 after calcination, the FeO_x@Au also remains a favorable effect of magnetic separation. What’s more, it displays a high photocatalytic activity for the degradation of quinoline aqueous solutions. Nano-Au loaded on the surface of SPIN could enhance the photocatalytic activity, while the degradation efficiency of quinoline was also lower than Deguessa P25 TiO_2.
     A kind of P25 TiO_2 films was synthesized by dip-coating/calcination route in situ without any binder. The porous nickel coated with 10 percent of P25 sol (named Ti-10) had an optimal photocatalytic activity for the degradation of quinoline aqueous solutions, which was attributed to porous surface structure fabricated by nano-sized titanium dioxide consisted of two crystal phase and incorporated with a NiO interlayer formed during calcination.
     Accordingly, Ti-10 film was used to fabricated a newly continuous-flow three-phase photocatalytic reactor. The effect of initial concentration, reaction time, light flux and aeration on the efficiency of photodegradation were also investigated. The result indicated that the photocatalytic efficiency could be significantly enhanced by increacing the light intensity, aeration and reaction time. The optimum pH value for quinoline degradation was at 4 and neither the initial concentration nor temperature was the primarily factors for the photocatalytic reaction.
     The second-order decomposition rate of quinoline may be approximately expressed in the terms of Langmuir-Hinshelwood kinetics, which indicated that the photooxidation of quinoline mainly occured on the surface of P25 film. So, the direct reduction and oxidation of photo-induced electron and hole were the predominant process of the innitial degradation of quinoline. Increasing the initial concentration of quinoline in water may led to the enhancement of decomposition efficiency of organic matter and the decrease of photooxidation rate of quinoline in water, which was mainly attributed to the influence of competitive sorption between the product and quinoline or free radicals on the film surface. The photocatalytic kinetics was obtain with the follow equation: r_a=0.35×10~(-3)exp(-16906/RT)I_a~(0.53)×1.29C_(o2_/(1+1.29C_(o2))×0.024C_q/(1+0.024C_(q0))
     Here, the overall apparent activation energy was 16.9 kJ/mol, while the rate constant of apparent adsorption was 0.024 L/mg.
     A number of intermediates were identified by the combined method of HPLC and GC/MS techniques during the photooxidation process of quinoline, include 2- and 3-Pyridinecarboxaldehyde, 2- and 3-Acetylpyridine and 2-(1H)-Quinolinone. A possible photooxidation pathways can be observed in aerobic conditions. At first, photo-induced electron quickly reduced the oxygen molecules absorbed on the TiO_2 surface with the formation of O_2-. The activated oxygen species generated on the TiO_2 surface can participate the photo-reduction process of quinoline just because it remains active for some time in water, and then released the photo-induced electron to the active sites on the TiO_2 surface. Considering the reaction between quinoline and O_2- an addition to the position -2 of quinoline may take place the same way as for an ordinary deprotonation. Thus, the product derived from deprotonation at position 2 is 2-hydroxyquinoline, which cause the increasement the electrostatic charge density of quinoline and led to easily oxidation by active radicals at position 3. Finaly, it led to ring opening process via quinoline(2,3)dion with the formation of organic compounds with aromatic ring.
     The effluent from photocatalytic reactor, which photooxidated at 30min and 60 min reaction time seperately, was directly biodegradated by activated sludge with the flask culture method for the determination of the influence on the culturable microbial and enzyme activity. The result showed that the effluent photooxidated for 30 min inhaibited the growth of culturable bacteria in activated sludge and the activity of dehydrogenase and protease was significantly inhabited by the decrease of the total biomass. However, the effluent was not affected the growth of bacteria after photocatalytic oxidation for 60 min, indicated that quinoline and intermediates could be biogradated by native bacteria in activated sludge.
     An integrated photocatalystic oxidation and biodegradation reactor was successful designed to study the biodegradation of photooxidated effluent from photocatalytic reactor. When the photooxidation reaction lasted for 60 minutes, the chemical oxygen demand of effluent from the intergrated reator remained at about 50mg/L, indicated the stable remove efficency. However, the water becomes pink when the photooxidation reaction time reduced to 30 minutes, and then the chemical oxygen demand of effluent rised to about 90 mg/L.
     The effect of microbial community structure caused by quinoline aqueous solutions photooxidated for 30 min was analyzed by polymerase chain reaction-denaturing gradient gel electrophoresis technology (PCR-DGGE). The result showed that the effluent inhibited the microbial activity in activated sludge and led to the decrease of species diversity. Thereafter, in activated sludge, due to the adaptability of low nutrition medium, the community number of uncultured Clostridium sp. increased significantly and becomes one of dominant microflora. Accordingly, Sphingopyxis granuli sp. was believed to preferentially biodegradate or co-metabolish quinoline or it’s by-products and then multiply advantage bacterium group to be a dominant microflora, which is a culturable bacteria with high biodegradation ability could be isolated from sewage activated sludge.
引文
[1]何苗,张晓健,瞿福平,等.杂环化合物好氧生物降解性能与其化学结构相关性的研究[J].中国环境科学,1997,17(3):199-202.
    [2] Shinohara Y, Ogiso T, Hananouchi M, et al. Effect of various factors on the induction of liver tumors in animals by quinoline[J]. Gann,1977, 68:785-796.
    [3]陈大义.喹啉化合物的合成和应用[J].吉化科技,1995(1):7-17.
    [4]李凤梅,王兰英,王少康,等. 2-苯乙烯基喹啉染料的无溶剂微波合成[J].有机化学,2004,24(1):50-52.
    [5]徐洪耀,严正权,陈玉风,等.喹啉类水溶性近红外发光方酸菁染料及其制备和应用[P].中国专利,200910050048, 2009-09-30.
    [6]彭晓丽,饶景萍,张延龙.外源水杨酸对‘Prato’百合切花瓶插效果的影响[J].园艺学报,2007,1(34):189-192.
    [7]米杰,崔林燕,李英菊.喹啉的加工和利用[J].科技情报开发与经济, 1995, 5(6):20
    [8]谢芳. 8-羟基喹啉类金属钛(Ⅳ)和锰(Ⅲ)配合物催化烯烃及硫醚氧化研究[D]: [硕士学位论文].长沙:湖南师范大学有机化学系,2009.
    [9]欧阳玉祝,彭小伟,曹建兵,等.助剂作用下超声浸取电解锰渣[J].化工环保,2007, 27(3):257-259.
    [10]柏耀辉,孙庆华,温东辉,等.假单胞杆菌BC001对吡啶和喹啉的生物去除[J].北京大学学报(自然科学版), 2008,44(2):237-242.
    [11]柏耀辉,赵翠,肖亚娜,等.降解喹啉的假单胞菌BW003菌株的分离、鉴定和降解特性[J].环境科学,2008,29(12):3546-3553.
    [12]柏耀辉,孙庆华,赵翠,等.焦化废水处理系统中喹啉降解菌的种群特征[J].中国环境科学, 2008,5(28):449-455.
    [13] Wang J L, Quan X C, Han L P, et al. Microbial degradation of quinoline by immobilized cells of Burkholderia pickettii[J]. Water Res,2002,36(9):2288-2296.
    [14] Wang J L, Quan X C, Han L P, et al. Kinetics of co-metabolism of quinoline and glucose by Burkholderia pickettii[J]. Process Biochem,2002,37(8):831-836.
    [15]全向春,王建龙,韩力平,等.喹啉与葡萄糖共基质条件下生物降解的动力学分析[J].环境科学学报,2001,21(4):416-419.
    [16]韩力平,王建龙,刘恒,等.固定化及游离态皮氏伯克霍尔德氏菌(Burkholderia pickettii)降解喹啉的试验研究[J].环境科学学报,2000,20(3):379-381.
    [17]朱顺妮,刘冬启,樊丽,等.喹啉降解菌Rhodococcus sp. QL2的分离鉴定及降解特性[J].环境科学,2008,29(2):488-493.
    [18]朱顺妮,樊丽,倪晋仁.两株喹啉降解菌代谢途径的分析[J].中国环境科学,2008,28(5):456-460.
    [19] Zhu S N, Liu D Q, Fan L, et al. Degradation of quinoline by Rhodococcus sp. QL2 isolated from activated sludge[J]. Journal of Hazardous Materials,2008,2-3(160): 289.
    [20]邓婕,高雅英.综述异喹啉类生物碱分离与分析研究进展[J].化工时刊,2010,24(1):45-50.
    [21]房苗苗,张秀霞,王欣.石油污染土壤中喹啉降解菌Q5的筛选及其喹啉降解性能[J].石油学报(石油加工),2007,23(5):111-116.
    [22]任大军,张晓昱,颜克亮,等.白腐菌对焦化废水中喹啉的降解及机理研究[J].环境保护科学,2006,32(1):20-23.
    [23]陈姗姗,张翠萍,刘广立,等.纯菌株与混合菌株在MFC中降解喹啉及产电性能的研究[J].环境科学,2010,31(9):2148-2154.
    [24]张秀霞,吴伟林,单宝来,等.固定化降解菌Q5降解喹啉动力学[J].石油学报(石油加工),2009,25(3):442-446.
    [25] Julia J, Griese J J, Roman P, et al. Xenobiotic Reductase A in the Degradation of Quinoline by Pseudomonas putida 86: Physiological Function, Structure and Mechanism of 8-Hydroxycoumarin Reduction[J]. Journal of Molecular Biology,2006,361(1):140-152.
    [26] Zhang Y M, Han L P, Wang J L, et al. An internal airlift loop bioreactor with Burkholderia pickttii immobilized onto ceramic honeycomb support for degradation of quinoline[J]. Biochemical Engineering Journal ,2002, 2-3(11):149-157.
    [27] Carl B, Arnold A, Hauer B, et al. Sequence and transcriptional analysis of a gene cluster of Pseudomonas putida 86 involved in quinoline degradation[J]. Gene,2004(331):177-188.
    [28]崔明超,李丽,陈繁忠.喹啉及其衍生物微生物降解研究进展[J].上海环境科学,2003,22(1):52-56.
    [29]程静,蔡伊秋,张超杰,等.氮杂环化合物喹啉在缺氧条件下降解的影响因素[J].同济大学学报,2009,37(9):1207-1211.
    [30]李咏梅,顾国维,赵建夫.焦化废水中几种含氮杂环化合物缺氧降解机理[J].同济大学学报,2001,29(6):720-723.
    [31] Fischer A, Weber S, Reineke A K, et al. Carbon and hydrogen isotope fractionation during anaerobic quinoline degradation[J]. Chemosphere,2010,81(3):400-407.
    [32]田建强,李咏梅.以喹啉或吲哚为单一碳源时反硝化过程中亚硝酸盐的积累[J].环境科学学报,2009,29(1):68-74.
    [33] Johansen S S, Arvin E, Mosb?k H, et al. Degradation pathway of quinolines in a biofilm system under denitrifying conditions[J]. Environmental Toxicology Chemistry,1997,18(9):1821-1828.
    [34] Johansen S S, Hansen A B, Mosbaek, H, et al. Identification of heteroaromatic and other organic compounds in ground water at creosotecontaminated sites in Denmark[J]. Ground Water Monitoring and Remediation,1997,17(2):106-115.
    [35] Chreistopher M M, Richard L V. Hydrogen peroxide decomposition and quinoline degradation in the presence of aquifer material[J]. Water Research,1995,29(10):2353-2359.
    [36] Licht D, Ahring B, Arvin E. Anaerobic degradation of heterocyclic compounds in soil samples from a creosote-polluted site[J]. Biodegradation,1996(7):83-90.
    [37] Johansen S S, Licht D, Arvin E, et al. Transformation of quinoline, indole and their methylated analogs by Desulfobacterium indolicum (DSM 3383)[J]. Applied Microbiology and Biotechnology, 1997(47):292-300.
    [38]高级氧化技术[DB/OL]. http://baike.baidu.com/view/996508.htm.百度百科
    [39] Dupont R R, McLean J E, Hoff Richard H, et al. Evaluation of the use of solar irradiation for the decontamination of soils containing wood treating wasters[J]. Journal of The Air & Waste Management Association,1990,40(9):1257-1265.
    [40]朱大章,孙冬梅,汪世龙,等.喹啉水溶液真空紫外降解过程中的吸收光谱分析[J].光谱学与光谱分析,2009,29(7):1933-1936.
    [41]朱大章. N杂环化合物真空紫外降解机理研究[D]:[博士学位论文].上海:同济大学化学系,2006.
    [42]王小毛,黄霞,左晨燕,等.喹啉的O3及O3/UV降解规律[J].中国环境科学,2003, 2 (23):134-138.
    [43] Wang X M, Huang X, Zuo C Y, et al. Kinetics of quinoline degradation by O3/UV in aqueous phase[J].2004,55(5):733-741.
    [44]王健锋,许振良,丛梅,等.悬浮态纳米TiO2光催化降解喹啉的研究[J].净水技术,2007,26(4):44-76.
    [45]王嘉.喹啉的微波辅助光催化氧化降解研究[J].环境保护科学,2007,33(2):21-24.
    [46] Pichat P. Photocatalytic degradation of aromatic and alicyclic pollutants in water:by-products, pathways and mechanism[J]. Water science and technology,1997,35(4):73-78.
    [47] Enriquez R, Pichat P. Interactions of humic acid, quinoline, and TiO2 in water in relation to quinoline photocatalytic removal[J]. Langmuir,2001,17(20):6132-6137.
    [48]刘建伟.氮杂环化合物介质阻挡放电降解的实验研究及机理初探[D]:[硕士学位论文].南昌:南昌大学建筑工程学院,2009.
    [49] Lizarraga E, Zabaleta C, Palop, J.A. Thermal decomposition and stability of quinoline compounds using thermogravimetry and differential scanning calorimetry[J]. Thermochimica Acta,2005, 427(1-2):171-174.
    [50] Nedoloujkoi A, Kiwi J. Transient intermediate species active during the Fenton-mediated degradation of quinoline in oxidative media: pulsed laser spectroscopy[J]. Journal of Photochemistry and Photobiology A: Chemistry,1997,110 (2):141-148.
    [51]刘俊英,汪世龙,孙晓宇,等.喹啉水溶液与羟基自由基的作用机理研究[J].科学技术与工程,2002,2(6):65-68.
    [52] Thomsen, A.B. Degeradation of quinoline by wet oxidation: kinetic aspects and reaction mechanisms[J]. Water Research,1998,32(1) 136-146.
    [53] Meyer S, Cartellieri S, Steinhart H. Simultaneous determination of PAHs, hetero-PAHs (N, S, O), and their degradation products in cresote-contaminated soils. Method development, validation, and application to hazardous waste sites[J]. Analytical Chemistry,1999,71(18),4023-4029.
    [54] Padoley K V, Mudliar S N, Pandey R A. Heterocyclic nitrogenous pollutants in the environment and their treatment options:An overview[J]. Bioresource Technology,2008,99(10):4029-4043.
    [55] Kaiser J P, Feng Y, Bollag J M. Microbial metabolism of pyridine, quinoline, acridine, and their derivatives under aerobic and anaerobic conditions[J]. Microbiolofical Reviews,1996, 60(3):483–498.
    [56] Buchtmann C, Kies U, Deckwer W D, et al. Performance of three phase fluidized bed reactor for quinoline degradation on various supports at steady state and dynamic conditions[J]. Biotechnol Bioeng,1997,56(3):295–303.
    [57]吴利欢,邓琪,周秋谷.新型含哌嗪基的喹啉衍生物的抑菌活性研究[J].广东工业大学学报,2010,27(2):40-42.
    [58] Adams C D, Cozzens R A, Kim B J. Effects of ozonation on the biodegradability of substituted phenols[J]. Water Research,1997,31(10):2655-2663.
    [59] Dantas R F, Canterino M, Marotta R, et al. Bezafibrate removal by means of ozonation: Primary intermediates, kinetics, and toxicity assessment[J]. Water Research,2007,41(12):2522-2532.
    [60] Parkinson A, Barry M J, Roddick F A, et al. Preliminary toxicity assessment of water after treatment with UVirradiation and UVC/H2O2[J]. Water Research,2001,35(15), 3656-3664.
    [61] Shang N C, Yu Y H. The biotoxicity and color formation results from ozonation of wastewaters containing phenol and aniline[J]. Journal Environmental Science and Health A,2001, 36(3):383-393.
    [62] Shang N C, Yu Y H. Toxicity and color formation during ozonation of mono-substituted aromatic compounds[J]. Environmental Technology,2002,23(1):43-52.
    [63] Shang N C, Yu Y H, Ma H W, et al. Toxicity measurements in aqueous solution during ozonation of mono-chlorophenols[J]. Journal of Environmental Management,2006,78(3),216-222.
    [64] Huang X, Wang X M. Toxicity change patterns and its mechanism during the degradation of nitrogen-heterocyclic compounds by O3/UV[J]. Chemosphere,2007,69(5):747-754.
    [65] Su′arez-Ojeda, M.E., Carrera, J., Metcalfe, I.S., et al. Wet air oxidation (WAO) as a precursor to biological treatment of substituted phenols:Refractory nature of the WAO intermediates[J]. Chemical Engineering Journal,2008,14(2):205-212.
    [66] Scott, J.P., Ollis, D.F. Integration of chemical and biological oxidation processes for water treatment: review and recommendations[J]. Environmental Progress. 1995,14(2):88-103.
    [67] Collin G, Hoèke H. Indole[C]. In: Elvers B, Hawkins S, Ra-venscroft M, et al, eds .Ullmann's encyclopedia of industrial chemistry. Weinheim:VCH,1989. 167-170.
    [68] Collin G, Hoèke H. Quinoline and isoquinoline[C]. In: Elvers B,Hawkins S, Russey W, et al, eds. Ullmann's encyclopedia of industrial chemistry. Weinheim:VCH,1993. 465-469.
    [69] Collin G, Hoèke H. Tar and pitch[C]. In: Elvers B, Hawkins S, Russey W, eds. Ullmann's encyclopedia of industrial chemistry. Weinheim: VCH,1995. 91-127.
    [70] Mueller J G, Chapman P J, Pritchard P H. Creosote-contam-inated sites. Their potential for bioremediation[J]. Environmental Science Technology,1989,23(10):1197-1201.
    [71] Mueller J G, Lantz S E, Thomas R L, et al. Bioremediation of the American Creosote Works Superfund site, Pensacola, Florida[C]. In:Proceedings of the 84th Annual Meeting of the Air Waste Management Association,1991. 91/18.4
    [72] Mueller J G, Lantz S E, Ross D, et al. Strategy using bioreactors and specially selected microorganisms for bioremediation of groundwater contaminated with creosote and pentachlorophenol. Environmental Science Technology,1993,27(4):691-698.
    [73] Mueller J G, Borchert S M, Desrosier R J, et al. Integrated funnel-and-gate/GZB product recoveryand containment technologies for in situ management of acreosote NAPL-impacted aquifer[C]. In:Proceedings of the11th National Outdoor Action Conference Ground Water. Westerville:Ohio,1997. 193-203.
    [74] Hansch C, Leo A. Substituent constants for correlationanalysis in chemistry and biology[M]. New York:Wiley,1979.
    [75] Sims G K, O'Loughlin E J. Degradation of pyridines in the environment[J]. CRC Crit Rev Environ Control,1989(19):309-340.
    [76] Ondrus M G, Steinheimer T R. High-performance liquid chromatographic determination of azaarenes and their metabolites in groundwater a.ected by creosote wood preservatives[J]. Journal of Chromatographic Science,1990,28(6):324-330.
    [77] Hale R C, Aneiro K M. Determination of coal tar and creosote constituents in the aquatic environment[J]. Journal of Chromatography.A,1997,774(1-2):79-95.
    [78] Mayer A S, Carriere P P E, Gallo C, et al. Fate and effects of pollutants.Groundwater quality[J]. Water Environmental Research,1997,69(4):777-844.
    [79] Reineke, A K, Goen T, Preiss A, et al. Quinoline and derivatives at a tar oil contaminated site: hydroxylated products as indicator for natural attenuation?[J]. Environmental Science Technology,2007,41(15):5314-5322.
    [80] Adams J D, LaVoie E J, Shigematsu A, et al. Quinoline and methylquinolines in cigarette smoke: comparative data and the effect of filtration[J]. Journal of Analytical Toxicology,1983,7(6):293-296.
    [81] Barrick R C, Furlong E T, Carpenter R. Hydrocarbon and azaarene markers of coal transport to aquatic sediments[J]. Environmental Science Technology,1984,18(11):846-854.
    [82] Warshawsky D. Environmental sources, carcinog enicity, mutagenicity, metabolish, and DNA binding of nitrogen and sulfur heterocyclic aromatics[J]. J Environ Science Health Part C: Environ Carcinog Ecotoxicol Review,1992(10):1-71.
    [83] LaVoie E J, Dolan S, Little P, et al. Carcinogenicity of quinoline, 4- and 8-methylquinoline and benzoquinolines in newborn mice and rats[J]. Food and Chemical Toxicology,1988,26(7):625-629.
    [84] Willems M I, Dubois G, Boyd D R, et al. Comparison of the mutagenicity of quinoline and all monohydroxyquinolines with a series of arene oxide, trans-dihydrodiol, diol epoxide, N-oxide and arene hydrate derivatives of quinoline in the Ames/Salmonella microsome test[J]. Mutation Research,1992,278(4):227-236.
    [85] Ware G. Reviews of Environmental Contamination and Toxicology[M]. 2001,178.
    [86] Yong LU, YAN L H, Wang Y, et al. Biodegradation of phenolic compounds from coking wastewater by immobilized white rot fungus Phanerochaete chrysosporium[J]. Journal of Hazardous Materials,2009,165(1-3):1091-1097.
    [87]何苗,张晓健,雷晓玲,等.厌氧-缺氧/好氧工艺与常规活性污泥法处理焦化废水的比较[J].给水排水,1997,23(6):31-33.
    [88]张晓健,雷晓玲,何苗,等.好氧生物处理对焦化废水中有机物的去除[J].环境保护,1994(8):7-16.
    [89] Anandan S, Yoon M. Photocatalytic activities of the nano-sized TiO_2-supported Y-zeolites [J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2003,4(1):5-18.
    [90] Chen Y J, Dionysiou D D. TiO_2 photocatalytic films on stainless steel: The role of Degussa P25 in modified sol–gel methods[J]. Applied Catalysis B:Environmental,2006,62(3-4):255-264.
    [91] Wang M Q, Gong B, Yao X, et al. Preparation and microstructure properties of Al-doped TiO_2–SiO_2 gel-glass film[J]. Thin Solid Films,2006,515(4):2055-2058.
    [92] Li M L, Xu M X, Li Y. Preparation and oxygen-sensing properties of TiO_2 porous thin films on alumina substrate[J]. Transactions of Nonferrous Metals Society of China,2006(16):257-260.
    [93] Ding Y B, Yang C Z, Zhu L H, et al. Photoelectrochemical activity of liquid phase deposited TiO_2 film for degradation of benzotriazole[J]. Journal of Hazardous Materials, 2010,175(1-3):96-103.
    [94] An T C, Zhang W B, Xiao X M, et al. Photoelectrocatalytic degradation of quinoline with a novel three-dimensional electrode-packed bed photocatalytic reactor[J]. Journal of Photochemistry and Photobiology A: Chemistry,2004,161(2-3):233-242.
    [95] Konstantinou I K, Albanis T A. TiO_2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations:A review[J]. Applied Catalysis B: Environmental,2004, 49(1):1-14.
    [96] Zhao J, Yang X D. Photocatalytic oxidation for indoor air purification: a literature review[J]. Building and Environment,2003,38(5):645-654.
    [97]胡敏艺,周康根,陈瑞英,等.超细氧化亚铜粉体的制备与应用[J].中国粉体技术,2006,12(5):44-48.
    [98] Kerby M, Williams.A. Nagnetic tagging technology extending the potential of magnetic separation in innovation in physical separation technologies R A Williams Ed[J]. The Institution of Mining and Metallurgy Pubilshers Falmouth UK,1997,1(11):31-234.
    [99] Kamat P V. Photochemistry on nonreactive and reactive (semiconductor) surfaces[J]. Chemistry Review,1993,93(1):267-300.
    [100] Karunakaran C, Senthilvelan S. Fe_2O_3-photocatalysis with sunlight and UV light: O_xidation of aniline[J]. Electrochemistry Communications,2006,8(1):95-101.
    [101] Tian Y, Wu D, Jia X, et al. Core-Shell Nanostructure ofα-Fe_2O_3/Fe_3O_4:Synthesis and Photocatalysis for Methyl Orange[J]. 2011,doi:10.1155/ 2011/837123.
    [102] Claudius Kormann, Detlef W. Bahnemann1, Michael R. Hoffmann. Environmental photochemistry:Is iron oxide (hematite) an active photocatalyst? A comparative study:α-Fe_2O_3, ZnO, TiO_2[J]. Journal of Photochemistry and Photobiology A:Chemistry,1989,48(1):161-169 .
    [103]徐志兵,钮志远,唐小东. Ag/Fe_2O_3复合微球的制备及表征[J].稀有金属,2009,33(4):601-605.
    [104] Ching W H, Leung M, Leung D Y C. Solar photocatalytic degradation of gaseous formaldehyde bysol–gel TiO_2 thin film for enhancement of indoor air quality [J]. Solar Energy,2004,77(2):129-135.
    [105] Zheng S K, Wang T M, Xiang G, et al. Photocatalytic activity of nanostructured TiO_2 thin films prepared by dc magnetron sputtering method [J]. Vacuum,2001,62(4):361-366.
    [106] Hitchman M L, Tian F. Studies of TiO_2 thin films prepared by chemical vapour deposition for photocatalytic and photoelectrocatalytic degradation of 4-chlorophenol[J]. Journal of Electroanalytical Chemistry,2002,538-539(13):165-172.
    [107] Shi, J.W. Preparation of Fe(III) and Ho(III) co-doped TiO_2 films loaded on activated carbon fibers and their photocatalytic activities[J]. Chemical Engineering Journal,2009,151(1-3):241-246.
    [108] Plesch G, Gorbár M, Vogt U F, et al. Reticulated macroporous ceramic foam supported TiO_2 for photocatalytic applications[J]. Materials Letters,2009,63(3-4):461-463.
    [109] Pucher P, Benmami M, Azouani R, et al. Nano-TiO_2 sols immobilized on porous silica as new efficient photocatalyst[J]. Applied Catalysis A: General,2007,332(2):297-303.
    [110] Hu H, Xiao W J, Yuan J, et al. Preparations of TiO_2 film coated on foam nickel substrate by sol-gel processes and its photocatalytic activity for degradation of acetaldehyde[J]. Journal of Environmental Sciences,2007,19(1):80-85.
    [111] Yuan J, Hu H, Chen M X, et al. Promotion effect of Al2O3–SiO_2 interlayer and Pt loading on TiO_2/nickel-foam photocatalyst for degrading gaseous acetaldehyde [J]. Catalysis Today,2008,139(1-2):140-145.
    [112] Liu H, Cheng S A, Zhang J Q, et al. Titanium dioxide as photocatalyst on porous nickel: Adsorption and the photocatalytic degradation of sulfosalicylic acid [J]. Chemosphere,1999, 38(2):283-292.
    [113] Jia Y X, Han W, Xiong G X, et al. Layer-by-layer assembly of TiO_2 colloids onto diatomite to build hierarchical porous materials [J]. Journal of Colloid and Interface Science,2008, 323(2):326-331.
    [114] Rodriguez P, Meille V, Pallier S, et al. Deposition and characterisation of TiO_2 coatings on various supports for structured (photo)catalytic reactors[J]. Applied Catalysis A:General,2009, 360(2):154-162.
    [115] Park J, An K J, Hwang Y S, et al. Ultra-large-scale syntheses of monodisperse nanocrystals[J]. Nat. Mater, 2004(3):891-895.
    [116]刘燕辉,盛晓波,董寅生,等.纳米TiO_2在泡沫镍上的负载技术研究[J].应用化工,2009, 38(1):79-82.
    [117] Malmstead M J, Brockman F J, Valocchi A J, et al. Modeling biofilm biodegradation requiring cosubstrates: The quinoline example[J]. Water Science and Technology,1995,31(1):71-84.
    [118] Paxéus N, Schr?der H F. Screening for non-regulated organic compounds in municipal wastewater in g?teborg, sweden[J]. Water Science and Technology,1996,33(6):9-15.
    [119] Shukla O P. Microbial transformation of quinoline by a Pseudomonas sp [J]. Appl.Environ. Microbiol,1986(51):1332-1342.
    [120] Li Y M, Wang L, Liao L S, et al. Nitrate-dependent biodegradation of quinoline,isoquinoline,and 2-methylquinoline by acclimated activated sludge[J]. Journal of Hazardous Materials, 2010,173(1-3):151-158.
    [121] Lin Q, Wang J L. Biodegradation characteristics of quinoline by Pseudomonas putida[J]. Bioresource Technology,2010,101(19):7683-7686.
    [122]余纯丽,李亚林,谭雪梅,等.活性炭纤维吸附处理喹啉废水的实验研究[J].西南师范大学学报(自然科学版),2009,34(4):56-61.
    [123]李亚新,赵晨红.紫外分光光度法测定焦化废水的主要污染物[J].中国给水排水,2001, 17(1):54-56.
    [124]汪世龙,张震,李敏,等.水相中喹啉的辐解机理研究[J].辐射研究与辐射工艺学报,2004, 22(6):334-338.
    [125]丁光月,李彩霞,王韵芳,等. Fe_2O_3可见光光催化降解水中腐植酸的研究[J].应用化工,2009,38(6):788-791.
    [126] Wang L Y, Luo J, Fan Q. et al. Monodispersed core-shell Fe_3O_4@Au nanoparticles[J]. J.Phys.Chem B,2005,109(46):21593-21601.
    [127]石延峰,周樨,钟鹭斌,等. Fe_3O_4-Au核壳纳米颗粒的制备及其形成机制探讨[J].东南大学学报(医学版),2011,30(1):6-10.
    [128]刘丽赏,刘洪娜,李松.用于生物检测的链霉亲和素修饰γ-Fe_2O_3@Au复合颗粒的制备与表征[J].化学学报,2010,68(20):2041-2046.
    [129]韩三阳,郭清华,姚建林,等.磁性Fe_2O_3/Au/Ag复合纳米粒子的制备及其富集作用研究[J].化学学报,2010,68(7):641-645.
    [130]左洪波,张明福,韩杰才,等.α-Fe_2O_3/Fe_3O_4纳米复合材料的相变化及室温磁性质[J].哈尔滨理工大学学报,2005,10(4):36-40
    [131]李红,彭秧,徐世美.磁载光催化剂ZnO/SiO_2-Fe_3O_4的光催化活性[J].化工环保,2009,29(5):475-477.
    [132] Exarhosa G J, Hessa N J. Spectroscopic measurements of stress relaxation during thermally induced crystallization of amorphous titania films [J]. Thin Solid Films,1992,220(1-2):254-260.
    [133] Lopez L, Daoud W A, Dutta D. Preparation of large scale photocatalytic TiO_2 films by the sol–gel process[J]. Surface and Coatings Technology,2010,205(2):251-257.
    [134] Huang M F, Zheng Z X, Xu G Q, et al. Preparation, characterization and photocatalytic activity of exfoliated graphite supported titanium dioxide photocatalyst[J]. Journal of the chinese ceramic society,2008,36(3):325-329,336.China.
    [135]徐凌,唐超群,钱俊. C掺杂锐钛矿相TiO_2吸收光谱的第一性原理研究[J].物理学报,2010, 59(4):2721-2727.
    [136]范崇政,肖建平,丁延伟.纳米TiO_2的制备与光催化反应研究进展[J].科学通报,2001, 46(4):265-273.
    [137] Zhang Y H, Yang Y N, Xiao P, et al. Preparation of Ni nanoparticle-TiO_2 nanotube composite by pulse electrodeposition[J]. Materials Letters,2009,63(28):2429-2431.
    [138] Bidault F, Brett D J L, Middleton P H, et al. A new application for nickel foam in alkaline fuel cells[J]. international journal of hydrogen energy,2009,34(16):6799-6808.
    [139] Wei Z Q, Xia T D, Dai J F. Particle Size Characterization of Ni Nanopowders Grown by Anodic Arc Plasma[J]. Vac. Sci. Technol,2005,25(6):418-421,443.
    [140] Khan R, Kim T J. Preparation and application of visible-light-responsive Ni-doped and SnO_2-coupled TiO_2 nanocomposite photocatalysts[J]. Hazard. Mater,2009,163(2-3),1179-1184.
    [141] Tseng H H, Wei M C, Hsiung S F, et al. Degradation of xylene vapor over Ni-doped TiO_2 photocatalysts prepared by polyol-mediated synthesis[J]. Chem. Eng, 2009,150(1):160-167.
    [142] Takahara Y, Kondo J N, Takata T, et al. Mesoporous Tantalum O_xide. 1. Characterization and Photocatalytic Activity for the Overall Water Decomposition[J]. Chem. Mater,2001, 13(4):1194-1199.
    [143] Wang G Y, Wang Y J, Song B J, et al. Performance of photocatalytic decompositon of water into hydrogen over Co-SrTiO3[J]. Chinese Journal of inorganic chemistry,2003,19(9):988-992.
    [144] Biju V. Ni 2p X-ray photoelectron spectroscopy study of nanostructured nickel oxide[J]. Materials Research Bulletin,2007,42(5):791-796.
    [145] Oswald S, Bruckner W. XPS depth profile analysis of non-stoichiometric NiO films[J], surface and interface analysis,2004,36(1):17-22.
    [146] Shrestha N K, Yang M, Nah Y C, et al. Self-organized TiO_2 nanotubes: Visible light activation by Ni oxide nanoparticle decoration[J]. Electrochemistry Communications,2010,12(2):254-257.
    [147] Uhlenbrock S, Scharfschwerdt C, Neumann M, et al. The influence of defects on the Ni2p and O1sXPS of NiO[J]. J.Phys.Condens.Matter,1992,4(40):7973-7978.
    [148] Chen S F, Zhang S J, Liu W, et al. Preparation and activity evaluation of p–n junction photocatalyst NiO/TiO_2[J]. Journal of Hazardous Materials,2008,155(1-2):320-326.
    [149] Zhu J, Chen F, Zhang J, et al. Fe~(3+)-TiO_2 photocatalysts prepared by combining sol–gel method with hydrothermal treatment and their characterization[J]. J. Photochem. Photobiol,A, 2006,180(1-2):196-204.
    [150]刘少友,唐文华,冯庆革,等. N, Fe共掺杂TiO_2纳米材料的固相合成及其对喹啉的可见光降解[J].无机材料学报,2010,25(9):921-927.
    [151]柏源,孙红旗,刘会景,等.浓度梯度分布的镍和氮共掺杂TiO_2光催化剂的制备和表征[J].高等学校化学学报,2008,29(11):2232-2238.
    [152] Lu Y J, Li X Q, Mu J. Effect of CuO-NiO as co-catalyst on Photocatalytic Activity of TiO_2(P25)[J]. Chinese journal of inorganic chemistry,2009,25(7):1149-1152.
    [153]吴省,童仕唐,刘亚丽. TiO_2光催化剂载体的选型及负载方法研究[J].湖南工程学院学报,2002,12(3):80-83.
    [154]黄绵峰,郑治祥,徐光青,等.膨胀石墨负载纳米二氧化钛光催化剂的制备、表征与其光催化性能[J].硅酸盐学报,2008,36(3):325-329,336.
    [155]张定国,刘芬,吴涛,等. Fe~(3+) -SiO_2 -TiO_2薄膜的制备及其光催化活性[J].东华理工学院学报,2006, 29(4):379-382.
    [156]余家国,赵修建,陈文梅,等. TiO_2/SiO_2钠米薄膜的光催化活性和亲水性[J].物理化学学报,2001,17(3):261-264.
    [157]张敬畅,高玲玲,曹维良.纳米SiO_2-TiO_2复合光催化剂的超临界流体干燥法制备及其光催化性能研究[J].无机化学学报,2003,19(9):934-940.
    [158]吕德涛,郭宪英,周娟,等. SiO_2-TiO_2薄膜的制备及光致超亲水性能研究[J].涂料工业,2010,40(6):18-20,28.
    [159]唐文华,刘少友,冯庆革,王翔,龙步明.金属掺杂二氧化钛介孔材料对葛根素的吸附行为[J].过程工程学报, 2010,10(4):685-690.
    [160]光催化氧化技术[DB/OL]. http://baike.baidu.com/view/996515.htm,百度百科.
    [161]刘秀华,傅依备,许云书.水处理中多相光催化反应器的研究进展[J].催化学报,2005, 26(5):433-439.
    [162] D'Oliveira J C, Minero C, Pelizzetti E, et al. Photodegradation of dichlorophenols and trichlorophenols in TiO_2 aqueous suspensions: kinetic effects of the positions of the Cl atoms and identification of the intermediates[J]. Environ. Sci. Technol,1993,72(3): 261-267.
    [163] Pareek V, Chong S, Tade′M, Adesina A A. Light intensity distribution in heterogeneous photocatalytic reactors[J]. Asia-Pacific Journal of Chemical Engineering,2008,3(2):171-201.
    [164] Li Y M, Gu G W, Zhao J F, Yu H Q, et al. Treatment of coke-plant wastewater by biofilm systems for removal of organic compounds and nitrogen[J]. Chemosphere,2003,52(6):997-1005.
    [165]赵学坤.有机物的光助Fenton法氧化降解及其在海洋沉积物上的吸附行为研究[D]:[博士学位论文].青岛:中国海洋大学海洋化学,2004.
    [166] Kulovaara M, Corin N, Backlund P, et al. Impact of UV254-radiation on aquatic humic substances[J]. Chemosphere,1996,33(5):783-790.
    [167] Bahnemann W, Muneer M, Haque M M. Titanium dioxide-mediated photocatalysed degradation of few selected organic pollutants in aqueous suspensions[J]. Catalysis Today,2007,124(3-4):133-148.
    [168] Emmanuelle Vulliet, Jean-Marc Chovelon, Chantal Guillard, et al. Factors influencing the photocatalytic degradation of sulfonylurea herbicides by TiO_2 aqueous suspension[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2003,159(1): 71-79.
    [169]钱春香,赵联芳,付大放等.温湿度和光强对水泥基材料负载纳米TiO_2光催化氧化氮氧化物的影响[J].环境科学学报,2005,25(5):623-630.
    [170] Dingwang Chen, Ajay K. Ray. Photodegradation kinetics of 4-nitrophenol in TiO_2 suspension[J]. Water Research, 1998,32(11): 3223-3234.
    [171] Chung-Hsuang Hung and Benito J. Marias. Role of Chlorine and O_xygen in the Photocatalytic Degradation of Trichloroethylene Vapor on TiO_2 Films[J]. Environ. Sci. Technol. , 1997, 31 (2) : 562–568.
    [172] W. Bahnemann, M. Muneer, M.M. Haque. Titanium dioxide-mediated photocatalysed degradation of few selected organic pollutants in aqueous suspensions[J]. Catalysis Today, 2007,124(3-4): 133-148
    [173] Hemant K. Singh, Mohd Saquib, Malik M. Haque, et al. Heterogeneous photocatalysed decolorization of two selected dye derivatives neutral red and toluidine blue in aqueous suspensions[J]. Chemical Engineering Journal, 2008,136(2-3): 77-81.
    [174] Ming-Chun Lu, Gwo-Dong Roam, Jong-Nan Chen, et al. Factors affecting the photocatalytic degradation of dichlorvos over titanium dioxide supported on glass[J]. Journal of Photochemistry and Photobiology A: Chemistry, 1993,76(1-2): 103-110.
    [175] Rita Terzian, Nick Serpone. Heterogeneous photocatalyzed oxidation of creosote components: mineralization of xylenols by illuminated TiO_2 in oxygenated aqueous media[J]. Journal of Photochemistry and Photobiology A: Chemistry, 1995,89(2): 163-175.
    [176] Lapertot M, Pichat P, Parra S, et al. Photocatalytic degradation of p-halophenols in TiO_2 aqueous suspensions: halogen effect on removal rate, aromatic intermediates and toxicity variations[J]. J.Environ.Sci.Heal.A. 2006;41(6):1009-25.
    [177] Galindo C, Jacques P, Kalt A. Photooxidation of the phenylazonaphthol AO_20 on TiO_2:kinetic and mechanistic investigations[J]. Chemosphere,2001,45(6-7):997-1005.
    [178] More A T, Vira A, Fogel S. Biodegradation of trans-1,2-dichloroethylene by methane-utilizing bacteria in an aquifer simulator[J]. Environ. Sci. Technol,1989,23(4):403-406.
    [179] Venceslau M C, Tom S, Simon J J. Characterization of textile wastewaters-a review[J]. Environ. Technol,1994,15(10):917-929.
    [180] Arslan I, Balcioglou I A. Degradation of commercial reactive dyestuffs by heterogenous and homogenous advanced oxidation processes: a comparative study[J]. Dyes and Pigments,1999, 43(2):95-108.
    [181]银董红,邓吨英,陈恩伟,等.溶胶-凝胶法制备二氧化钛薄膜的研究进展[J].工业催化,2004, 12(1):1-6.
    [182]贺北平,王占生,张锡辉.半导体光催化氧化有机物的研究现状及发展趋势[J].环境科学,1994, 15(3):80-83.
    [183] Ahmed S, Rasul M G, Brown R. Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: A short review[J]. Journal of Environmental Management,2011,92(3):311-330.
    [184] Hinshelwood kinetics[EB/OL]. http://xueshu.anxue.net/thread-98818-1-1.html , 2010-6-15.
    [185]朱馨乐. TiO_2光催化降解杀虫剂哒螨酮机理研究[D]:[博士学位论文].南京:东南大学生物医学工程,2005.
    [186]韩文亚,张彭义,祝万鹏,等.三氯乙烯在薄膜催化剂上的光催化降解动力学[J].中国环境科学,2003,23(3):259-262.
    [187] Augugliaro V, Palmisano L, Schiavello M, et al. Photocatalytic degradation of nitrophenols in aqueous titanium dioxide dispersion[J]. Applied Catalysis,1991,69(1):323-340.
    [188]于秀娟,王永强,孙德智.光催化氧化苯甲酸的动力学分析[J].哈尔滨工业大学学报,2008,40(6):860-864.
    [189]魏刚,张元晶,熊蓉春.纳米TiO_2膜对罗丹明B染料的光催化降解动力学[J].科学通报,2002,47(23):1793-1795.
    [190] Saquib M, Muneer M. TiO_2-mediated photocatalytic degradation of a triphenylmethane dye (gentian violet), in aqueous suspensions[J]. Dyes and Pigments,2003,56(1):37-49.
    [191]吴辉,党炜,李成芳,等. TiO_2光催化氧化亚甲基蓝的动力学研究[J].化学与生物工程,2009,26(6):36-39.
    [192] Rideh L, Wehrer A, Ronze D, et al. Photocatalytic degradation of 2-Chlorophenol in TiO_2 aqueous suspension:Modeling of reaction rate[J]. Ind. Eng. Chem. Res,1997,36(11):4712-4718.
    [193]潘纲,刘媛媛.吸附模式对有机物光催化降解的影响[J].环境化学,2006,25(1):1-15
    [194] Al-Sayyed G, D'Oliveira J C, Pichat P. Semiconductor-sensitized photodegradation of 4-chlorophenol in water[J]. Journal of Photochemistry and Photobiology A: Chemistry,1991,58(1):99-114.
    [195] Lu M C, Roam G D, Chen J N, et al. Factors affecting the photocatalytic degradation of dichlorvos over titanium dioxide supported on glass[J]. Journal of Photochemistry and Photobiology A: Chemistry,1993,76(1-2):103-110.
    [196] Alfano O M, Bahnemann D, Cassano A E, et al. Photocatalysis in water environments using artificial and solar light[J]. Catalysis Today,2000,58(2-3):199-230.
    [197] Wyness P, Klausner J F, Goswami D Y. Performance of Nonconcentrating Solar Photocatalytic O_xidation Reactors: Part II—Shallow Pond Configuration[J]. Joumal of Solar Energy Engineering,1994,116(1):8-13.
    [198]肖新颜,廖东亮,万彩霞,等. UV光强度对甲基橙光催化降解性能影响的研究[J].世界科技研究与发展,2007,29(6):7-10.
    [199] Zhu X, Yuan C, Bao Y, et al. Photocatalytic degradation of pesticide pyridaben on TiO_2 particles[J]. Journal of Molecular Catalysis: Chemical,2005,229(1-2):95-105.
    [200]曾志雄,徐玉党.纳米材料TiO_2光催化技术在空气净化中的应用[J].制冷与空调,2003,3(4):36-39.
    [201] Ollis D F, Pelizzetti E, Serpone N. Photocatalyzed destruction of water contaminants[J]. Environmental Science and Technology,1991,25(9):1522-1529.
    [202] Mozia S. Photocatalytic membrane reactors (PMRs) in water and wastewater treatment. A review[J]. Separation and Purification Technology,2010,73(2):71-91.
    [203] Hofstadler K, Bauer R, Novalic S, et al. New Reactor Design for Photocatalytic Wastewater Treatment with TiO_2 Immobilized on Fused-Silica Glass Fibers: Photomineralization of 4-Chlorophenol[J]. Environ. Sci. Technology,1994,28(4):670–674.
    [204] Matthews R W. Photooxidation of organic impurities in water using thin films of titanium dioxide[J]. J. Phys. Chem.,1987,91(12):3328–3333.
    [205]许宜铭.苯乙酮的TiO_2光催化降解及其影响因素[J].高等学校化学学报,2000,21(10):1539-1542.
    [206]靳会杰,孙晓波,李红萍,等.玻璃负载TiO_2光催化剂的性能及光催化动力学[J].化工装备技术,2008,29(5):28-30.
    [207]唐春,杨宗璐,王真,等. ZnO光催化降解甲基橙初步研究[J].云南化工,2000,27(3):4-6.
    [208]甘礼华,陈龙武,盛闻超,等. TiO_2薄膜制备及其对亚甲基蓝光催化降解的影响[J].建筑材料学报,2003,6(3):274-278.
    [209] Chin S S, Lim T M, Chiang K, et al. Factors affecting the performance of a low-pressure submerged membrane photocatalytic reactor[J]. Chemical Engineering Journal,2007,130(1):53-63.
    [210] Lee J H, Nam W, Kang M, et al. Design of two types of fluidized photo reactors and their photo-catalytic performances for degradation of methyl orange[J]. Applied Catalysis A: General,2003,244(1):49-57.
    [211] Yang H, An T, Li G, et al. Photocatalytic degradation kinetics and mechanism of environmental pharmaceuticals in aqueous suspension of TiO_2:A case ofβ-blockers[J]. Journal of Hazardous Materials,2010,179(1-3):834-839.
    [212] Harada K, Hisanaga T, Tanaka K. Photocatalytic degradation of organophosphorous insecticides in aqueous semiconductor suspensions[J]. Water Research,1990,24(11):1415-1417.
    [213] Ishibashi K, Fujishima A, Watanabe T, et al. Quantum yields of active oxidative species formed on TiO_2 photocatalyst[J]. Journal of Photochemistry and Photobiology A: Chemistry,2000, 134(1-2):139-142.
    [214] Assabane A, Ichou Y A, Assabane H T, et al. Photocatalytic degradation of polycarboxylic benzoic acids in UV-irradiated aqueous suspensions of titania.: Identification of intermediates and reaction pathway of the photomineralization of trimellitic acid (1,2,4-benzene tricarboxylic acid)[J]. Applied Catalysis B: Environmental, 2000,24(2):71-87.
    [215]郑怀礼,张峻华,熊文强.纳米TiO_2光催化降解有机污染物研究与应用新进展[J].光谱学与光谱分析,2004,24(8):1003-1008.
    [216]王明花,张华林,徐泗蛟,等.水在TiO_2表面的吸附研究进展[J].化学世界, 2010,10:635-638.
    [217]张新磊,李翠霞,樊丁,等. TiO_2薄膜超亲水性研究进展[J].应用化工,2006,35(12):962-965.
    [218]郑凤英,钱沙华,李顺兴,等. 3,5-二硝基水杨酸表面修饰纳米TiO_2吸附对硝基苯酚[J].环境化学,2006,27(6):1140-1143.
    [219]董永春,王秋芳,顿咪娜,等.不同结构偶氮染料在TiO_2纳米颗粒表面的吸附和光催化降解[J].过程工程学报,2007,7(4): 668-673.
    [220]沈伟韧,赵文宽,贺飞,等. TiO_2光催化反应及其在废水处理中的应用[J].化学进展,1998,10(4):349-361.
    [221]王利盛,马福泰,俞稼镛.分子氧在锐钛矿型TiO_2表面的光助吸附与光助脱附[J].感光科学与光化学,1988(2):7-12.
    [222]陈颖,王宝辉,张海燕.半导体光催化技术及其应用[J].大庆石油学院学报,1998,22(4):34-37.
    [223]王积森,冯忠彬,孙金全,等.纳米TiO_2的光催化机理及其影响因素分析[J].微纳电子技术,2008,45(1):28-32.
    [224] Turchia C S, Ollisa D F. Photocatalytic degradation of organic water contaminants: Mechanisms involving hydroxyl radical attack[J]. Journal of Catalysis,1990,122(1):178-192.
    [225] Ishibashi K, Nosaka Y, Hashimoto K, et al. Time-Dependent Behavior of Active O_xygen Species Formed on Photoirradiated TiO_2 Films in Air[J]. J. Phys. Chem. B,1998,102(12) :2117-2120.
    [226] Devlin H R, Harris I J. Mechanism of the oxidation of aqeous phenol with dissolved oxygen[J]. Ind.Eng.Chem.Fundam. ,1984,23(4):387-392.
    [227]邓萍,蒋启华. Gaussian软件在取代苯亲电取代反应教学中的应用[J].中国现代教育装备,2010(5):53-55.
    [228]李瑛.纳米TiO_2气相光催化氧化苯胺的研究[D]:[硕士学位论文].武汉:武汉大学无机化学,2005.
    [229] Thomsen A B, Kilen H H. Wet oxidation of quinoline:intermediates and by-product toxicity[J]. Water Research,1998,32(11):3353-3361.
    [230] Mantzavinos D, Burrows D M, Willey R, et al. Chemical treatment of an anionic surfactant wastewater: electrospray-ms studies of intermediates and effect on aerobic biodegradability[J]. Water Research,2001,35(14):3337-3344.
    [231]李茵,罗翠, Chróst R J.城市污水生物处理系统中微生物酶的活性及其分布[J].环境污染与防治, 2007,29(5):333-335.
    [232]许晓路,申秀英,蒋锦青.活性污泥系统中酶研究进展[J].环境科学,1990,11(6):54-58
    [233] Amann R I, Ludwig W, Schleifer K H. Phylogenetic identification and in situ detection ofindividual microbial cells without cultivation[J]. Microbiological Reviews,1995,59(1):143-169.
    [234]胡佳俊,王磊,李艳丽,等.非光合CO_2同化微生物菌群的选育/优化及其群落结构分析[J].环境科学,2009,30(8):2438-2444.
    [235]姜昕,马鸣超,李俊.污水处理系统中活性污泥细菌多样性研究[J].地学前缘,2008, 15(6):163-168.
    [236] Hao O J, Phulla K K. Chena J M. Wet oxidation of TNT red water and bacterial toxicity of treated waste[J]. Water Research,1994,28(2):283-290.
    [237]杨良静,何俊瑜,任艳芳. Cd胁迫对水稻根际土壤酶活和微生物的影响[J].贵州农业科学,2009,37(3):85-88.
    [238] Lemmer H. The ecology of scum causing actinomycetes in sewage treatment plants[J]. Water Research,1986,20(4):531-535.
    [239] Chun J, Kang S O, Hah Y, et al. Phylogeny of mycolic acidcontaning actionmycetes[J]. Journal of Industrial mircrobiology & biotechnology,1996,17(3-4):205-213.
    [240] Stratton H M, Brooks P R, Griffiths P C, et al. Cell surface hyrophobicity and mycolic acid compositon of Rhodococcus strains isolated from activeated sludge foam[J]. Journal of Industrial mircrobiology & biotechnology,2002,28(5):264-267.
    [241] Baumann M, Lemmer H, Ries H. Scum actinomycetes in sewage treatment plants-part 1:growth kinetics of nocardia amarae in chemostat culture[J]. Water Research,1988,22(6):755-759.
    [242]李济吾,张珍, Li, J.W.,等.真菌在含酚废水处理中的应用[J].环境工程学报,2007, 1(2):20-24.
    [243]陈燕飞.活性污泥法中的生物作用[J].山西水利科技,2010(3):8-10.
    [244]迈克尔·约瑟夫·科格伦,巴里·艾伦·德赖科恩,罗伯特·乔治-苏尔,等.喹啉、喹唑啉和噌啉类杀真菌剂[P].中国专利,89100470X. 1989-08-23.
    [245] Raunkj?r K, Hvitved J T, Nielsen P H. Measurement of pools of protein, carbohydrate and lipid in domestic wastewater[J]. Water Research,1994,28(2):251-262.
    [246] Cadoret A, Conrad A, Block J C. Availability of low and high molecular weight substrates to extracellular enzymes in whole and dispersed activated sludges[J]. Enzyme Microb. Technology,2002,31(1-2):179-186.
    [247] Sanders W T M, Geering M, Zeeman G, et al. Anaerobic hydrolysis kinetics of particulates substrates[J]. Water Science and Technology,2000,41(3):17-24.
    [248] Confer D R, Logan B E. Location of protein and polysaccharide hydrolytic activity in suspended and biofilm wastewater cultures[J]. Water Research,1998,32(1):31-38.
    [249] Confer D R, Logan B E. A conceptual model describing macromolecule degradation by suspended cultures and biofilms [J]. Water Science and Technology,1998,37(4-5):231-234.
    [250]微生物的代谢[EB/OL]. http://www.tech-food.com/kndata/1008/0016897_11.htm, 2006-12-26.
    [251]尹军,付瑶,荐志远,等. TTC-脱氢酶活性测定仪的研制.吉林建筑工程学院学报,2003,20(2):1-4.
    [252]尹军.消化污泥脱氢酶活性检测的若干问题[J].中国给水排水,2000,16(10):47-49.
    [253]郭明,陈红军,王春蕾. 4种农药对土壤脱氢酶活性的影响[J].环境化学,2000,19(6):523-527.
    [254]刘贺红,万金泉,晏溶,等.淀粉废水水解酸化处理中酶比活变化特性[J].化工环保,2009, 29(2):118-121.
    [255]陈启和,何国庆,邬应龙.弹性蛋白酶产生菌的筛选及其发酵条件的初步研究[J].浙江大学学报(农业与生命科学版),2003,29(1):59-64.
    [256]吕振华.四氢呋喃对淡水、污水和活性污泥的生态毒理效应及其生物降解[D]:[博士学位论文].杭州:浙江大学,2008.
    [257]曾梦兆.人工湿地基质酶及其活性与净化养殖废水效果相关性研究[D]:[博士学位论文].武汉:华中农业大学,2008.
    [258] Kong L, Wang Y B, Zhao L N, et al. Enzyme and root activities in surface- flow constructed wetlands[J]. Chemosphere, 2009,76(5):601-608.
    [259]孙丽娟,李咏梅,顾国维.含氮杂环化合物的生物降解研究进展.四川环境,2005,24(1):61-73.
    [260] Bremner, J.M. Recent research on problems in the use of urea as a nitrogen fertilizer[J]. Fertilizer Rearch,1995,42(1-3):321-329.
    [261]王进.高效厌氧技术在印染废水处理中的应用研究[D]:[博士学位论文].上海:上海交通大学,2007.
    [262]邢德峰,任南琪,宫曼丽,等. PCR-DGGE技术解析生物制氢反应器微生物多样性[J].环境科学,2005,26(2):173-176.
    [263] Konstantinov S R, Zhu W Y, Williams B A, et al. Effect of fermentable carbohydrates on piglet facial bacterial communities as revealed by 16S ribosomal DNA[J]. FEMS Microbiology Ecology,2003(43):225-235.
    [264] Muyzer G, Snmalla K. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology[J]. Antonie yan Leeuwenhoek,1998,73(1):127-141.
    [265]赵兴青,杨柳燕,陈灿,等. PCR-DGGE技术用于湖泊沉积物中微生物群落结构多样性研究[J].生态学报,2006,26(11):3610-3616.
    [266]张华勇,李振高,王俊华,等.红壤生态系统下芽孢杆菌的物种多样性[J].土壤, 2003,35(1):45-47.
    [267]周志刚,石鹏君,姚斌.圆白蜡消化道菌群PCR-DGGE基因指纹图谱构建[J].上海水产大学学报,2008,17(2):140-144.
    [268] Anne-Marie Delort, Mickael Va?tilingom, Pierre Amato, et al. A short overview of the microbial population in clouds: Potential roles in atmospheric chemistry and nucleation processes[J]. Atmospheric Research, 2010,98(2-4): 249-260.
    [269] M. Va?tilingom, T. Charbouillot, L. Deguillaume, et al. Atmospheric chemistry of carboxylic acids: microbial implication versus photochemistry[J]. Atmos. Chem. Phys. Discuss, 2011, 11: 4881-4911.
    [270] Thermomonas sp. EMB 79 partial sequence [EB/OL]. http://www.ncbi.nlm.nih.gov/nuccore/ DQ413155.1. 2006-2-17.
    [271] Siqing Xia, Jixiang Li, Shuying He, et al. The effect of organic loading on bacterial community composition of membrane biofilms in a submerged polyvinyl chloride membrane bioreactor[J]. Bioresource Technology, 2010,101(17): 6601-6609.
    [272] Sphingopyxis granuli strain CL-10.7a partial sequence [EB/OL]. http://www.ncbi.nlm.nih.gov/ nuccore/HQ113211.1. 2010-08-08.
    [273] Collado, L., Levicán, A., Perez, J., et al. Arcobacter defluvii sp. nov., isolated from sewage samples[J]. Int. J. Syst. Evol. Microbiol., in press. doi:10.1099/ijs.0.025668-0.
    [274]牟少华,孙振元,韩蕾.不同种源马蔺的叶绿体DNA变异研究[J].核农学报, 2005, 19(6):469-473.
    [275]向少能,陈琳,何晓丽.水体微生物多样性PCR-DGGE分析方法的比较研究[J].重庆工学院学报(自然科学版) , 2007, 21(7): 74-78,97.
    [276] Li-Nan Huang, Heleen De Wever, Ludo Diels. Diverse and Distinct Bacterial Communities Induced Biofilm Fouling in Membrane Bioreactors Operated under Different Conditions[J]. Environ. Sci. Technol., 2008, 42 (22):8360–8366.
    [277] Tamás Felf?ldi, Anna J. Székely, Róbert Gorál,et al. Polyphasic bacterial community analysis of an aerobic activated sludge removing phenols and thiocyanate from coke plant effluent[J]. Bioresource Technology, 101(10):3406-3414.
    [278] Uncultured Clostridium sp. partial 16S rRNA gene, clone Limnopolar-0.5-C1 [EB/OL]. http://www.ncbi.nlm.nih.gov/nuccore/FR848667.1. 2011-05-28.
    [279] Uncultured bacterium clone SPHA-8 16S ribosomal RNA gene, partial sequence [EB/OL]. http://www.ncbi.nlm.nih.gov/nuccore/HM243751.1. 2010.05.20.
    [280] Li,D., Zhang,J., Yang,M. Bacterial communities in penicillin G production wastewater and the receiving river by using culture and unculture techniques[J] . 18-OCT-2007.unpublished.
    [281] Ren-Bao Liaw, Mei-Ping Cheng, Ming-Che Wu, et al. Use of metagenomic approaches to isolate lipolytic genes from activated sludge[J]. Bioresource Technology, 2010, 101(21):8323-8329.
    [282] Uncultured Nitrospira sp. clone H6-R500 16S ribosomal RNA gene, partial sequence [EB/OL]. http://www.ncbi.nlm.nih.gov/nuccore/HQ198853.1. 2010-08-30.
    [283] Cho, S.J., Okabe, S, Lee, S.J. Bacterial community dynamics and conversion of inorganic nitrogen under aerobic and micro-aerobic conditions[J]. Environ Technol. 2008,29(4):463-71.
    [284]刘燕,王越兴,莫华娟,等.有机底物对活性污泥胞外聚合物的影响[J].环境化学,2004,23(3):252-257.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700