溶胶—凝胶法制备纳米二氧化钛薄膜及其光致特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要对纳米二氧化钛光催化与超亲水性薄膜的制各及性能研究和过
    渡金属掺杂对纳米二氧化钛薄膜的微观结构、光致特性、电化学性质及在酸碱条
    件下的稳定性等进行了研究。薄膜的制各主要由两部分组成:1.室温下Si02-T
    iO2 复合薄膜的制各;2.掺杂Sb的纳米二氧化钛薄膜的制备。
     1.在纳米二氧化钛薄膜的室温制备与研究中,用正硅酸乙脂和四氯化钛分
    别作为二氧化硅和二氧化钛的前驱体,室温下采用溶胶.凝胶法在玻璃基板上制
    备厚度约为100nm均匀、透明的纳米Si02-Fi02复合薄膜。
     通过xPs对薄膜表面及近表面元素的化学态的研究发现,Ti在薄膜表面及
    近表面不仅以TI4+形式存在。同时也存在少量的Ti3+。经一定时间的紫外光照射
    后,Ti2p3/2谱线发生了明显的变化,拟合结果显示:紫外光长时间(24h)照射后,
    Ti3+峰明显增强;从Ols峰形也可看到光照前后有着显著的区别:紫外光照射后,
    相对于Ti3+的Ols峰明显增强,上述结果说明紫外光照射后部分Ti4+转变成了
    Ti3+。
     XRD研究表明,该薄膜中的Ti02主要以锐钛矿形式存在,晶粒大小为
    14— 20nm。薄膜的表面形貌及不同的温度处理对Ti02颗粒大小的影响通过AFM
    进行表征。由于Sio2溶胶的作用,室温固化及200.C热处理l小时后的薄膜表面
    呈板块状结构,其颗粒尺寸约为0.2um,经450。C小时的热处理后,表面颗粒
    尺寸减小到50一100nm。
     在室温下制备、固化的薄膜具有良好的光致超亲水性、光催化能力和较高的
    可见光透射率,且薄膜厚度均匀。无论热处理与否,样品经254nm紫外光照射
    40min后对水的接触角均显著减小,接近于O。:在停止光照24小时后,接触角
    仍为15— 3。,即能较长时间保持其亲水性。温度低于200℃的热处理,对薄膜的
    光致特性基本没有影响,两种不同温度(室温和200。C)下处理的薄膜对罗丹明B
    和亚甲基蓝水溶液的一级反应速率常数k分别为O.0229h-1.cm-2、0.0244h-1cm-2、
    0.0220 h-1cm-2和0.0233 h-1-cm-2,即室温固化的薄膜与较低温度(<=200。C)处理过
    的薄膜对罗丹明B和亚甲基蓝的降解没有明显的差异,较低温度处理并不影响
    薄膜的光催化性。高温(>=450℃)处理1小时后,薄膜的光催化性能明显降低,
    对罗丹明B和亚甲基蓝水溶液的一级反应速率常数k分别为O.0108 H-1.cm-2和
    0.0097 h-1.cm-2。同时,随着厚度的增加,薄膜的光催化性能也相应提高。
     通过沸水处理方法研究了不同温度下处理后薄膜与基板的附着力性能。室温
    固化及200℃下处理的薄膜经沸水煮20分钟后仍具有良好的超亲水性。在波长
    为254nm,功率密度为200gW/cm2的紫外光下照射40min后,薄膜对水的接触
    
    
    
    角小于1。,表明薄膜与基板有良好的附着力及稳定性。
     2.通过溶胶.凝胶法制各的掺杂sb的纳米二氧化钛光催化薄膜,在可见光
    区的平均透射率大于80%。掺入适量的Sb后,由于Sb替代了Ti02的部分Ti,
    形成sb-O-Ti结构,改变了Ti02的晶格结构参数(a,c),进而提高了薄膜的结晶效
    率,使薄膜中锐钛矿结构的Ti02:Sb含量明显提高。但掺入过量的sb后,由于
    sb相互间作用,形成Sb-Sb键,降低了晶格的有序度,使薄膜的结晶效率降低。
    实验表明,Sb的最佳掺杂含量为0.2%,此时薄膜的结晶效率最高。
     掺杂sb后明显提高了薄膜的光电转换效率,当掺杂含量为0 2%时,用254nm
    紫外光作光源(功率密度为375uw·cm-2)时.其产生的光电流密度可达
    42 49uA.cm-2,是用同种方法制备的纯Ti02薄膜电极的近ll倍。
     用电化学方法研究了紫外光照射下Ti02薄膜电极表面Ti3+的产生与积累,
    并提出了Tio2光致特性产生过程中的两个过程:即光电流和Ti3+产生的快过程
    和Ti3+积累的慢过程,进而对Ti02薄膜光致亲水性的机理进行了一定的探讨。
     含0.2%Sb的薄膜对亚甲基蓝具有较高分解性能和良好的光致亲承性。对亚
    甲基蓝溶液光催化分解的一级反应速率常数k为0.078h-1.cm-2,是未掺杂的纯
    Ti02薄膜在相同条件下的反应常数(0.040 h-1cm-2)的近2倍。经90-95uw的
    254nm紫外光照射l小时后,掺杂0.2%的薄膜对水的接触角趋于00,表现出良
    好的光致亲水性。
     Ti02 Sb光催化薄膜在酸性条件下具有较强的的附着力。掺0.2%sb的薄膜
    在0.2M的盐酸中浸泡48小时或在沸水中处理40分钟后对亚甲基蓝的光催化反
    应常数分别为0.0338 h-1. cm-2和O.0283 h-1.cm-2,仍具有较强的光催化活性:经紫
    外光照射15分钟后,水接触角均接近于0。。
     电化学分析结果表明,掺杂sb后薄膜的稳定性得到显著提高,而未掺杂的
    纯Ti02薄膜在盐酸中并不稳定。
     最后还对用直流磁控溅射法制备锐钛矿结构的Ti02-xNx薄膜进行了初步的
    探讨。结果表明,用磁控溅射制各的TiN薄膜,经一定时间的湿氧氧化后形成锐
    钛矿结构的Ti02-xNx薄膜。该薄膜具有很好的光催化和光致亲水性能,对亚甲基
    蓝的反应速率常数k达到0.107h-1.cm-2:经254nm紫外光照射30分钟后,薄膜
    对水的接触角趋于0。:吸收光谱表明,TiO2-xNx薄膜的吸收边为460nm,对应的
    禁带宽度为2.70eV。
While the annoseale photocatalyfie activity and the photo— induced properties of
    titanium dioxide thin films were characterized,the effect of transitinnal metal Sb
    doped into titanium dioxide thin films upon the microstructuse,photo-indeced
    charaetars,electrochemical pmpertias and the stabilization in acid or alkaline
    environment were studied in this paper.The preparation of the thin films includes two
    parts One is the preparation of Si02一Ti02 composite thin films at room temperature
    in air.Another is the deposition of Sb doped nanoscalc Ti02 thin films
     1.In the section of photocatalytic Ti02 thin films were prepared at room
    temperature in air,Ethyl delicate((C2Hs)4Si04)and TiCl4 were used as the precursor
    0f Si02 and Ti02 respectively.The Nanoscale silicon dioxide and titanium dioxide
    composite(si02-Tio2)thin films wem uniform and transparent with the thickness of
    about 100nm were prepared.
     Thc chemieal states of the elements on the surface or near the surface were
    measured by XPS.The msults indieated that the Ti on/nearthe surface of the thin
    films existed not only as Ti4+ but also aS Ti3+.After ultraviolet(UV)irradiation for
    some time,the spectra of Ti2p3/2 changed obviously.Fitted results showed that the
    spectra of Ti3+ risen drastically after UV irradiation for long time(about 24h)
    accompaniedbyan up-forward tendency in the intensity of Ols spectra corresponded
    to Ti3+. These illustrated that part of the Ti4+was changed to Ti3+ after UV irradiation
     The crystalline stnlctore ofthe Si02-Ti02 thin films were characterized by X-ray
    diffraction(XRD).The crystalline structure of the Ti02 in the Si02-Ti02 thin films
    was in a majority of anatase state with the crystallite size of 14— 20nm.The AFM was
    used to study the morphology of the thin films annealed at different temperature and
    it effected onthe crystalline size of titanium dioxide For Si02 effect,the surfaces of
    the samples treated at below 200。C were lumpish strucure with grain size of 0.2pm.
    ARer treated at 450℃ for 1 hour,the grain size reduced to 50-100mn.
     The samples prepared at room temperature had excellent photo-induced
    superhydrophilicity and superior photocatalysis.After ander UV irradiation for 40min,
    the contact angles for all samples were drastically reduced to 0。and it also was
    between 1.5。t0 3。after storage in dark for 24 hour.There was few or none effcct on
    photocatalysis of the thin films heat treated below 200。C,the staircase reaction speed
    constant(k) of?
    
    0.0220 h-1·cml-2 and 0.0233 h-1.cm-2.respectively.But the photocatalysis of thin films
    treated at or over 450℃ for l hour was reduced obviously,which staircasereaction
    speed constant(k)was about 0.0108h-1.cm-2 and 0.0097 h-1.cm-2.
     The adherence between the thin films treated at different temperature and
    substrate was characterized byboiling water trtatment The samplestreated below
    200℃showed superior photo-induced supethydrophilicity after treated in boiling
    water for 20min.The contact angle was less than 1。under UV(k=254nm,
    P=200pW/cm2)irradiated for 40min.It illuminated that the thin films had strength
    adherence and stabilization
     The Ti02:Sb thin films with thc transparent larger than 80%were prepared by
    dip-coating sol-gel method.After doping proper amount of Sb,a part of Ti4+ in Tio2
    were replaced by Sb3+ and Sb combined with the O in Ti02 to form the structure of
    Sb-O-Ti,the crystal lattice parameters a and c were changed,and the crystalline rate
    of the Tio2 in the thin films is enhanced so that the content of anatasc Ti02:Sb were
    increased.When the concentration of dopant Sb was excessive.Sb interacted wim
    itself to form Sb-Sb structure,ruining the original anatase structure.So the
    optimization content of Sb is aboutO.2%.
     The photoelectric conversion character of TiO2 thin films are improved after Sb
    doping in it.When the content of Sb reached 0.2‰the photocurrent density was.
    about 42.49uA·cm-2 that was 11 times to the non-doped Ti02 thin films subjecting
引文
1 Lichtin, Catalytic process for degradation of organic materials in aqueous and organic fluids to produce
    environmentally compatible products. USP. 1989, 861(4): 484-491.
    2 A. Fujishima, K. Honda, S. Kikuchi, Photosensitized electrolytic oxidation on semiconducting n-type TiO2
    electrode, Kogyo Kagaku Zasshi, 1969, 72: 108-113.
    3 A.Fujishima, K. Honda. Electrochemical Photolysis of water at a semiconductor electrode. Nature, 1972,238:
    37-38.
    4 孙晓君, 蔡伟民, 井立强, 周德瑞, 沈雄飞, 王志平. 二氧化钛半导体光催化技术研究进展. 哈尔滨工业
    大学学报, 2001, 33:534-541.
    5 Steven N. Frank, Allen J. Bard. Heterogeneous Photocatalytic Oxidation of Cyanide and Sulfite in Aqueous
    Solutions at Semiconductor Powders. J. Phys. Chem., 1977, 81:1484-1488.
    6 william A. Jacoby, Daniel M. Blake, Richard D. Noble, Carl A. Koval. Kinetics of the Oxidation of
    Tricholoroethylene in Air via Heterogeneous Photocatalysis. J. Cata., 1995, 157: 87-96.
    7 H. Harada, T. Sakata, T. Ueda. Effect of Semiconductor on Photocatalytic Decomposition of Lactic Acid. J. Am.
    Chem. Soc., 1985, 107: 1773-1774.
    8 M. Bekb?let, M. Lindner, D. weichgrebe, D. W. Bahnemann. Photocatalytic Detoxification with the Thin-Film
    Fixedbed Reactor (TFFBR): Clean-up of Highly Polluted Landfill Effluents Using a Novel TiO2-Photocatalyst.
    Solar Energy, 1996, 56: 455-469.
    9 Nazima Z. Muradov, Ali T-Raissi, Donald Muzzey, Charles R. Paiter, Michael R. Kemme. Selective
    Photocatalytic Destruction of Airborne VOCs. Solar Energy, 1996, 56: 445-453.
    10 A. V. Vorontsov, I. V. Stoyanova, D. C. Kozlov, V. I. Simagina, E. N. Savinov. Kinetics of the Photocatalytic
    Oxidation of Gaseous Actone over Platinized titanium Dioxide. J. Cata., 2000, 189: 360-369.
    11 M. Catherine Blount, John L. Falconer. Steady-state Surface Species during Toluene Photocatalysis. Appi.
    Cata. B: Environ., 2002, 39: 39-50.
    12 R. S. Sonawane, S. G. Hegde, M. K. Dongare. Preparation of titanium (Ⅳ) oxide thin film photocatalyst by
    sol-gel dip coating. Materials Chemistry and Physics, 2002, 77: 744-750.
    13 Mohammad Muneer, Hemant K. Singh, Detlf Bahnemann. Semiconductor-mediated Photocatalysed
    degradation of two selected priority organic pollutants, benzidine and 1,2-diphenylhydrazine, in aqueous
    suspension. Chemosphere, 2002, 49:193-203.
    14 Shahed U.M. Khan, Tamanna Sultana. Phtotresponse of n-TiO2 thin film and nanowire electrodes. Solar
    Energy Materials & Solar Cells, 2003, 76: 211-221.
    15 H. Liu, H.T. Ma, X.Z. Li, W.Z. Li, M. Wu, X.H. Bao. The enhancement of TiO2 photocatalytic activity by
    hydrogen thermal treatment. Chemosphere, 2003,50: 39-46.
    16 Juan J. Testa, Maria A. Grela, Marta I. Litter. Heterogeneous Photocatalytic Reduction of Chromium(Ⅵ) over
    TiO2 Particles in the Presence of Oxalate: Involvement of Cr(Ⅴ) Species. Environ. Sci. Technol., 2004, 38:
    1589-1594.
    17 C. R. Chenthamarakshan, Krishnan Rajeshwar, Edward J. Wolfrum. Heterogeneous Photocatalytic Reduction
    of Cr(VI) in UV-Irradiated Titania Suspensions: Effect of Protons, Ammonium Ions, and Other Interfacial Aspects.
    Langmuir, 2000, 16: 2715-2721.
    18 Marta I. Litter. Heterogeneous photocatalysis Transition metal ions in photocatalytic systems. Applied
    Catalysis B: Environmental, 1999, 23:89-114.
    19 B. L. Deng, A.L. Stone. Surface-Catalyzed Chromium(VI) Reduction: Reactivity Comparisons of Different
    Organic Reductants and Different Oxide Surfaces. Environ. Sci. Technol., 1996, 30:2484-2494.
    20 G. Colón, M.C. Hidalgo, J.A. Nav′yo. Photocatalytic deactivation of commercial TiO2 samples during
    simultaneous photoreduction of Cr(VI) and photooxidation of salicylic acid. Journal of Photochemistry and
     87
    
    
    物理电子学博士学位论文 溶胶-凝胶法制备纳米二氧化钛薄膜及其光致特性研究
    Photobiology A: Chemistry, 2001, 138:79-85.
    21 Michael R. Prairie, Lindsey R. Evans, Bertha M. Stange, Sheryi L. Marlinez. An Investigation of TiO2
    Photocatalysis for the Treatment of Water Contaminated with Metals and Organic Chemicals. Environ. Sci.
    Technol., 1993, 27:1776-1782.
    22 G. Colo′n, M. C. Hidalgo, J. A. Navy′o. Influence of Carboxylic Acid on the Photocatalytic Reduction of
    Cr(VI) Using Commercial TiO2. Langmuir, 2001, 17: 7174-7177.
    23 Young Ku, IN-Liang Jung. Photocatalytic Reduction of Cr(VI) in Aqueous Solutions by UV Irradiation with
    the Presence of Titanium Dioxide. Wat. Res., 2001, 35:135-142.
    24 M. Langlet, A. Kim, M. Audier, J. M. Herrmann. Sol-Gel Preparation of Photocatalytic TiO2 Films on Polymer
    Substrates. J. Sol-Gel Scie. & Tech., 2002, 25: 223-234.
    25 Rong Wang, Kazuhito Hashimoto, Akira Fujishima. Light-Induced Amphiphilic Surfaces. Nature, 1997,
    388(31):431-432.
    26 X. Bokhimi, A. Morales, M. Aguilar, J. A. Toledo-Antonio, F. Pedraza. Local Order in Titania Polymorphs.
    International Journal of Hydrgen Energy, 2001, 26:1279-1287.
    27 Ren Da-Sen, Bei Zong-Min, Huang Li, Shen Jie, Cui Xiao-Li, Yang Xi-Liang, Zhang Zhuang-Jian. The Effect
    of Dopant Sb on the Superhydrophilicity and the Microstructure of the Nanoscale TiO2 Thin Film. Acta
    Physico-Chemica Sin., 2004, 17(4):414-416.
    28 Yi Hu, H.-L. Tsai, C.-L. Huang. Effect of brookite phase on the anatase-rutile transition in titania nanoparticles.
    J. the European Ceramic Society, 2003, 23: 691-696.
    29 W. F. Zhang, Y. L. He, M. S. Zhang, Z. Yin, Q Chen. Raman scattering study on anatase TiO2 nanocrystals.
    J. Phys. D: Appl. Phys., 2000, 33:912-916.
    30 G. A.Tompsett, G. A. Bowmaker, R. P. Cooney, J. B. Metson, K. A. Rodgers, J. M.Seakins. The Raman
    Spectrum of Brookite, TiO2 (Pbca, z=8). J. Raman Spectro., 1995, 26:57-62.
    31 D. W. Kim, N. enomoto, Z. Nakagawa. Molecular Dynamic Simulation in Titanium Dioxide Polymorphs:
    Rutile, Brookite and Anatase. J. Am. Ceram. Soc., 1996, 79:1095-.1100.
    32 X. Bokhimi, A. Morales, O. Novaro, T. Lo′pez, O. Chimal, M. Asomoza, R. Go′mez. Effect of Copper
    Precursor on the Stabilization of Titania Phases, and the Optical Properties of Cu/TiO2 Prepared with the Sol-Gel
    Technique. Chem. Mater., 1997, 9:2616-2620.
    33 X. Bokhimi1, O. Novaro, R. D. Gonzalez, T. LoH pez, O. Chimal, A. Asomoza, R. GoH mez. Copper
    Precursor Effect on Reducibility and Titania Phases Concentration of Sol-Gel Cu/TiO2 Catalyst. Journal of Solid
    State Chemistry, 1999, 144: 349-353.
    34 M.Gotic, M.Ivanda, A.Sekulic, S.Music, S. Popovic, A. turkovic, K.Furic. Microstructure of nanosized TiO2
    obtained by sol-gel synthesis. Materials Letters, 1996, 28:225-229.
    35 T. J. Bastow, G. Doran, H. J. Whitfield. Electron Diffraction and 47,49 Ti and 17O NMR Studies of Natural
    and Synthetic Brookite. Chem. Mater., 2000, 12:436-439.
    36 Hengzhong Zhang, Jillian F. Banfield. Understanding Polymorphic Phase Transformation Behavior during
    Growth of Nanocrystalline Aggregates: Insights from TiO2. J. Phys. Chem. B, 2000, 104: 3481-3487.
    37 Zheng Yanqing, Shi Erwei, Cui Suxian, Li Wenjun, Hu Xingfang. Hydrothermal preparation and
    characterization of brookite-type TiO2 nanocrystallites. J. Mater. Sci. Lett., 2000, 19:1445-1448.
    38 Mona P. Moret, Richard Zallen, Dilip P. Vijay, Seshu B. Desu. Brookite-rich titania films made by pulsed laser
    deposition. Thin Solid Films, 2000, 366: 8-10.
    39 任达森, 崔晓莉, 张群, 沃松涛, 杨锡良, 章壮健, 陆明. 溶胶法制备的二氧化硅与二氧化钛复合薄膜的
    性能. 物理化学学报, 2003, 19(9):829-833.
    40 Jiaguo Yu, Xiujian Zhao. Effect of surface treatment on the photocatalytic activity and hydrophilic property of
    the sol-gel derived TiO2 thin films. Materials Research Bulletin, 2001, 36: 97-107.
    41 I-Hsiang Tseng, Wan-Chen Chang, Jeffrey C.S. Wu. Photoreduction of CO2 using sol-gel derived titania and
    titania-supported copper catalysts. Applied Catalysis B: Enviromental, 2002, 37:37-48.
    42 Tianfa Wen, Jianping Gao, Juyun Shen, zhongshen zhou. Preparation and characterization of TiO2 thin films
     88
    
    
    物理电子学博士学位论文 溶胶-凝胶法制备纳米二氧化钛薄膜及其光致特性研究
    by the sol-gel process. J. Mater. Sci., 2001, 36: 5923-5926.
    43 E. Sa′nchez, T. Lo′ pez, R. Go′mez, Bokhimi, A. Morales, O. Novaro. Synthesis and Characterization of
    Sol–Gel Pt/TiO2 Catalyst. J. Solid State Chem., 1996, 122:309-314.
    44 Franscisco Pedraza, Armando Vazquez. Obtention of TiO2 rutile at room temperature through direct oxidation
    of TiCl3. Journal of Physics and Chemistry of Solids, 1999, 60:445-448.
    45 M.Gr?tzel, Heterogeneous Photochemical ElectronTransfer,CRC Press,Baton Rouge,FL,1988.
    46 吴海宝, 董晓. 太阳能-TiO2 非均相光催化氧化染料污水脱色研究.中国环境科学, 1997, 17(1): 93-96.
    47 Marta I. Litter. Heterogeneous photocatalysis Transition metal ions in photocatalytic systems. Applied
    Catalysis B: Environmental, 1999, 23: 89-114.
    48 唐玉朝,胡春,王怡中. TiO2 光催化反应机理及动力学研究进展. 化学进展, 2002, 14(3): 192-199.
    49 H. Liu, X. Z. Li, Y. J. Leng, W. Z. Li. An Alternative Approach to Ascertain the Rate-Determining Steps of
    TiO2 Photoelectrocatalytic Reaction by Electrochemic Impedance Spectroscopy. J. Phys. Chem. B, 2003, 107:
    8988-8996.
    50 Michael R. Hoffmann, Scot T. Martin, Wonyong Choi, Detlef W. Bahnemann. Environmental Applications of
    Semiconductor Photocatalysis. Chem. Rev., 1995, 95: 69-96.
    51 Goslich Roland, Dillert Ralf, Bahnemann Detlef. Solar water treatment: principles and reactors. Water Science
    and Technology, 1997, 35(4):137-148.
    52 Tsutomu Hirakawa, Yoshio Nosaka. Properties of O2 and OH? Formed in TiO2 Aqueous Suspensions by
     ?-
    Photocatalytic Reaction and the Influence of H2O2 and Some Ions. Langmuir, 2002, 18: 3247-3254.
    53 Akira Fujishima, Tata N. Rao, Donald A. Tryk. Titanium dioxide photocatalysis. J. Photochem. & Photobio. C:
    Photochem., 2000, 1: 1-21.
    54 Taha M. El-morsi, Wes R. Budakowski, Alaa S. Abd-el-aziz, Ken J. Friesen. Photocatalytic Degradation of
    1,10-Dichlorodecane in Aqueous Suspensions of TiO2: A Reaction of Adsorbed Chlorinated Alkane with Surface
    Hydroxyl Radicals. Environ. Sci. Technol., 2000, 34:1018-1022.
    55 Lizhong Sun, James R. Bolton. Determination of the Quantum Yield for the Photochemical Generation of
    Hydroxyl Radicals in TiO2 Suspensions. J. Phys. Chem., 1996, 100: 4127-4134.
    56 Peter F. Schwarz, Nicholas J. Turro, Stefan H. Bossmann, Andre M. Braun, Aboel-Magd A. Abdel Wahab,
    Heinz Du1rr. A New Method To Determine the Generation of Hydroxyl Radicals in Illuminated TiO2 Suspensions.
    J. Phys. Chem. B, 1997, 101:7127-7134.
    57 Yun Mao, Christian Schoneich, Klaus-Dieter Asmus. Identification of Organic Acids and Other Intermediates
    in Oxidative Degradation of Chlorinated Ethanes on TiO2, Surfaces en Route to Mineralization. A Combined
    Photocatalytic and Radiation Chemical Study. J. Phys. Chem., 1991, 95: 10080-10089.
    58 Yunfu Sun, Joseph J. Pignatello. Evidence for a surface dual hole-radical mechanism in the titanium dioxide
    photocatalytic oxidation of 2,4-D. Environmental Science & Technology, 1995, 29:2065-2072.
    59 Ali Assabane, Yahia Ait Ichou, Halima Tahiri, Chantal Guillard, Jean-Marie Herrmann. Photocatalytic
    degradation of polycarboxylic benzoic acids in UV-irradiated aqueous suspensions of titania. Identification of
    intermediates and reaction pathway of the photomineralization of trimellitic acid (1,2,4-benzene tricarboxylic acid).
    Applied Catalysis B: Environmental, 2000, 24: 71-87.
    60 Elizabeth R. Carraway, Amy J. Hoffman, Michael R. Hoffmann, Photocatalytic Oxidation of Organic Acids on
    Quantum-Sized Semiconductor Colloids, Environ. Sci. Technol., 1994, 28: 786-793.
    61 Ken-ichi Ishibashi, Akira Fujishima, Toshiya Watanabe, Kazuhito Hashimoto. Quantum yields of active
    oxidative species formed on TiO2 photocatalyst. Journal of Photochemistry and Photobiology A: Chemistry, 2000,
    134: 139-142.
    62 Jae-kyu Yang, Allen P. Davis. Photocatalytic Oxidation of Cu(II)-EDTA with Illuminated TiO2: Kinetics.
    Environ. Sci. Technol., 2000, 34: 3789-3795.
    63 L.-Q. Wang , K.F.Ferris, P.X. Skiba, A.N. Shultz, D.R. Baer, M.H. Engelhard. Interactions of liquid and vapor
    water with stoichiometric and defective TiO2(100) surfaces. Surface Science, 1999, 440: 60-68.
    64 G. Liu, J. A. Rodriguez, Z. Chang, J. Hrbek, Adsorption of Methanethiol on Stoichiometric and Defective
     89
    
    
    物理电子学博士学位论文 溶胶-凝胶法制备纳米二氧化钛薄膜及其光致特性研究
    TiO2(110) Surfaces: A Combined Experimental and Theoretical Study, J. Phys. Chem. B, 2002, 106: 9883-9891.
    65 Jose′ A. Rodriguez, Jan Hrbek, Zhipeng Chang, Joseph Dvorak, Tomas Jirsak, Importance of O vacancies in
    the behavior of oxide surfaces: Adsorption of sulfur on TiO2(110), PHYSICAL REVIEW B, 2002, 65: 235414:
    235425.
    66 Jose′ A. Rodriguez, Gang Liu, Tomas Jirsak, Jan Hrbek, Zhipeng Chang, Joseph Dvorak, Amitesh Maiti.
    Activation of Gold on Titania: Adsorption and Reaction of SO2 on Au/TiO2(110). J. Am. Chem. Soc. (JACS).
    2002, 124: 5242-5250.
    67 Jose′ A. Rodriguez, Tomas Jirsak, Gang Liu, Jan Hrbek, Joseph Dvorak, Amitesh Maiti. Chemistry of NO2 on
    Oxide Surfaces: Formation of NO3 on TiO2(110) and NO2?O Vacancy Interactions. J. Am. Chem. Soc., 2001,
    123: 9597-9605.
    68 T.Watanabe, A. Nakajima, R. Wang, M. Minabe, S. Koizumi, A. Fujishima, K. Hashimoto. Photocatalytic
    activity and photoinduced hydrophilicity of titanium dioxide coated glass. Thin Solid Films, 1999, 351: 260-263.
    69 Michael A. Henderson. Structural Sensitivity in the Dissociation of Water on TiO2 Single-Crystal Surfaces.
    Langmuir, 1996, 12: 5093-5098.
    70 Rong Wang, Kazuhito Hashimoto, Akira Fujishima, Makoto Chikuni, Eiichi Kojima, Atsushi Kitamura,
    Mitsuhide Shimohigoshi, Toshiya Watanabe. Photogeneration of Highly amphiphilic TiO2 Surfaces. Advanced
    Materials, 1998, 10(2):135-138.
    71 Michael A. Henderson. An HREELS and TPD study of water on TiO2(110): The extent of molecular versus
    dissociative adsorption. Surface Science, 1996, 355:151-166.
    72 Michael A. Henderson, William S. Epling, Charles H. F. Peden, Craig L. Perkins. Insights into Photoexcited
    Electron Scavenging Processes on TiO2 Obtained from Studies of the Reaction of O2 with OH Groups Adsorbed at
    Electronic Defects on TiO2(110). J. Phys. Chem. B, 2003, 107: 534-545.
    73 Rong Wang, Nobuyuki Sakai, Akira Fujishima, Toshiya Watanabe, Kazuhito Hashimoto. Studies of Surface
    Wettability conversion on TiO2 Single-Crystal Surfaces. J. Phys. Chem. B, 1999, 103: 2188-2194.
    74 Brian O'Regan, Michael Gr?tzel. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2
    films. Nature, 1991, 353:737-739.
    75 崔晓莉, 江志裕. 纳米 TiO2 薄膜的制备方法. 化学进展, 2002, 14(5): 325-331.
    76 Ladislav Kavan, Tiziana Stoto, Michael Gr?tzel, Donald Fitzmaurice, Valery Shklover. Quantum Size Effects
    in Nanocrystalline Semiconducting TiO2 Layers Prepared by Anodic Oxidative Hydrolysis of TiCl3. J. Phys.
    Chem., 1993, 97: 9493-9498.
    77 罗瑾, 周静, 祖延兵, 林仲华. 电沉积二氧化钛纳米微粒膜的光电化学性能和表面形貌研究. 高等学校
    化学学报, 1998, 19: 1484-1487.
    78 Zhitomirsky. Electrolytic TiO2-RuO2 deposits. J. Mater. Sci., 1999, 34: 2441-2447.
    79 S. Karuppuchamy, K. Nonomura, T. Yoshida, T. Sugiura, H. Minoura. Cathodic electrodeposition of oxide
    semiconductor thin films and their application to dye-sensitized solar cells. Solid State Ionics, 2002, 151: 19-27.
    80 Jerzy Haber, Pawe? Nowak, Pawe? Zú urek. Electrodeposition of Hedgehog-Shaped Gold Crystallites on TiO2
    Surface and Their Behavior in Anodic Oxidation of Oxalic Acid. Langmuir, 2003, 19: 196-199.
    81 S. Hayashi, R. Koh, Y. Ichiyama, K. Yamamoto. Evidence for surface-enhanced Raman scattering on
    nonmetallic surfaces: Copper phthalocyanine molecules on GaP small particles. Phys. Rev. Lett., 1988, 60:
    1085–1088.
    82 V. Gauthier, S. Bourgeois, P. Sibillot, M. Maglione, M. Sacilotti. Growth and characterization of AP-MOCVD
    iron doped titanium dioxide thin films. Thin Solid films, 1999, 340: 175-182.
    83 C. Martinet, V. Paillard, A. Gagnaire, J. Joseph. Deposition of SiO2 and TiO2 thin films by plasma enhanced
    chemical vapor deposition for antireflection coating. J. Non-Crystalline Solids, 1997, 216: 77-82.
    84 P. Babelon, A.S. Dequiedt, H. Mostéfa-Sba, S. Bourgeois, P. Sibillot, M. Sacilotti. Sem and XPS studies of
    titanium dioxide thin films grown by MOCVD. Thin Solid Films, 1998, 322: 63-67.
    85 E. Halary, G. Benvenuti, F. Wagner, P. Hoffmann. Light induced chemical vapor deposition of titanium oxide
    thin films at room temperature. Applied Surface Science, 2000, 154-155:146-151.
     90
    
    
    物理电子学博士学位论文 溶胶-凝胶法制备纳米二氧化钛薄膜及其光致特性研究
    86 魏培海, 姚发业, 王娅娟. OCVD 法制备 TiO2 薄膜的光电化学性质研究. 山东师大学报(自然科学版),
    2000, 16(2): 151-153.
    87 李文漪, 李文军, 武正簧, 赵君芙, 孙彦平, 蔡珣. TiO2 薄膜的光催化特性. 上海交通大学学报, 2002, 36:
    1-4.
    88 郭清萍, 武正簧, 赵君芙, 武正榜, 李文漪. CVD法TiO2薄膜的制备条件及光学性质的研究. 太原理工大
    学学报, 1998, 29(3): 240-243.
    89 R. Rossetti, R. Hull, J. M. Gibson, L. E. Brus. Excited electronic states and optical spectra of ZnS and CdS
    crystallites in the 15 to 50 ? size range: Evolution from molecular to bulk semiconducting properties. The Journal
    of Chemical Physics, 1985, 82: 552-559.
    90 柳闽生, 杨迈之, 蔡生民. 半导体纳米粒子的基本性质及光化学特性[J]. 化学通报, 1997, 1: 20-24.
    91 董昊, 张永熙, 杨锡良, 沈杰, 陈华仙, 蒋益明, 顾元壮, 章壮健. 直流反应磁控溅射制备二氧化钛薄膜
    的光催化性研究. 真空科学与技术, 2000, 20(4): 252-260.
    92 Satoshi Takeda, Susumu Suzuki, Hidefumi Odaka, Hideo Hosono. Photocatalytic TiO2 Thin Film Deposited
    onto Glass bu DC Magnetron Sputtering. Thin Solid Films, 2001, 392: 338-344.
    93 S.K. Zheng, T.M.Wang, G. Xiang, C. Wang. Photocatalytic activity of nanostructured TiO2 thin films prepared
    by dc Magnetron sputtering method. Vacuum, 2001, 62: 361-366.
    94 Y.X. Leng, J.Y. Chen, P. Yang, H. Sun, N. Huang. Structure and properties of passivating titanium oxide films
    fabricated by DC plasma oxidation. Surface and Coatings Technology, 2003, 166: 176-182.
    95 沈杰, 沃松涛, 蔡臻炜, 崔晓莉, 杨锡良, 章壮健. 射频磁控共溅射制备超亲水性 TiO2/SiO2复合薄膜, 真
    空科学与技术, 2004 年(印刷中)。
    96 Z.W. Fu, M.F.Zhou, Q.Z. Qin. I-V and C-V properties of TiO2 thin film vt pulsed-laser reactive deposition,
    Chinese Science Bulletin, 1998, 43(16): 1344-1348.
    97 傅正文, 周鸣飞, 张胜坤, 陈良尧, 秦启宗. 脉冲激光沉积TiO2薄膜的I_V和C_V. 科学通报, 1998, 43(9):
    936-940.
    98 傅正文, 孔继烈, 秦启宗, 田中群. 脉冲激光沉积纳米 TiO2 薄膜电极的现场光电化学. 中国科学 B 辑,
    1999, 29(6): 546-552.
    99 唐玉朝, 钱振型, 钱中良, 胡春, 王怡中. TiO2 薄膜光催化剂的制备及其活性. 环境科学学报, 2002, 22(3):
    393-396.
    100 张彭义, 余刚, 蒋展鹏, 半导体光催化剂及其改性技术进展, 环境科学进展, 1997,5: 1-10.
    101 Y. Paz, Z. Luo, L. Rabenberg, A. Heller. Photooxidative self-cleaning transparent titanium dioxide films on
    glass, J. Mater. Res. (1995), 10:2842-2847.
    102 陈佾. 二氧化钛薄膜及杀菌陶瓷的制备和特性研究, 复旦大学硕士论文, 2002.
    103 Nobuaki Negishi, Koji Takeuchi. Preparation of TiO2 Thin Film Photocatalysts by Dip Coating Using a
    Highly Viscous Solvent, J. Sol-Gel Sci. Tech., 2001, 22: 23-31.
    104 Xue Ping Li, Jing Bo Zhang, Fen Yin, Yuan Lin, Xu Rui Xiao, Preparation and Photocatalytic
    Characterization of Nanoporous TiO2, Chinese Chemical Letters, 2002, 13(9): 891-892.
    105 Liaoying Zheng, Tingxian Xu, Guorong Li, Qinrui Yin. Influence of thickness on Oxygen-Sensing Properties
    of TiO2 Thin Films on Al2O3, Jpn. J. Appl. Phys., 2002, 41: 4655-4658.
    106 Shinri Sato, Kazuhiro Ueda, Yasuhiro Kawasaki, Ryuhei Nakamura. In Situ IR Observation of Surface
    Species during the Photocatalytic Decomposition of Acetic Acid over TiO2 Films. J. Phys. Chem. B, 2002, 106:
    9054-9058.
    107 Enrico Traversa, Maria Luisa di Vona, Patrizia Nunziante, Silvia Licoccia, Takeshi Sasaki, Naoto Koshizaki.
    Sol-Gel Preparation and Characterization of Ag-TiO2 Nanocomposite Thin Films. Journal of Sol-Gel Science and
    Technology, 2000, 19: 733-736.
    108 Isamu Moriguchi, Yoshihiro Tsujigo, Yasutake Teraoka¤, Shuichi Kagawa. Two-Dimensional Sol-Gel
    Synthesis of Ultrathin Zirconia, Hetero-Layered Titania/Zirconia Films. Journal of Sol-Gel Science and
    Technology, 2000, 19: 227-230.
    109 任达森, 崔晓莉, 张群, 杨锡良, 章壮健. 常温下纳米二氧化钛薄膜的制备与其超亲水性研究. 真空科
     91
    
    
    物理电子学博士学位论文 溶胶-凝胶法制备纳米二氧化钛薄膜及其光致特性研究
    学与技术, 2002, 22(6): 421-424.
    110 Yoshitake Masuda, Tsutomu Sugiyama, Kunhito Koumoto. Micropatterning of anatase TiO2 thin films from
    an aqueous solution by a site-selective immersion method. J. Mater. Chem., 2002, 12: 2643-2647.
    111 Ming-Kwei Lee, Jung-Jie Huang, Chung-Min Shih, Chung-Chun Cheng. Properties of TiO2 Thin Films on
    InP Substrate Prepared by Liquid Phase Deposition. Jpn. J. Appl. Phys., 2002, 41: 4689-4690.
    112 Ren-De Sun, Akira Nakajima, Akira Fujishima, Toshiya Watanabe, Kazuhito Hashimoto. Photoinduced
    Surface Wettability Conversion of ZnO and TiO2 Thin Films. J. Phys. Chem. B., 2001, 105(10):1984-1990.
    113 Yoshihisa Ohko, Tetsu Tatsuma, Akira Fujishima. Characterization of TiO2 Photocatalysis in the Gas Phase
    as a Photoelectrochemical System: Behavior of Salt-Modified Systems. J. Phys. Chem. B, 2001, 105: 10016
    -10021.
    114 Y.Djaoued, Simona Badilescu, P.V.Ashrit, D.Bersani, P.P.Lottici, R.Brüning, Low Temperature Sol-Gel
    Preparation of Nanocrystalline TiO2 Thin Films. Journal of Sol-Gel Science and Technology, 2002, 24:
    247-254.
    115 赵文宽, 方佑龄. 光催化活性 TiO2 薄膜的低温制备. 物理化学学报, 2002, 18(4): 368-371.
    116 Dasen Ren, Xiaoli Cui, Jie Shen, Qun Zhang, Xiliang Yang, Zhuangjian Zhang, Lu Ming. Study on the
    superhydrophilicity of the SiO2-TiO2 thin films prepared by sol-gel method at room temperature. J. Sol-Gel Sci.
    Techno. 2004, 29: 131-136.
    117 沈杰, 董昊, 张永熙 等. 溶胶-凝胶法制备二氧化钛薄膜的亲水性研究. 真空科学与技术, 2000, 20(6):
    385-389.
    118 崔晓莉, 沈杰, 任达森, 杨锡良, 章壮健. 纳米二氧化钛薄膜的热致亲水性与光致亲水性机理. 化学通
    报, 2003, 3: 203-206.
    119 Y. Paz, A. Heller. Photo-oxidatively self-cleaning transparent titanium dioxide films on soda lime glass: The
    deleterious effect of sodium contamination and its prevention. J. Mater. Res., 1997, 12: 2759-2762.
    120 Jiaguo Yu, Xiujian Zhao. Effect of Substrates on the Photocatalytic Activity of Nanometer TiO2 Thin Films.
    Materials Research Bulletin, 2000, 35: 1293-1301.
    121 Xiaoping Wang, Yun Yu, Xingfang Hu, Lian Gao. Hydrophilicity of TiO2 Films Prepared by Liquid Phase
    Deposition. Thin solid Films, 2000, 371: 148-152.
    122 F. B.Li, X. Z.Li. Photocatalytic properties of gold/gold ion-modified titanium dioxide for wastewater
    treatment. Applied Catalysis A: General, 2002, 228: 15-27.
    123 崔晓莉, 江志裕. 紫外光照下纳米 TiO2 电极的电化学行为, 物理化学学报, 2002, 18(11): 1014-1017.
    124 管自生, 马颖, 曹亚安, 纪学海, 姚建年. 钛凝胶的光致变色和电致变色特性. 物理化学学报, 2000,
    16(1): 5- 8.
    125 J.-M. Pan, B.L. Maschhoff, U. Diebold, T.E.Madey. Ineraction of water, Oxygen, and Hydrogen with
    TiO2(110) Surfaces Having Different Defect Densities. J. Vac. Sci. Technol.A, 1992, 10: 2470-2476.
    126 M. Miyauchi, A. Nakajima, T. Watanabe, K. Hashimoto. PHotocatalysis and Photoinduced Hydrophilicity of
    Various Metal Oxide Thin Films. Chem. Mater. 2002, 14: 2812-2816.
    127 陈佾, 沈杰, 徐伟, 严学俭, 章壮健, 华中一. 溶胶凝胶法制备掺氟二氧化硅低介电常数薄膜. 真空科
    学与技术, 2002, 22(1): 10-14.
    128 Tammy P. Chou, Guozhong Cao. Adhesion of Sol-Gel-Derived Organic-Inorganic Hybrid Coatings on
    Polyester, J. Sol-Gel Sci. Technol., 2003, 27:31-41.
    129 F. B. Li, X.Z. Li. The enhancement of photodegradation efficiency using Pt-TiO2 catalyst. Chemosphere,
    2002, 48: 1103-1111.
    130 Valeriy Sukharev, Aaron Wold, Yu-ming Gao, Kirby Dwight. Photoassisted Decomposition of Salicylic Acid
    on TiO2 and Pd/TiO2 Films. J. Solid State Chemistry, 1995, 119: 339-343.
    131 H. Cui, K. Dwight, S. Soled, A. Wold. Surface Acidity and Photocatalytic Activity of Nb2O5/TiO2
    Photocatalysts. Journal of Solid State Chemistry, 1995, 115: 187-191.
    132 Janet M. Kesselman, Gary A. Shreve, Michael R. Hoffmann, Nathan S. Lewis. Flux-Matching Conditions at
    TiO2 Photoelectrodes: Is Interfacial Electron Transfer to O2 Rate-Limiting in the TiO2-Catalyzed Photochemical
     92
    
    
    物理电子学博士学位论文 溶胶-凝胶法制备纳米二氧化钛薄膜及其光致特性研究
    Degradation of Organics. J. Phys. Chem., 1994, 98: 13385-13395.
    133 Reza Dabestani, Xuelin Wang, Allen J. Bard, Alan Campion, Marye Anne Fox, Stephen E. Webber, J. M.
    White. Photoinduced oxidation of bromide to bromine on irradiated platinized titanium dioxide powders and
    platinized titanium dioxide particles supported on Nafion films. J. Phys. Chem., 1986, 90: 2729–2732.
    134 Takeda, Kazuhiko; Fujiwara, Kitao. Characteristics on the determination of dissolved organic nitrogen
    compounds in natural waters using titanium dioxide and platinized titanium dioxide mediated photocatalytic
    degradation. Water Research, 1996, 30: 323-330.
    135 Akira Yamakata, Taka-aki Ishibashi, Hiroshi Onishi. Electron- and Hole-Capture Reactions on Pt/TiO2
    Photocatalyst Exposed to Methanol Vapor Studied with Time-Resolved Infrared Absorption spectroscopy. J. Phys.
    Chem. B, 2002, 106: 9122-9125.
    136 M. Catherine Blount, Jason A. Buchhlz, John L. Falconer. Photocatalytic Decomposition of Aliphatic
    Alcohols, Acids, and Esters, J. Cataly., 2001, 197:303-314.
    137 Ajit Dandekar, M. Albert Vannice. Crotonaldehyde Hydrogenation on Pt/TiO2 amd Ni/TiO2 SMSI Catalysts.
    J. Cataly., 1999, 183: 344-354.
    138 Aalbert Zwijnenburg, Anton Goossens, Wim G. Sloof, Menno W. J. Crajé, Adri M. Van der Kraan, L.Jos de
    Jongh, Michiel Makkee, Jacob A. Moulijn. XPS and M?ssbauer characterization of Au/TiO2 Propene Epoxidation
    Catalysts. J. Phys. Chem. B, 2002, 106: 9853-9862.
    139 Jose′ A. Rodriguez, Gang Liu, Tomas Jirsak, Jan Hrbek, Zhipeng Chang, Joseph Dvorak, Amitesh Maiti.
    Activation of Gold on Titania: Adsorption and Reaction of SO2 on Au/TiO2(110). J. AM. CHEM. SOC., 2002, 124:
    5242-5250.
    140 Hiroaki Tada, Fumiaki Suzuki, Seishiro Ito, Tomoki Akita, Koji Tanaka, Tetsuro Kawahara, Hisayoshi
    Kobayashi. Au-Core/Pt-Shell Bimetallic Cluster-Loaded TiO2. 1. Adsorption of Organosulfur Compound. J. Phys.
    Chem. B, 2002, 106: 8714-8720.
    141 James D. Stiehl, Tae S. Kim, Sean M. McClure, C. Buddie Mullins. Evidence for Molecularly Chemisorbed
    Oxygen on TiO2 Supported Gold Nanoclusters and Au(111). J. AM. CHEM. SOC., 2004, 126: 1606-1607.
    142 Tetsuro Soejima, Hiroaki Tada, Tetsuro Kawahara, Seishiro Ito. Formation of Au Nanoclusters on TiO2
    Surfaces by a Two-Step Method Consisting of Au(III)-Complex Chemisorption and Its Photoreduction. Langmuir,
    2002, 18: 4191-4194.
    143 Flora Boccuzzi, Anna Chiorino. FTIR Study of CO Oxidation on Au/TiO2 at 90 K and Room Temperature.
    An Insight into the Nature of the Reaction Centers. J. Phys. Chem. B, 2000, 104: 5414-5416.
    144 Vaidyanathan Subramanian, Eduardo E. Wolf, Prashant V. Kamat. Influence of Metal/Metal Ion
    Concentration on the Photocatalytic Activity of TiO2-Au Composite Nanoparticles. Langmuir, 2003, 19: 469-474 .
    145 Thomas Bu1rgi, Alfons Baiker. In Situ Infrared Spectroscopy of Catalytic Solid-Liquid Interfaces Using
    Phase-Sensitive Detection: Enantioselective Hydrogenation of a Pyrone over Pd/TiO2. J. Phys. Chem. B, 2002,
    106: 10649-10658.
    146 Kohki Ebitani, Yoko Fujie, Kiyotomi Kaneda. Immobilization of a Ligand-Preserved Giant Palladium Cluster
    on a Metal Oxide Surface and Its Nobel Heterogeneous Catalysis for Oxidation of Allylic Alcohols in the Presence
    of Molecular Oxygen. Langmuir, 1999, 15: 3557-3562 .
    147 Koki Ito, Tadahiro Tomino, Masa-aki Ohshima, Hideki Kurokawa, Kazuo Sugiyama, Hiroshi Miura. Sulfur
    tolerance of Pd/Al2O3 and Pd/TiO2 in naphthalene hydrogenation in the presence of dimethyldisulfide. Applied
    Catalysis A: General , 2003, 249: 19-26.
    148 M. Pal, T. Sasaki, N. Koshizaki. Preparation of Pd/TiO2 Nanocomposite by Magnetron Sputtering. Scripta
    mater., 2001, 44: 1817-1820 .
    149 Hiroaki Tada, Kazuaki Teranishi, Seishiro Ito, Hisayoshi Kobayashi, Susumu Kitagawa. H2 Generation by
    Cycling Dark Adsorption and Successive Photoinduced Desorption of 2-Mercaptopyridine on/from
    Ag-Core/Pt-Shell Nanoparticles Loaded on TiO2. Langmuir, 2000, 16: 6077-6080.
    150 Hiroaki Tada, Kazuaki Teranishi, Seishiro Ito. Additive Effect of Sacrificial Electron Donors on Ag/TiO2
    Photocatalytic Reduction of Bis(2-dipyridyl)disulfide to 2-Mercaptopyridine in Aqueous Media. Langmuir, 1999,
     93
    
    
    物理电子学博士学位论文 溶胶-凝胶法制备纳米二氧化钛薄膜及其光致特性研究
    15: 7084-7087.
    151 Hiroaki Tada, Kazuaki Teranishi, Yo-ichi Inubushi, Seishiro Ito. Ag Nanocluster Loading Effect on TiO2
    Photocatalytic Reduction of Bis(2-dipyridyl)disulfide to 2-Mercaptopyridine by H2O, Langmuir, 2000, 16: 3304
    -3309.
    152 Elias Stathatos, Panagiotis Lianos, Polykarpos Falaras, A. Siokou. Photocatalytically Deposited Silver
    Nanoparticles on Mesoporous TiO2 Films. Langmuir, 2000, 16: 2398-2400.
    153 Jacques E. Moser, Dimitrios Noukakis, Udo Bach, Yasuhiro Tachibana, David R. Klug, James R. Durrant,
    Robin Humphry-Baker, Michael Gra¨tzel. Comment on “Measurement of Ultrafast Photoinduced Electron
    Transfer from Chemically Anchored Ru-Dye Molecules into Empty Electronic States in a Colloidal Anatase TiO2
    Film”. J. Phys. Chem. B, 1998, 102: 3649-3650.
    154 Christophe Bauer, Gerrit Boschloo, Emad Mukhtar, Anders Hagfeldt. Interfacial Electron-Transfer Dynamics
    in Ru(tcterpy)(NCS)3-Sensitized TiO2 Nanocrystalline Solar Cells. J. Phys. Chem. B, 2002, 106, 12693 -12704.
    155 Thomas Hannappel, Carsten Zimmermann, Britta Meissner, Bernd Burfeindt, Winfried Storck, Frank Willig.
    Reply to Comment on “Measurement of Ultrafast Photoinduced Electron Transfer from Chemically Anchored
    Ru-Dye Molecules into Empty Electronic States in a Colloidal Anatase TiO2 Film”. J. Phys. Chem. B, 1998, 102:
    3651-3652.
    156 Stefan H. Bossmann, Claudia Turro, Claudia Schnabel, Megh Raj Pokhrel, Leon M. Payawan, Jr., Bodo
    Baumeister, Michael Wo1rner. Ru(bpy)3 /TiO2-Codoped Zeolites: Synthesis, Characterization, and the Role of
     2+
    TiO2 in Electron Transfer Photocatalysis. J. Phys. Chem. B, 2001, 105: 5374-5382.
    157 Y. V. Zubavichus, Yu. L. Slovokhotov, M. K. Nazeeruddin, S. M. Zakeeruddin, M. Gra¨ tzel, V. Shklover.
    Structural Characterization of Solar Cell Prototypes Based on Nano- crystalline TiO2 Anatase Sensitized with Ru
    Complexes. X-ray Diffraction, XPS, and XAFS Spectroscopy Study. Chem. Mater., 2002, 14: 3556-3563.
    158 Nicole Jaffrezic-Renault, Pierre Pichat, Alain Foissy, Rene Mercier. Study of the effect of deposited platinum
    particles on the surface charge of titania aqueous suspensions by potentiometry, electrophoresis, and labeled-ion
    adsorption. J. Phys. Chem., 1986, 90: 2733-2738.
    159 L.E. Briand, R. D. Bonetto, M.A. Sanchez, H.J. Thomas. Structural Modelling of Coprecipitated VTiO
    Catalysts. Catalysis Today, 1996, 32: 205-213.
    160 Wonyong Choi, Andreas Termin, Michael R. Hoffmann. The Role of Metal Ion Dopants in Quantum-Sized
    TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics. J. Phys. Chem., 1994, 98:
    13669-13679.
    161 Anpo Masakazu. Photocatalysis on titanium oxide catalysts: Approaches in achieving highly efficient
    reactions and realizing the use of visible light. Catalysis surveys from Japan, 1997, 1:169-179.
    162 Jun Lin, Jimmy C. Yu, D. Lo, S. K. Lam. Photocatalytic Activity of Rutile Ti1-XSnxO2 Solid Solutions. J.
    Catal., 1999, 183: 368-372.
    163 N. Perkas, O. Palchik, I. Brukental, I. Nowik, Y. Gofer, Y.Koltypin, A.Gedanken. A Mesoporous
    Iron-Titanium Oxide Composite Prepared Sonochemically. J. Phys. Chem. B, 2003, 107: 8772-8778.
    164 Teruhisa Ohno, Shinobu Izumi, Kan Fujihara, Yuji Masaki, Michio Matsumura. Vanishing of
    Current-Doubling Effect in Photooxidation of 2-Propanol on TiO2 in Solutions Containing Fe(III) Ions. J. Phys.
    Chem. B, 2000, 104: 6801-6803.
    165 Michael Gratzel, Russell F. Howe. Electron Paramagnetic Resonance Studies of Doped TiO2 Colloids. J. Phys.
    Chem., 1990, 94: 2566-2572.
    166 Regien G. Stomphorst, Gert van der Zwan, Marc A. M. J. van Zandvoort, Alexander B. Sieval, Han Zuilhof,
    Frank J. Vergeldt, Tjeerd J. Schaafsma. Spectroscopic Study of Erythrosin B in PVA Films. J. Phys. Chem. A,
    2001, 105: 4235-4240.
    167 Brian Patrick, Prashant V. Kamat. Photoelectrochemistry in semiconductor particulate systems. 17.
    Photosensitization of large-bandgap semiconductors: charge injection from triplet excited thionine into zinc oxide
    colloids. J. Phys. Chem., 1992, 96(3): 1423-1428.
    168 Shuhua Zhou, Ajay K. Ray. Kinetic Studies for Photocatalytic Degradation of Eosin B on a Thin Film of
     94
    
    
    物理电子学博士学位论文 溶胶-凝胶法制备纳米二氧化钛薄膜及其光致特性研究
    Titanium Dioxide, Ind. Eng. Chem. Res., 2003,42: 6020-6033.
    169 Serge Pelet, Michael Gra1tzel, Jacques-E. Moser. Femtosecond Dynamics of Interfacial and Intermolecular
    Electron Transfer at Eosin-Sensitized Metal Oxide Nanoparticles. J. Phys. Chem. B, 2003, 107: 3215-3224.
    170 Vadim Kurshev, Larry Kevan. Comparison of Photoelectron Transfer between Ru(bpy)3 and MV2+ in TiO2
     2+
    and SnO2 Colloids and Dihexadecyl Phosphate Vesicles. Langmuir, 1997, 13: 225-228.
    171 K. Vinodgopal, Xiao Hua, Robin L. Dahlgren, A. G. Lappin, L. K. Patterson, Prashant V. Kama.
    Photochemistry of R~(bpy)2(dcbpy)2+ on A12O3 and TiO2 Surfaces. An Insight into the Mechanism of
    Photosensitization. J. Phys. Chem., 1995, 99(27): 10883-10889.
    172 Ling Zang, Michael A. J. Rodgers. Diffusion-Controlled Charge Transfer from Excited Ru(bpy)3 into 2+
    Nanosized TiO2 Colloids Stabilized with EDTA. J. Phys. Chem. B, 2000, 104 (3): 468 -474.
    173 Andreas Kay, Michael Graetzel. Artificial photosynthesis. 1. Photosensitization of titania solar cells with
    chlorophyll derivatives and related natural porphyrins, J. Phys. Chem., 1993, 97(23): 6272-6277.
    174 Jeannette Wienke Tjeerd J. Schaafsma, Albert Goossens. Visible Light Sensitization of Titanium Dioxide with
    Self-Organized Porphyrins: Organic P-I-N Solar Cells. J. Phys. Chem. B, 1999, 103 (14): 2702-2708.
    175 Ana F. Nogueira, Luis Fernando O. Furtado, André L. B. Formiga, Marcelo Nakamura, Koiti Araki, Henrique
    E. Toma. Sensitization of TiO2 by Supramolecules Containing Zinc Porphyrins and Ruthenium-Polypyridyl
    Complexes. Inorg. Chem., 2004, 43 (2): 396-398.
    176 Andrew P. Hong, Detlef W. Bahnemann, Michael R. Hoffmann. Cobalt( I I) Tetrasulfophthalocyanine on
    Titanium Dioxide. 2. Kinetics and Mechanisms of the Photocatalytic Oxidation of Aqueous Sulfur Dioxide. J.
    Phys. Chem., 1987, 91: 6245-6251.
    177 Lubomir Spanhel, Horst Weller, Arnim Henglein. Photochemistry of Semiconductor Colloids. 22. Electron
    Injection from Illuminated CdS into Attached TiO2 and ZnO Particles. J. Am. Chem. Soc., 1987, 109: 6632-6635.
    178 R. Vogel, P. Hoyer, H. Weller. Quantum-Sized PbS, CdS, AgzS, Sb&, and Bi& Particles as Sensitizers for
    Various Nanoporous Wide- Bandgap Semiconductors. J. Phys. Chem., 1994, 98: 3183-3188.
    179 K. R. Gopidas, Maria Bohorquez, Prashant V. Kamat. Photophysical and Photochemical Aspects of Coupled
    Semiconductors.Charge-Transfer Processes In Colloidal CdS-TiO, and CdS-Ag I Systems. J. Phys. Chem., 1990,
    94: 6435-6440.
    180 M.E. Rincón, A. Jiménez, A. Orihuelá, G. Martínez. Thermal treatment effects in the photovoltaic conversion
    of spray-painted TiO2 coatings sensitized by chemically deposited CdSe thin films. Solar Energy Materials & Solar
    Cells, 2001, 70: 163-173.
    181 Idriss Bedjat and Prashant V. Kamat. Capped Semiconductor Colloids Synthesis and Photoelectrochemical
    Behavior of TiO2 -Capped SnO2 Nanocrystallites. J. Phys. Chem., 1995, 99: 9182-9188.
    182 Yaan Cao, Xintong Zhang, Wensheng Yang, Hui Du, Yubai Bai, Tiejin Li, Jiannian Yao. A Bicomponent
    TiO2/SnO2 Particulate Film for Photocatalysis. Chem. Mater., 2000, 12: 3445-3448.
    183 K.Vinodgopal, P. V. Kamat. Enhanced Rates of Photocatalytic Degradation of an Azo Dye Using SnO2/TiO2
    Coupled Semiconductor Thin Films. Environmental Science and Technology, 1995, 29:841-845.
    184 Hiroaki Tada, Akihiko Hattori, Yoshifumi Tokihisa, Kiyohisa Imai, Noboru Tohge, Seishiro Ito, A
    Patterned-TiO2/SnO2 Bilayer Type Photocatalyst. J. Phys. Chem. B, 2000, 104(19): 4585-4587.
    185 X.Z. Li, F.B. Li, C.L. Yang, W. K. Ge. Photocatalytic Activity of WOx-TiO2 under Visible Light Irradiation. J.
    Photochem. Photobio. A:Chem., 2001, 141:209-217.
    186 Fuxing Ye and Akira Ohmori. The Photocatalytic Activity and Photo-absorption of Plasma Aprayed
    TiO2-Fe3O4 Binary Oxide Coatings. Surface and Coatings Technology, 2002, 160: 62-67.
    187 Natalie Smirnova, Anna Eremenko, Olga Rusina, WerneR Hopp, Lubomir Spanhel. Synthesis and
    Characterization of Photocatalytic Porous Fe3+/TiO2 Layers on Glass. Journal of Sol-Gel Science and Technology,
    2001, 21: 109-113.
    188 Claudia Gheorghe, Becky Gee, Solid-State Vanadium-51 NMR Studies of Supported V2O5-WO3/TiO2
    Catalysts, Chem. Mater., 2000, 12: 682-685.
    189 Hideki Kato, Akihiko Kudo. Visible-Light-Response and Photocatalytic Activities of TiO2 and SrTiO3
     95
    
    
    物理电子学博士学位论文 溶胶-凝胶法制备纳米二氧化钛薄膜及其光致特性研究
    Photocatalysts Codoped with Antimony and Chromium. J. Phys. Chem. B, 2002, 106: 5029-5034.
    190 Song-Zhu Chu, Satoru Inoue, Kenji Wada, Di Li, Hajime Haneda, Saatoshi Awatsu. Highly Porous
    (TiO2-SiO2-TeO2)/Al2O3/TiO2 Composite Nanostructures on Glass with Enhanced Photocatalysis Fabricated by
    Anodization and Sol-Gel Process. J. Phys. Chem.. B, 2003, 107: 6568-6589.
    191 Nobuyuki Sakai, Akira Fujishima, Toshiya Watanabe, Kazuhito Hashimoto. Enhancement of the
    Photoinduced Hydrophilic conversion Rate of TiO2 Film Electrode Surfaces by Anodic Polarization. J .Phys.
    Chem. B, 2001, 105: 3023-3026.
    192 Tatsuo Shibata, Hiroshi Irie, Kazuhito Hashimoto. Enhancedment of Photoinduced Highly Hydrophilic
    Conversion on TiO2 Thin Films by Introducing Tensile Stress. J. Phys. Chem. B, 2003, 107: 10696-10698.
    193 于书平, 李新军, 钟石, 郭晨. 华南理工大学学报(自然科学版), 2001, 29:10-12.
    194 余家国, 赵修建, 林立, 韩建军, 赵青南. 超亲水 TiO2/SiO2 复合薄膜的制备与表征, 无机材料学报,
    2001, 16: 529-534.
    195 张立德, 牟季美, 著. 纳米材料学, 沈阳:辽宁科技出版社, 1994.
    196 G. A. Tompsett , G. A. Bowmaker, R. P. Cooney, J. B. Metson, K. A. Rodgers, J. M. Seakins. The Raman
    Spectrum of Brookite, TiO2(Pbca, Z=8). J. Raman Spectro, 1995, 26: 57-62.
    197 J. C. Parker, R. W. Siegel. Calibration of the Raman spectrum to the oxygen stoichiometry of nanophase TiO2.
    Appl. Phys. Lett., 1990, 57(9): 943-945.
    198 Zongmin Bei, Dasen Ren, Xiaoli Cui, Jie Shen, Xiliang Yang, Zhuangjian Zhang. Photoelectrochemical
    Properties and Crystalline Structure Change of Sb Doped TiO2 Thin Films Prepared by Sol-Gel Method. J. Mater.
    Res., 2004 (accepted).
    199 Anushree Roy, M. Komatsu, K. Matsuishi, S. Onari. Raman Spectroscopic Studies on Sb Nanoparticles in
    SiO2 Matrix Prepared by rf-Cosputtering technique. J. Phys. Chem Solids, 1997, 58(5): 741-747.
    200 M. O. Guerreto-Perez, J. L. G. Fierro, M. A. Vicente, M. A. Banares. Effect of Sb/V Ratio and of Sb+V
    Coverage on the Molecular Structure and Activity of Alumina-Supported Sb–V–O Catalysts for the
    Ammoxidation of Propane to Acrylonitrile. J. Catal., 2002, 206, 339-348.
    201 K.Hinrichs, J.R.Power, N. Esser, W. Richter. Raman Spectroscopy of Surface Phonons on Sb-terminated
    Si(001). Applied Surface Science, 2000, 166: 185-189.
    202 X. L. Cui, D. S. Ren, S. T. Wo, J. Shen, X. L. Yang, Z. J. Zhang. Two Photoelectrochemical Processes for
    TiO2 Electrode under UV Illumination. Chin. J. Chem., 2003,21(8): 1001-1004.
    203 崔晓莉, 沃松涛, 任达森, 沈杰, 杨锡良, 章壮健. 不同波长紫外光照射下纳米 TiO2 薄膜的光致亲水性.
    化学学报, 2003, 61(11): 1872-1876。
    204 Xiaoli Cui, Zhiyu Jiang. Cyclic Voltammetric and Ac Impendance Behavior of TiO2 Electrodes under UV
    Illumination. J. Chinese Chemical Society, 2003, 50:1003-1008.
    205 藤岛 昭, 相泽益男,著, 陈震, 姚建年, 译. 电化学测定方法, 北京:北京大学出版社, 1995: P147~P165.
    206 D.D.N. Singh, T.B.Singh, B. Gaur. The Role of Metal Cations in Improving the Inhibitive Performance of
    Hexamine on the Corrosion of Steel in Hydrochloric Acid Solution. Corrosion Science, 1995, 37(6): 1005-1019.
    207 Mohammad Abdullah, Gary K. C. Low, Ralph W. Matthews. Effects of common inorganic anions on rates of
    photocatalytic oxidation of organic carbon over illuminated titanium dioxide. J. Phys. Chem., 1990, 94: 6820
    -6825.
    208 R. Asahi, T. Morikawa, T.Ohwaki, K.Aoki, Y.Taga. Visible-Light Photocatalysis in nitrogen-Doped Titanium
    oxides. Science, 2001, 293: 269-271.
    209 Shahed U. M. Khan, Mofareh Al-Shahry, William B. Ingler Jr. Efficient Photochemical Water Splitting by a
    Chemically Modified n-TiO2. Science, 2002, 297:2243-2245.
    210 James L. Gole, John D. Stout, Clemens Burda, Yongbing Lou, Xiaobo Chen. Highly Efficient Formation of
    Visible Light Tunable TiO2-xNx Photocatalysts and Their Transformation at the Nanoscale. J. Phys. Chem. B, 2004,
    108: 1230-1240.
    211 Jiaguo Yu, Jimmy C Yu, Bei Cheng, S. K. Hark, Kwansai Iu. The effect of F--doping and temperature on the
    structural and textural evolution of mesoporous TiO2 powders. J. Solid State Chem., 2003, 174: 372-380.
     96
    
    
    物理电子学博士学位论文 溶胶-凝胶法制备纳米二氧化钛薄膜及其光致特性研究
    212 Jeosadaque J. Sene, Walter A. Zeltner, Marc A. Anderson. Fundamental Photoelectrocatalytic and
    Electrophoretic Mobility Studies of TiO2 and V-Doped TiO2 Thin-Film Electrode Materials. J. Phys. Chem. B,
    2003, 107: 1597-1603.
    213 Gaoling Zhao, Gaorong Han , Masahide Takahashi , Toshinobu Yoko. Photoelectrochemical properties of
    sol–gel-derived Ti VO solid solution film photoelectrodes. Thin Solid Films, 2002, 410: 14-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700