倾斜溅射沉积法制备SnO_2基纳米结构阵列的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁控溅射作为最广泛使用的镀膜方法之一,具有样品均匀性和可重复性较好、可方便掺杂以调节薄膜成分等许多优点。另一方面,倾斜沉积法(GLAD)通过束流大角度地倾斜入射引起阴影效应,从而对薄膜的形貌进行调控,制备出特殊形貌的纳米结构。本文将磁控溅射和倾斜沉积相结合,制备出形貌和成分可控的SnO_2基纳米结构阵列,并对其光学、表面浸润、磁学性能进行研究。和光刻等方法相比,倾斜溅射沉积法具有步骤简单、成本较低的优点,在器件应用领域表现出了巨大的潜力。
     首先,通过倾斜溅射沉积法在密排的聚苯乙烯(polystyrene, PS)微球模板上制备出Ti_xSn_(1-x)O_2纳米结构阵列。通过调节Ti靶的溅射功率和PS微球模板的大小控制Ti_xSn_(1-x)O_2纳米结构的形貌,并进一步调控薄膜的反射率。退火后的薄膜晶化为TiO2和SnO_2的复合纳米结构,形貌和抗反射性能均保持良好的热稳定性。
     其次,对Ti_xSn_(1-x)O_2纳米结构阵列的表面浸润性进行了研究。以200nm直径聚苯乙烯微球为模板制备出的形貌各向异性的纳米片结构呈现出宏观的各向异性润湿现象,并通过三相接触线的结构进行研究。另一方面,以1μm直径聚苯乙烯微球为模板制备的“球壳”结构在可见光照和黑暗环境中能够发生可逆的超亲水-疏水转变。Ti_xSn_(1-x)O_2纳米结构阵列同时实现了抗反射性能和特殊浸润性,可应用于表面的抗反射、自清洁和防雾层。
     最后,通过倾斜溅射沉积法制备Fe_xSn_(1-x)O_2纳米结构阵列。和Fe_xSn_(1-x)O_2平膜相比,Fe_xSn_(1-x)O_2纳米结构阵列具有更大的饱和原子磁矩,并且同时具有垂直磁各向异性和面内磁各向异性。对不同的Fe含量下氧空位的EPR信号强度和饱和原子磁矩的变化趋势进行了研究,表明氧空位是Fe_xSn_(1-x)O_2薄膜磁性的重要因素。
As the most popular fabrication method of films, magnetron sputter deposition hasadvantages in its good homogeneity and reproducibility, and the ease and flexibility ofdoping, which is extensively used to adjust the composition. On the other hand, themorphology of films can be tuned by Glancing Angle Deposition (GLAD) technique,in which the oblique incident vapor flux causes atomic shadow effects and thus resultsin special morphological nanostructures. With GLAD and magnetron sputter depositioncombined, periodic arrays of SnO_2-based nanostructures with modulated compositionsand morphology were fabricated. The glancing angle sputter deposition technique ismuch simpler and cheaper compared to lithography techniques, and thus shows greatpotentials in device applications.
     First, regular arrays of Ti_xSn_(1-x)O_2nanostructures were prepared by glancing anglesputter deposition onto self-assembled close-packed arrays of polystyrene microspheres.The morphology of the nanostructures could be modulated by the variation of thesputtering power of Ti target and the size of polystyrene microspheres templates.Accordingly, the performance of reflection which was dependent on the morphology ofnanostructures could be tuned by optimizing the parameters. After annealing in air, thefilms were crystallized to TiO2/SnO_2composite and maintained good thermal stabilityin the morphology and antireflection property.
     Secondly, the wetting behaviors of Ti_xSn_(1-x)O_2nanostructures were studied. Theanisotropic nanoflakes grown on200-nm-diameter polystyrene microspheres exhibitedmacroscopic-wetting anisotropy, which is ascribed to the difference of the three-phasecontact line structure in different directions, resulting from the anisotropic topography.On the other hand, it was shown that the “spheric shells” deposited on1-μm-diameterpolystyrene microspheres can be reversibly switched between hydrophobicity andsuperhydrophilicity by alternating visible light illumination and dark storage. Therealization of special wettability on antireflective films is of great significance and canbe employed to develop coatings for various substrates with simultaneous antireflective,self-cleaning and antifogging behavior.
     Thirdly, periodic arrays of Fe_xSn_(1-x)O_2nanostructures were fabricated by glancingangle sputter deposition. Compared with Fe_xSn_(1-x)O_2flat films, arrays of Fe_xSn_(1-x)O_2 nanostructures processed larger saturation magnetic moment, and exhibited bothperpendicular magnetic anisotropy and in-plane magnetic anisotropy. The EPR signaloriginating from the oxygen vacancies significantly varied with the Fe concentrationand reached the strongest at x=0.059, which is consistent with the saturationmagnetization. It demonstrates that the oxygen vacancies are an important factor forthe ferromagnetism of Fe_xSn_(1-x)O_2films.
引文
[1] Robbie K, Brett M J, Lakhtakia A. First thin-film realization of a helicoidalbianisotropic medium. J. Vac. Sci. Technol., A,1995,13(6):2991-2993.
    [2] Robbie K, Brett M J. Sculptured thin films and glancing angle deposition: growthmechanics and applications. J. Vac. Sci. Technol., A,1997,15(3Part2):1460-1465.
    [3] Robbie K, Sit J C, Brett M J. Advanced techniques for glancing angle deposition. J.Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas.,Phenom.,1998,16(3):1115-1122.
    [4] Hawkeye M M, Brett M J. Glancing angle deposition: fabrication, properties, andapplications of micro-and nanostructured thin films. J. Vac. Sci. Technol., A,2007,25(5):1317-1335.
    [5] Steele J J, Brett M J. Nanostructure engineering in porous columnar thin films:recent advances. J. Mater. Sci.: Mater. Electron.,2007,18(4):367-379.
    [6] Kesapragada S V, Gall D. Two-component nanopillar arrays grown by glancingangle deposition. Thin Solid Films,2006,494(1-2):234-239.
    [7] Zhou C M, Li H F, Gall D. Multi-component nanostructure design by atomicshadowing. Thin Solid Films,2008,517(3):1214-1218.
    [8] Li Y, Sasaki T, Shimizu Y, et al. Hexagonal-close-packed, hierarchical amorphousTiO2nanocolumn arrays: transferability, enhanced photocatalytic activity, andsuperamphiphilicity without UV irradiation. J. Am. Chem. Soc.,2008,130(44):14755-14762.
    [9] Li Y, Koshizaki N, Shimizu Y, et al. Unconventional lithography for hierarchialmicro/nanostructure arrays with well-aligned1D crystalline nanostructures: designand creation based on the colloidal monolayer. ACS Appl. Mater. Interfaces,2009,1(11):2580-2585.
    [10] Li L, Koshizaki N. Vertically aligned and ordered hematite hierarchical columnararrays for applications in field-emission, superhydrophilicity, and photocatalysis. J.Mater. Chem.,2010,20(15):2972-2978.
    [11] Li L, Li Y, Gao S Y, et al. Ordered Co3O4hierarchical nanorod arrays: tunablesuperhydrophilicity without UV irradiation and transition to superhydrophobicity. J.Mater. Chem.,2009,19(44):8366-8371.
    [12] Kiema G K, Colgan M J, Brett M J. Dye sensitized solar cells incorporatingobliquely deposited titanium oxide layers. Sol. Energy Mater. Sol. Cells,2005,85(3):321-331.
    [13] Steele J J, Gospodyn J P, Sit J C, et al. Impact of morphology on high-speedhumidity sensor performance. IEEE Sens. J.,2006,6(1):24-27.
    [14] Suzuki M, Ito T, Taga Y. Photocatalysis of sculptured thin films of TiO2. Appl.Phys. Lett.,2001,78(25):3968-3970.
    [15] Robbie K, Cui Y, Elliott C, et al. Oxidation of evaporated porous silicon rugatefilters. Appl. Opt.,2006,45(32):8298-8303.
    [16] Kennedy S R, Brett M J, Toader O, et al. Fabrication of tetragonal square spiralphotonic crystals. Nano Lett.,2002,2(1):59-62.
    [17] Singh J P, Tang F, Karabacak T, et al. Enhanced cold field emission from <100>oriented β-W nanoemitters. J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.:Mater., Process., Meas., Phenom.,2004,22(3):1048-1051.
    [18] Kesapragada S V, Victor P, Nalamasu O, et al. Nanospring pressure sensors grownby glancing angle doposition. Nano Lett.,2006,6(4):854-857.
    [19] Hrudey P, Westra K L, Brett M J. Highly ordered organic Alq3chiral luminescentthin films fabricated by glancing-angle deposition. Adv. Mater.,2006,18(2):224.
    [20] Knorr T G, Hoffman R W. Dependence of geometric magnetic anisotropy in thiniron films. Phys. Rev.,1959,113(4):1039-1046.
    [21] Dick B, Brett M J, Smy T J, et al. Periodic magnetic microstructures by glancingangle deposition. J. Vac. Sci. Technol., A,2000,18(4Part2):1838-1844.
    [22] Okamoto K, Hashimot. T, Hara K, et al. Origin of magnetic anisotropy of iron filmsevaporated at oblique incidence. J. Phys. Soc. Jpn.,1971,31(5):1374.
    [23] Cohen M S. Anisotropy in permalloy films evaporated at grazing incidence. J. Appl.Phys.,1961,32(3):S87.
    [24] Schuele W J. Coercive force of angle of incidence films. J. Appl. Phys.,1964,35(8):2558.
    [25] Spelioti. D E, Bate G, Alstad J K, et al. Hard magnetic films of iron cobalt andnickel. J. Appl. Phys.,1965,36(3P2):972.
    [26] Lodder J C, de Haan P, van Kranenburg H. Giant magnetoresistance in obliquelyco-evaporated Co-Ag films. J. Magn. Magn. Mater.,1993,128:219-228.
    [27]潘书生.氮掺杂SnO2薄膜生长与物性研究[博士学位论文].合肥:中国科学院固体物理研究所,2007.
    [28]王磊.二氧化锡纳米材料的制备与扩展[博士学位论文].上海:华东理工大学无机化学系,2011.
    [29] Kilic C, Zunger A. Origins of coexistence of conductivity and transparency in SnO2.Phys. Rev. Lett.,2002,88(0955019).
    [30] Chattopadhyay S, Huang Y F, Jen Y J, et al. Anti-reflecting and photonicnanostructures. Mater. Sci. Eng., R,2010,69(1-3):1-35.
    [31]倪杰.氧化铪薄膜及其纳米结构的形貌和性能调控[博士学位论文].北京:清华大学材料科学与工程系,2010.
    [32] Xi J Q, Schubert M F, Kim J K, et al. Optical thin-film materials with low refractiveindex for broadband elimination of Fresnel reflection. Nat. Photonics,2007,1(3):176-179.
    [33] Huang J Y, Wang X D, Wang Z L. Bio-inspired fabrication of antireflectionnanostructures by replicating fly eyes. Nanotechnology,2008,19(0256022).
    [34] Clapham P B, Hutley M C. Reduction of lens reflection by moth eye principle.Nature,1973,244(5414):281-282.
    [35] Wilson S J, Hutley M C. The optical-properties of moth eye antireflection surfaces.Opt. Acta,1982,29(7):993-1009.
    [36] Song Y M, Bae S Y, Yu J S, et al. Closely packed and aspect-ratio-controlledantireflection subwavelength gratings on GaAs using a lenslike shape transfer. Opt.Lett.,2009,34(11):1702-1704.
    [37] Chen H L, Chuang S Y, Lin C H, et al. Using colloidal lithography to fabricate andoptimize sub-wavelength pyramidal and honeycomb structures in solar cells. Opt.Express,2007,15(22):14793-14803.
    [38] Kanamori Y, Hane K, Sai H, et al.100nm period silicon antireflection structuresfabricated using a porous alumina membrane mask. Appl. Phys. Lett.,2001,78(2):142-143.
    [39] Yu Z N, Gao H, Wu W, et al. Fabrication of large area subwavelength antireflectionstructures on Si using trilayer resist nanoimprint lithography and liftoff. J. Vac. Sci.Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom.,2003,21(6):2874-2877.
    [40] Kanamori Y, Sasaki M, Hane K. Broadband antireflection gratings fabricated uponsilicon substrates. Opt. Lett.,1999,24(20):1422-1424.
    [41] Kanamori Y, Kobayashi K, Yugami H, et al. Subwavelength antireflection gratingsfor GaSb in visible and near-infrared wavelengths. Jpn. J. Appl. Phys.,2003,42(6B):4020-4023.
    [42] Liu K S, Yao X, Jiang L. Recent developments in bio-inspired special wettability.Chem. Soc. Rev.,2010,39(8):3240-3255.
    [43] Wenzel R N. Resistance of solid surfaces to wetting by water. Ind. and Eng. Chem.,1936,28:988-994.
    [44] Cassie A, Baxter S. Wettability of porous surfaces. Trans. Faraday Soc.,1944,40:546-550.
    [45] Cao L L, Hu H H, Gao D. Design and fabrication of micro-textures for inducing asuperhydrophobic behavior on hydrophilic materials. Langmuir,2007,23(8):4310-4314.
    [46] Marmur A. From hygrophilic to superhygrophobic: theoretical conditions formaking high-contact-angle surfaces from low-contact-angle materials. Langmuir,2008,24(14):7573-7579.
    [47] Sun T L, Feng L, Gao X F, et al. Bioinspired surfaces with special wettability. Acc.Chem. Res.,2005,38(8):644-652.
    [48] Sun C H, Gonzalez A, Linn N C, et al. Templated biomimetic multifunctionalcoatings. Appl. Phys. Lett.,2008,92(0511075).
    [49] Min W L, Jiang B, Jiang P. Bioinspired self-cleaning antireflection coatings. Adv.Mater.,2008,20(20):3914.
    [50] Li Y F, Zhang J H, Zhu S J, et al. Bioinspired silicon hollow-tip arrays for highperformance broadband anti-reflective and water-repellent coatings. J. Mater.Chem.,2009,19(13):1806-1810.
    [51] Bravo J, Zhai L, Wu Z Z, et al. Transparent superhydrophobic films based on silicananoparticles. Langmuir,2007,23(13):7293-7298.
    [52] Artus G, Jung S, Zimmermann J, et al. Silicone nanofilaments and their applicationas superhydrophobic coating. Adv. Mater.,2006,18(20):2758.
    [53] Manca M, Cannavale A, De Marco L, et al. Durable superhydrophobic andantireflective surfaces by trimethylsilanized silica nanoparticles-based sol-gelprocessing. Langmuir,2009,25(11):6357-6362.
    [54] Qi D, Lu N, Xu H B, et al. Simple approach to wafer-scale self-cleaningantireflective silicon surfaces. Langmuir,2009,25(14):7769-7772.
    [55] Feng L, Li S H, Li Y S, et al. Super-hydrophobic surfaces: from natural to artificial.Adv. Mater.,2002,14(24):1857-1860.
    [56] Zhao Y, Lu Q H, Li M, et al. Anisotropic wetting characteristics onsubmicrometer-scale periodic grooved surface. Langmuir,2007,23(11):6212-6217.
    [57] Gao J, Liu Y L, Xu H P, et al. Mimicking biological structured surfaces byphase-separation micromolding. Langmuir,2009,25(8):4365-4369.
    [58] Zhang X M, Zhang J H, Ren Z Y, et al. Morphology and wettability control ofsilicon cone arrays using colloidal lithography. Langmuir,2009,25(13):7375-7382.
    [59] Morita M, Koga T, Otsuka H, et al. Macroscopic-wetting anisotropy on theline-patterned surface of fluoroalkylsilane monolayers. Langmuir,2005,21(3):911-918.
    [60] Chen Y, He B, Lee J H, et al. Anisotropy in the wetting of rough surfaces. J. ColloidInterface Sci.,2005,281(2):458-464.
    [61] Chen W, Fadeev A Y, Hsieh M C, et al. Ultrahydrophobic and ultralyophobicsurfaces: some comments and examples. Langmuir,1999,15(10):3395-3399.
    [62] ner D, Mccarthy T J. Ultrahydrophobic surfaces. Effects of topography lengthscales on wettability. Langmuir,2000,16(20):7777-7782.
    [63] Yoshimitsu Z, Nakajima A, Watanabe T, et al. Effects of surface structure on thehydrophobicity and sliding behavior of water droplets. Langmuir,2002,18(15):5818-5822.
    [64] Wang R, Hashimoto K, Fujishima A, et al. Light-induced amphiphilic surfaces.Nature,1997,388(6641):431-432.
    [65] Sakai N, Wang R, Fujishima A, et al. Effect of ultrasonic treatment on highlyhydrophilic TiO2surfaces. Langmuir,1998,14(20):5918-5920.
    [66] Stevens N, Priest C I, Sedev R, et al. Wettability of photoresponsive titaniumdioxide surfaces. Langmuir,2003,19(8):3272-3275.
    [67] Gu Z Z, Fujishima A, Sato O. Fabrication of high-quality opal films withcontrollable thickness. Chem. Mater.,2002,14(2):760-765.
    [68] Tadanaga K, Morinaga J, Matsuda A, et al. Superhydrophobic-superhydrophilicmicropatterning on flowerlike alumina coating film by the sol-gel method. Chem.Mater.,2000,12(3):590.
    [69] Feng X J, Zhai J, Jiang L. The fabrication and switchable superhydrophobicity ofTiO2nanorod films. Angew. Chem., Int. Ed.,2005,44(32):5115-5118.
    [70] Sun W T, Zhou S Y, Chen P, et al. Reversible switching on superhydrophobic TiO2nano-strawberry films fabricated at low temperature. Chem. Commun.,2008(5):603-605.
    [71] Zhang X T, Jin M, Liu Z Y, et al. Preparation and photocatalytic wettabilityconversion of TiO2-based superhydrophobic surfaces. Langmuir,2006,22(23):9477-9479.
    [72] Caputo G, Nobile C, Kipp T, et al. Reversible wettability changes in colloidal TiO2nanorod thin-film coatings under selective UV laser irradiation. J. Phys. Chem. C,2008,112(3):701-714.
    [73] Sun R D, Nakajima A, Fujishima A, et al. Photoinduced surface wettabilityconversion of ZnO and TiO2thin films. J. Phys. Chem. B,2001,105(10):1984-1990.
    [74] Wang S T, Feng X J, Yao J N, et al. Controlling wettability and photochromism in adual-responsive tungsten oxide film. Angew. Chem., Int. Ed.,2006,45(8):1264-1267.
    [75] Lim H S, Kwak D, Lee D Y, et al. UV-driven reversible switching of a roselikevanadium oxide film between superhydrophobicity and superhydrophilicity. J. Am.Chem. Soc.,2007,129(14):4128.
    [76] Zhu W Q, Feng X J, Feng L, et al. UV-manipulated wettability betweensuperhydrophobicity and superhydrophilicity on a transparent and conductive SnO2nanorod film. Chem. Commun.,2006(26):2753-2755.
    [77] Kietzig A M, Hatzikiriakos S G, Englezos P. Patterned superhydrophobic metallicsurfaces. Langmuir,2009,25(8):4821-4827.
    [78] Yan B, Tao J G, Pang C, et al. Reversible UV-light-induced ultrahydrophobic-to-ultrahydrophilic transition in an α-Fe2O3nanoflakes film. Langmuir,2008,24(19):10569-10571.
    [79] Furdyna J K. Diluted Magnetic Semiconductors. J. Appl. Phys.,1988,64(4):R29-R64.
    [80] Ohno H. Making nonmagnetic semiconductors ferromagnetic. Science,1998,281(5379):951-956.
    [81] Matsumoto Y. Room-temperature ferromagnetism in transparent transitionmetal-doped titanium dioxide. Science,2001,294(5544):1003.
    [82] Elfimov I S, Yunoki S, Sawatzky G A. Possible path to a new class offerromagnetic and half-metallic ferromagnetic materials. Phys. Rev. Lett.,2002,89(21640321).
    [83] Osorio-Guillén J, Lany S, Barabash S V, et al. Magnetism without magnetic ions:percolation, exchange, and formation energies of magnetism-promoting intrinsicdefects in CaO. Phys. Rev. Lett.,2006,96(10720310).
    [84] Coey J, Venkatesan M, Stamenov P, et al. Magnetism in hafnium dioxide. Phys.Rev. B: Condens. Matter Mater. Phys.,2005,72(0244502).
    [85] Tirosh E, Markovich G. Control of defects and magnetic properties in colloidalHfO2nanorods. Adv. Mater.,2007,19(18):2608.
    [86] Salzer R, Spemann D, Esquinazi P, et al. Possible pitfalls in search of magneticorder in thin films deposited on single crystalline sapphire substrates. J. Magn.Magn. Mater.,2007,317(1-2):53-60.
    [87] Ney A, Kammermeier T, Ney V, et al. Limitations of measuring small magneticsignals of samples deposited on a diamagnetic substrate. J. Magn. Magn. Mater.,2008,320(23):3341-3346.
    [88] Zhang S X, Ogale S B, Yu W Q, et al. Electronic manifestation ofcation-vacancy-induced magnetic moments in a transparent oxide semiconductor:anatase Nb:TiO2. Adv. Mater.,2009,21(22):2282.
    [89] Pan H, Yi J B, Shen L, et al. Room-temperature ferromagnetism in carbon-dopedZnO. Phys. Rev. Lett.,2007,99(12720112).
    [90] Hong N H, Sakai J, Poirot N, et al. Room-temperature ferromagnetism observed inundoped semiconducting and insulating oxide thin films. Phys. Rev. B: Condens.Matter Mater. Phys.,2006,73(13240413).
    [91] Hong N H, Poirot N, Sakai J. Ferromagnetism observed in pristine SnO2thin films.Phys. Rev. B: Condens. Matter Mater. Phys.,2008,77(0332053).
    [92] Sundaresan A, Bhargavi R, Rangarajan N, et al. Ferromagnetism as a universalfeature of nanoparticles of the otherwise nonmagnetic oxides. Phys. Rev. B:Condens. Matter Mater. Phys.,2006,74(16130616).
    [93] Coey J, Venkatesan M, Fitzgerald C B. Donor impurity band exchange in diluteferromagnetic oxides. Nat. Mater.,2005,4(2):173-179.
    [94] Coey J, Douvalis A P, Fitzgerald C B, et al. Ferromagnetism in Fe-doped SnO2thinfilms. Appl. Phys. Lett.,2004,84(8):1332-1334.
    [95] Fitzgerald C B, Venkatesan M, Douvalis A P, et al. SnO2doped with Mn, Fe or Co:room temperature dilute magnetic semiconductors. J. Appl. Phys.,2004,95(11Part2):7390-7392.
    [96] Fitzgerald C B, Venkatesan M, Dorneles L S, et al. Magnetism in dilute magneticoxide thin films based on SnO2. Phys. Rev. B: Condens. Matter Mater. Phys.,2006,74(11530711).
    [97] Hong N H, Sakai J, Huong N T, et al. Room temperature ferromagnetism in laserablated Ni-doped In2O3thin films. Appl. Phys. Lett.,2005,87(10250510).
    [98] Archer P I, Radovanovic P V, Heald S M, et al. Low-temperature activation anddeactivation of high-Curie-temperature ferromagnetism in a new diluted magneticsemiconductor: Ni2+-doped SnO2. J. Am. Chem. Soc.,2005,127(41):14479-14487.
    [99] Li L J, Yu K, Tang Z, et al. Room-temperature ferromagnetism properties ofCu-doped SnO2nanowires. J. Appl. Phys.,2010,107(0143031).
    [100] Zhang L, Ge S H, Zuo Y, et al. Ferromagnetic properties in undoped and Cr-dopedSnO2nanowires. Scr. Mater.,2010,63(10):953-956.
    [101] Zhang L, Ge S H, Zuo Y L. Influence of growth parameters on the morphology andmagnetic property of SnO2nanostructures. J. Electrochem. Soc.,2010,157(8):K162-K167.
    [102]唐伟忠.薄膜材料制备原理、技术及应用.北京:冶金工业出版社,1998:74-79.
    [103] Zhao Y P, Ye D X, Wang P I, et al. Fabrication of Si nanocolumns and Si squarespirals on self-assembled monolayer colloid substrates. Int. J. Nanosci.,2002,1(1):87-97.
    [104] Kesapragada S V, Gall D. Anisotropic broadening of Cu nanorods during glancingangle deposition. Appl. Phys. Lett.,2006,89(20312120).
    [105] Yagil Y, Deutscher G. Scaling and renormalization in transmittance of thinmetal-films near the percolation-threshold. Appl. Phys. Lett.,1988,52(5):373-374.
    [106] Gadenne P, Yagil Y, Deutscher G. Transmittance and reflectance insitumeasurements of semicontinuous gold-films during deposition. J. Appl. Phys.,1989,66(7):3019-3025.
    [107] Kunz M, Niklasson G A, Granqvist C G. Optical and electrical-properties ofsputter-deposited Al films close to the percolation-threshold. J. Appl. Phys.,1988,64(7):3740-3742.
    [108] Garnett J. Colours in metal glasses and in metallic films. Philos. Trans. R. Soc.London,1904,203:385-420.
    [109] Garnett J. Colours in metal glasses, in metallic films, and in metallic solutions-II.Philos. Trans. R. Soc. London,1906,205:237-288.
    [110] Bruggeman D. Calculation of various physics constants in heterogenous substancesI dielectricity constants and conductivity of mixed bodies from isotropic substances.Ann. Phys.,1935,24(7):636-664.
    [111] Grann E B, Moharam M G, Pommet D A. Optimal-design for antireflective tapered2-dimensional subwavelength grating structures. J. Opt. Soc. Am. A,1995,12(2):333-339.
    [112] Schmid J H, Cheben P, Janz S, et al. Gradient-index antireflective subwavelengthstructures for planar waveguide facets. Opt. Lett.,2007,32(13):1794-1796.
    [113] Zhou C M, Gall D. Branched Ta nanocolumns grown by glancing angle deposition.Appl. Phys. Lett.,2006,88(20311720).
    [114] Brune H. Microscopic view of epitaxial metal growth: nucleation and aggregation.Surf. Sci. Rep.,1998,31(4-6):121-229.
    [115] Venables J A. Nucleation calculations in a pair-binding model. Physical Review B,1987,36(8):4153-4162.
    [116] Tersoff J, Vandergon A, Tromp R M. Critical island size for layer-by-layer growth.Physical Review Letters,1994,72(2):266-269.
    [117] Wall M A, Cahill D G, Petrov I, et al. Nucleation kinetics during homoepitaxialgrowth of TiN(001) by reactive magnetron sputtering. Phys. Rev. B: Condens.Matter Mater. Phys.,2004,70(0354133).
    [118] Song Y M, Lee Y T. Investigation of geometrical effects of antireflectivesubwavelength grating structures for optical device applications. Opt. QuantumElectron.,2009,41(10):771-777.
    [119] Gao L C, Mccarthy T J. How Wenzel and Cassie were wrong. Langmuir,2007,23(7):3762-3765.
    [120] Extrand C W. Contact angles and hysteresis on surfaces with chemicallyheterogeneous islands. Langmuir,2003,19(9):3793-3796.
    [121]赵燕.具有特殊润湿性能的聚合物基界面材料的构筑:表面化学组成与微观几何结构[博士学位论文].上海:上海交通大学化学化工学院,2008.
    [122] Long J, Hyder M N, Huang R, et al. Thermodynamic modeling of contact angles onrough, heterogeneous surfaces. Adv. Colloid Interface Sci.,2005,118(1-3):173-190.
    [123] Chen L C, Tsai F R, Fang S H, et al. Properties of sol-gel SnO2/TiO2electrodes andtheir photoelectrocatalytic activities under UV and visible light illumination.Electrochim. Acta,2009,54(4):1304-1311.
    [124]薛宝永. TiO2-SnO2复合半导体对气相污染物的光催化降解研究[硕士学位论文].长春:吉林大学环境科学系,2004.
    [125] Zheng Z F, Teo J, Chen X, et al. Correlation of the catalytic activity for oxidationtaking place on various TiO2surfaces with surface OH groups and surface oxygenvacancies. Chem.--Eur. J.,2010,16(4):1202-1211.
    [126] Wendt S, Schaub R, Matthiesen J, et al. Oxygen vacancies on TiO2(110) and theirinteraction with H2O and O2: A combined high-resolution STM and DFT study. Surf.Sci.,2005,598(1-3):226-245.
    [127]江德顺. SnO2/TiO2纳米复合薄膜的制备及光催化性能研究[硕士学位论文].武汉:华中科技大学物理化学系,2007.
    [128] Coey J. d0ferromagnetism. Solid State Sci.,2005,7(6):660-667.
    [129] Venkatesan M, Fitzgerald C B, Lunney J G, et al. Anisotropic ferromagnetism insubstituted zinc oxide. Phys. Rev. Lett.,2004,93(17720617).
    [130] Graat P, Somers M. Quantitative analysis of overlapping XPS peaks by spectrumreconstruction: determination of the thickness and composition of thin iron oxidefilms. Surf. Interface Anal.,1998,26(11):773-782.
    [131] Sterrer M, Fischbach E, Risse T, et al. Geometric characterization of a singlycharged oxygen vacancy on a single-crystalline MgO(001) film by electronparamagnetic resonance spectroscopy. Phys. Rev. Lett.,2005,94(18610118).
    [132] Zhang S L, Li W, Jin Z S, et al. Study on ESR and inter-related properties ofvacuum-dehydrated nanotubed titanic acid. J. Solid State Chem.,2004,177(4-5):1365-1371.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700