TiO_2纳米晶的表面活性剂修饰及其超亲水性薄膜的设计合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,TiO_2纳米材料由于具有比表面积大、紫外光吸收性能好、氧化还原性强、化学性质稳定、无毒等独特的性能,在光电转换、多相光催化以及防雾自清洁材料等许多领域引起广泛关注。但是,纳米TiO_2本身的强极性和高表面能使其不易分散在非极性介质中,且在极性介质中又易团聚,以至于在很大程度上影响其性能发挥以及应用。目前纳米TiO_2薄膜主要依赖紫外光照来实现超亲水性,而从薄膜表面结构入手设计合成非紫外光照超亲水性纳米TiO_2膜是非常有意义的。基于以上陈述,本论文开展了TiO_2纳米晶的阴、阳离子表面活性剂修饰及进一步设计合成超亲水性薄膜的研究。
     本论文利用阴离子表面活性剂十二烷基苯磺酸钠(DBS)和阳离子表面活性剂十六烷基三甲基溴化铵(CTAB)分别对溶胶-水热法合成的TiO_2纳米晶进行修饰,重点考察了表面修饰的适宜条件,并通过FT-IR、XRD、Raman、TEM、Uv-Vis、SPS等测试技术对样品进行表征,揭示表面修饰机制及对TiO_2光学和光生电荷转移行为等的影响规律。此外,利用可见光下降解染料污染物来评价样品的光催化性能。结果表明:在适宜的pH范围和表面活性剂用量条件下,DBS和CTAB基团均能够较好地修饰在TiO_2纳米粒子表面,以至于实现其由水相到有机相的转移。两种表面活性剂的修饰机制是不同的,DBS主要通过静电吸引作用实现在酸性条件下的修饰。而CTAB可通过静电作用和Br离子分别实现在碱性和酸性条件下的修饰。DBS和CTAB表面修饰后,TiO_2纳米晶的光催化性能得到明显改善,这主要与表面修饰提高了TiO_2光生载流子分离效率、吸附有机物能力及可见光利用率等有关。
     在表面活性剂修饰TiO_2纳米晶基础上,进一步利用其通过浸渍-提拉过程制备了薄膜,主要通过SEM、Raman、Uv-Vis、CA等测试技术对薄膜的组成、表面微结构及润湿性能进行表征,重点探讨了薄膜表面微结构、组成与性能的关系。结果表明:在紫外光未辐照的条件下,利用表面活性剂修饰的TiO_2所获得的薄膜样品即表现出了超亲水性,这主要与在薄膜表面形成了由TiO_2纳米粒子团聚成的微米级隆起结构有关。而纳-微米复合隆起结构的形成主要归因于表面活性剂分子具有双亲性,增强了极性的TiO_2纳米粒子与非极性的有机高分子之间的相互作用,以至于在成膜过程中TiO_2纳米粒子能够随高分子链的收缩而聚集,最终形成微米级隆起结构。
In recent years, nanosized TiO_2 has developed as a new and very attractive application in photoelectric conversion, heterogeneous photocatalysis, antifogging and self-cleaning materials, due to its unique characteristics such as large surface area, strong absorption of ultraviolet and oxidation capability, stable chemical properties and innocuity. However, nanosized TiO_2 disperses hardly in non-polar mediums and is prone to congregate in polar mediums, because of its strong polarity and high surface energy, which influences its performance and restricts its application greatly. Furthermore, the superhydrophilicity of nanosized TiO_2 film depends on the ultraviolet illumination to a large degree. Therefore, design and synthesis of non-UV activated superhydrophilic nanosized TiO_2 film, from the aspect of surface structure, is greatly significative. Based on the above statement, the investigations of surface-modified nanosized TiO_2 with anion and cation surfactant, furthermore, design and synthesis of non-UV activated superhydrophilic TiO_2 film are carried on in this paper.
     The nanosized TiO_2 surface modified by sodium dodecylbenzenesulfonate (DBS) and cethyltrimethylammonium bromide (CTAB) were prepared respectively, adopting subsequent modification technique. The proper modification conditions of TiO_2 were explored. The modified mechanisms were discussed in detail. And the influences of modification on optical and photoinduced charge transfer of nanosized TiO_2 were investigated in principle, by means of FT-IR, XRD, Raman, TEM, Uv-Vis and SPS. Moreover the photocatalytic activities of the samples were evaluated by degradation of dye pollutant under the visible-light. The results show that, TiO_2 can be surface modified by DBS and CTAB groups under conditions of appropriate pH value and surfactant amounts, so as to transfers to organic phase from water. The modified mechanisms by DBS and CTAB are different, that the former is close related to electrostatic attraction, the latter is also attributed to Br ion. The photocatalytic activity of TiO_2 increases remarkably after modified by DBS and CTAB, which is ascribed to that the surface modification extends the spectrum absorption range to long wavelength and enhances the separate efficiency of photoinduced charge carriers, as well as improves the ability of adsorbing organic materials.
     Base on the surface modification, the nanosized TiO_2 films have been fabricated via dipping processes, with un-modified and surfactant-modified TiO_2 nanoparticles. The measurements of SEM, Raman, Uv-Vis and CA were employed to investigate the composing, microstructure and wetting performance of the resulting TiO_2 films, together with their relationships. The results show that the as-prepared films resulting from surfactant-modified TiO_2 nanoparticles exhibit superhydrophilic characteristic and well superhydrophilic stability, although it is not exposed to ultraviolet light. The micro- and nanometer-scale hierarchical structure, that is the micro-papillae composed of many nanosized particles on the film surface, is responsible for its wettability. The possible formation mechanism of micro- and nanometer-scale hierarchical surface structure is suggested mainly on the basis of DBS groups with amphiphilic property, which could enhance the interactivity between polar nanosized TiO_2 particles and non-polar oganic macromolecule. So as to the surfactant-modified TiO_2 nanoparticles would easily conglomerate due to the shrinkage of the PEG molecule chains during the fabricating processes, which would possibly lead to the formation of the micro- and nanometer-scale hierarchical surface structure.
引文
[1] M. R. Hoffmann, S. T. Martin, W. Y. Choi and D. W. Bahnemannt. Environmental applications of semiconductor photocatalysis [J]. Chem. Rev., 1995, 95: 69-96.
    [2] M. Schiavello. Heterogeneous photocatalysis [M]. Wiley Series in Photoscience and Photoengineering, Wiley, Chichester, 1997.3.
    [3]郭山厚.纳米材料与技术在环保中的应用[J].科技信息(学术版), 2006, 12: 60-61.
    [4]王俊尉,谷晋川,杨萍,南艳丽,黄健盛.环境材料纳米TiO2的光催化研究及应用[J].当代化工, 2007, 36: 48-52.
    [5] M. Anpo, S. Dohshi, M. Kitano, et al. The preparation and characterization of highly efficient titanium oxide-based photofunctional materials [J]. Annu. Rev. Mater. Res., 2005. 35:1-27.
    [6] P. Qu. Several aspects of dye-sensitized titanium dioxide colloidal thin films [D]. Dissertation Submitted to Johns Hopkins University for the Degree of Doctor Philosophy. 2001.
    [7] D. F. Ollis and H. Al-Ekabi, Photocatalytic purification and treatment of water and air [M]. Elsevier Science, Lausanne, 1993.
    [8] K. W. Boer, Survery of semiconductor physics [M]. Van Nostrand Reinhold, New York, 1990: 249.
    [9] J. Peral, X. D. Nech and D. F. Ollis. Heterogeneous photocatalysis for purification, decontamination and deodorization of air [J]. J. Chem. Technol. Biotechnol., 1997, 70: 117-140.
    [10] T. Kallio, S. Alajoki, V. Pore, M. Ritala, J. Laine, M. Leskel? and P. Stenius. Antifouling properties of TiO2: Photocatalytic decomposition and adhesion of fatty and rosin acids, sterols and lipophilic wood extractives [J]. Colloi. Surf. A: Physicochemical and Engineering Aspects, 2006, 291: 162-176.
    [11] A. L. Linsebigler, G. Lu and J. T. Yates. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results [J]. Chem. Rev., 1995, 95(3): 735-758.
    [12] J. R. Wilcoxon, Photocatalysis using semiconductor nanoclusters [Z]. Advanced Catalytic Materials, Materials Research Society Syrnposium Proceedings, Boston: MA, 1998.
    [13] I. Oller, W. Gernjak, M. I. Maldonado, L. A. Pérez-Estrada, J. A. Sánchez-Pérez and S. Malato. Solar photocatalytic degradation of some hazardous water-soluble pesticides at pilot-plant scale [J]. Journal of Hazardous Materials, 2006, 138(3): 507-517.
    [14] R. Pelton, X. L. Geng and M. Brook. Photocatalytic paper from colloidal TiO2—fact or fantasy [J]. Advances in Colloid and Interface Science, 2006, 127(1): 43-53.
    [15] M. A. Franco, J. M. Thomas and R. D. Shannon. Crystallographic shear structures derived from CrO2: An electron microscopic study [J]. Journal of Solid State Chemistry, 1974, 9(3): 261-266.
    [16] L. Q. Jing, X. J. Sun, J. Shang, W. M. Cai, Z. L. Xu, Y. G. Du and H. G. Fu. Review of surface photovoltage spectra of nanosized semiconductor and its applications in heterogeneous photocatalysis [J]. Solar Energy Materials & Solar Cells, 2003, 79: 133-151.
    [17] M. Gr?tzel. Heterogeneous photochemical electron transfer [M], CRC Press, Baton Rouge, FL, 1998.
    [18] M. Andrew and L. H. Stephen. An overview of semiconductor photocatalysis [J]. Journal of Photochemistry and Photobiology A: Chemistry, 1997, 108: 1-35.
    [19] Y. Nosaka and M. A. Fox. Kinetics for electron transfer from laser-pulse irradiated colloidal semiconductors to adsorbed methylviologen: dependence of the quantum yield on incident pulse width [J]. J. Phys. Chem., 1988, 92(7): 1893-1897.
    [20] C. S. Turchi and D. E. Ollis. Photocatalytic degradation of organic water contaminants: Mechanisms involving hydroxyl radical attack [J]. J. Catal., 1990, 122(1): 178-192.
    [21] I. L. Marta. Heterogeneous photocatalysis: Transition metal ions in photocatalytic systems [J]. Applied Catalysis B: Environmental, 1999, 23: 89-114.
    [22] R. M. Alberici and W. F. Jardim. Photocatalytic destruction of VOCs in the gas-phase using titanium dioxide [J]. Appl. Catal. B: Environ., 1997, 14: 55-68.
    [23] E. Brillas, E. Mur, R. Sauleda, L. Sànchez, J. Peral, X. Domènech and J. Casado. Aniline mineralization by AOP's: anodic oxidation, photocatalysis, electro-Fenton and photoelectro-Fenton processes [J]. Appl. Catal. B: Environ., 1998, 16: 31-42.
    [24] J. Schwitzgebel, J. G. Ekerdt, H. Gerischer and Adam Heller. Role of the Oxygen Molecule and of the Photogenerated Electron in TiO2-Photocatalyzed Air Oxidation Reactions [J]. J. Phys. Chem., 1995, 99(15): 5633-5638.
    [25] M. Anpo, T. Shima, S. Kodama and Y. Kubokawa. Photocatalytic hydrogenation of propyne with water on small-particle titania: size quantization effects and reaction intermediates [J]. J. Phys. Chem., 1987, 91(16): 4305-4310.
    [26] R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi and T. Watanabe, Light induced amphiphilic surface [J]. Nature, 1997, 388: 431-432.
    [27] R. Wang, K. Hashimoto and A. Fujishima. Photogeneration of highly amphiphilic TiO2 surfaces [J]. Adv. Mater., 1998, 10: 135-138.
    [28] R. Wang, N. Sakai, A. Fujishima, T. Watanabe and K. Hashimoto. Studies of surface wettability conversion on TiO2 single-crystal surfaces. J. Phys. Chem. B, 1999(103): 2188-2194.
    [29] A. Chabas, T. Lombardo, H. Cachier, M. H. Pertuisot, K. Oikonomou, R. Falcone, M. Veritàand F. Geotti-Bianchini. Behaviour of self-cleaning glass in urban atmosphere [J]. Building and Environment, 2007, Available online.
    [30] A. Fujishima, K. Hashimoto and T. Watanabe, TiO2 photocatalysis: Fundamentals and applications [M], Tokyo: BKC, 1999.
    [31] Y. Wang and N. Toshima. Preparation of Pd-Pt bimetallic colloids with controllable core/shell structures [J]. J. Phys. Chem. B., 1997, 101(27): 5301-5306.
    [32] G. Schmid. Large clusters and colloids metals in the embryonic state [J]. Chem. Rev., 1992, 92(8): 1709-1727.
    [33]王中林.氧化物纳米结构的科学技术[J].纳米科技, 2006, 6: 5-12.
    [34] C. X. Wang and G. W. Yang. Thermodynamics of metastable phase nucleation at the nanoscale [J]. Materials Science and Engineering: R: Reports, 2005, 49(6): 157-202.
    [35] J. M. Herrmann. Heterogeneous photocatalysis: fundamentals and applications to the removal of various types aqueous pollutants [J]. Catal. Today, 1999, 53(1): 115-129.
    [36] X. J. Li, Y. D. Qu, G. L. Sun, D. A. Jiang and X. Ouyang. Study on the lattice distortion of the As-prepared nanosized TiO2 particles via detonation method [J]. Journal of Physics and Chemistry of Solids, 2007, 68(12): 2405-2410.
    [37] B. T. Su, Z. Y. Ma, S. X. Min, S. X. She and Z. Y. Wang. Preparation of TiO2/PS complex nanoparticles [J]. Materials Science and Engineering: A, 2007, 458(1-2): 44-47.
    [38] A. Fujishima, X. T. Zhang and D. A. Tryk. Heterogeneous photocatalysis: From water photolysis to applications in environmental cleanup [J]. International Journal of Hydrogen Energy, 2007, 32(14): 2662-2674.
    [39] O. Carp, C. L. Huisman and A. Reller. Photoinduced reactivity of titanium dioxide [J]. Prog. Solid State Chem., 2004, 32: 33-177.
    [40] J. H. Cary, J. Lawrence and H. M. Tosine. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions [J]. Bull. Environ. Contam. Tox., 1976, 16 (6): 697-681.
    [41] M. Ni, M. K. H. Leung, D. Y. C. Leung and K. Sumathy. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production [J]. Renewable and Sustainable Energy Reviews, 2007, 11(3): 401-425.
    [42] H. G. Wang, H. Takashima, Y. Miyakawa and Y. Kanno. Development of catalyst materials being effective for microwave sterilization [J]. Science and Technology of Advanced Materials, 2005, 6(8): 921-926.
    [43] X. L. Wang, S. O. Pehkonen and A. K. Ray. Photocatalytic reduction of Hg (II) on two commercial TiO2 catalysts [J]. Electrochimica Acta, 2004, 45(9-10): 1435-1444.
    [44] S. Rengaraj, S. Venkataraj, J.-W. Yeon, Y. H. Kim, X. Z. Li and G. K. H. Pang. Preparation, characterization and application of Nd-TiO2 photocatalyst for the reduction of Cr (VI) under UV light illumination [J]. Appl. Catal. B: Environmental, 2007, 77(1-2):157-165.
    [45] A. Troupis, A. Hiskia and E. Selective photocatalytic reduction—recovery of palladium using polyoxometallates [J]. Appl. Catal. B: Environmental. 2004, 52(1): 41-48.
    [46] L. Q. Jing, B. F. Xin, F. L. Yuan, B. Q. Wang, K. Y. Shi, W. M. Cai and H. G. Fu. Deactivation and regeneration of ZnO and TiO2 nanoparticles the gas phase photocatalytic oxidation of n-C7H16 or SO2 [J]. Applied Catalysis A, 2004, 275: 49-54.
    [47] Y. Cao, X. Zhang, W. Yang, et al. A biocomponent TiO2/SnO2 particulate film for photocatalysis [J]. Chem. Mater., 2000, 12: 3445-3448.
    [48] P. Ngaotrakanwiwat, T. Tatsuma, S. Saitoh, et al. Charge-discharge behavior of TiO2-WO3 photocatalysis systems with energy storage ability [J]. Physical Chemistry Chemical Physics, 2003, 5: 3234-3237.
    [49]彭少洪,黄运凤,钟理,张渊明. TiO2光催化剂的改性与修饰[J].净水技术, 2005, 24: 59-61.
    [50]姚超,丁永红,林西平,杨绪杰,陆路德,汪信.纳米TiO2有机表面改性的研究[J].无机化学学报, 2005, 21: 638-643.
    [51]郑怀礼.微乳无机凝胶法制备掺杂纳米薄膜及其光催化性能研究[J].光谱学与光谱分析. 2006, 26: 2057-2060.
    [52]李晓娥,邓红,张粉艳,等.纳米二氧化钛有机化改性工艺研究[J].无机盐工业, 2001, 33(4): 5-7.
    [53]余江涛,蒋惠亮.表面活性剂对亚微米TiO2粉体的表面改性[J].江南大学学报, 2004, 6(3): 616-618.
    [54] X. T. Zhang, A. Fujishima, M. Jin, A. V. Emeline and T. Murakami. Double-layered TiO2-SiO2 nanostructured films with self-cleaning andantireflective properties [J]. J. Phys. Chem. B, 2006, 110(50): 25142-25148.
    [55] S. Permpoon, M. Houmard, D. Riassetto, L. Rapenne, G. Berthomé, B. Baroux, J. C. Jouda and M. Langlet. Natural and persistent superhydrophilicity of SiO2/TiO2 and TiO2/SiO2 bi-layer films [J]. Thin Solid Films, 2008, 516: 957-966.
    [56]柳清菊,吴兴惠,刘强,等. TiO2/Fe2O3复合光催化超亲水性薄膜的研究[J].功能材料, 2003, 2(34): 224-228.
    [57]柳清菊,工庆辉,靳映霞,等. TiO2/Al2O3复合薄膜的亲水性能研究[J].功能材料, 2003, 4(34): 458- 460.
    [58] J. Premkumar. Development of super-hydrophilicity on nitrogen-doped TiO2 thin film surface by photoelectrochemical method under visible light [J]. Chem. Mater., 2004, 16: 3980-3981.
    [59] H. Irie, S. Washizuka, N. Yoshino and K. Hashimoto. Visible-light induced hydrophilicity on nitrogen-substituted titanium dioxide films [J]. Chem. Common., 2003, 1298-1299.
    [60] N. Sakai, A. Fujishima, T. Watanabe and K. Hashimoto. Enhancement of the photoinduced hydrophilic conversion rate of TiO2 film electrode surfaces by anodic polarization [J]. J. Phys. Chem. B, 2001, 105: 3023-3026.
    [61] H. Y. Lee, Y. H. Park and K. H. Ko. Correlation between surface morphology and hydrophilic/hydrophobic conversion of MOCVD-TiO2 films [J]. Langmuir, 2000, 16: 7289-7293.
    [62] M. Miyauchi and H. Tokudome. Super-hydrophilic and transparent thin films of TiO2 nanotube arrays by a hydrothermal reaction [J]. J. Mater. Chem., 2007, 17: 2095-2100.
    [63] G. Ramakrishna and H. N. Ghosh. Optical and photochemical properties of sodium dodecylbenzenesulfonate (DBS)-capped TiO2 nanoparticles dispersed in nonaqueous solvents [J]. Langmuir, 2003, 19: 505-508.
    [64] G. Ramakrishna, A. K. Singh, D. K. Palit and H. N. Ghosh. Slow back electron transfer in surface-modified TiO2 nanoparticles sensitized by alizarin [J]. J. Phys. Chem. B, 2004, 108: 1701-1707.
    [65] H.-Y. Byun, R. Vittal, D. Y. Kim and K.-J. Kim. Beneficial role of cetyltrimethylammonium bromide in the enhancement of photovoltaic properties of dye-sensitized rutile TiO2 solar cells [J]. Langmuir, 2004, 20: 6853-6857.
    [66] B. J. Ninness, D. W. Bousfield, C. P. Tripp. The importance of adsorbed cationic surfactant structure in dictating the subsequent interaction of anionic surfactants and polyelectrolytes with pigment surfaces [J]. Colloids Surf. A, 2002, 203: 21-36.
    [67] Y. Li, X. J. Huang, S. H. Heo, C. C. Li, Y. K. Choi, W. P. Cai and S. O. Cho. Superhydrophobic bionic surfaces with hierarchical microsphere/SWCNT composite arrays [J]. Langmuir, 2007, 23(4): 2169-2174.
    [68] J. T. Han, S. Kim and A. Karim. UVO-tunable tuperhydrophobic to superhydrophilic wetting transition on biomimetic nanostructured surfaces [J]. Langmuir, 2007, 23(5): 2608-2614.
    [69] B. Guo, Z. Liu, L. Hong and H. Jiang. Sol gel derived photocatalytic porous TiO2 thin films [J]. Surf. Coat. Technol., 2005, 198(1-3), 24-29.
    [70] X. J. Zhao, Q. N. Zhao, J. G. Yu and B. S. Liu. Development of multifunctional photoactive self-cleaning glasses [J]. Journal of Non-Crystalline Solids, 2008, 354(12-13), 1424-1430.
    [71] Z.-Z. Gu, A. Fujishima and O. Sato. Biomimetic titanium dioxide film with structural color and extremely stable hydrophilicity [J]. Appl. Phys. Lett., 2004, 85(21), 5067-5069.
    [72] W. Y. Gan, S. W. Lam, K. Chiang, R. Amal, H. J. Zhao and M. P. Brungs. Novel TiO2 thin film with non-UV activated superwetting and antifogging behaviours [J]. J. Mater. Chem., 2007, 17: 952-954.
    [73] M. Addamo, V. Augugliaro, A. D. Paola, E. Garcia-Lopez, V. Loddo, G. Marci, R. Molinari, L. Palmisano and M. Schiavello. Preparation, characterization and photoactivity of polycrystalline nanostructured TiO2 catalysts [J]. J. Phys. Chem. B, 2004, 108(10): 3303-3310.
    [74] R. A. Spurr and H. Myers. Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer [J]. Anal Chem., 1957, 29: 760-762.
    [75] K. Li, D. Wang, F. Wu, et al. Surface electronic states and photovoltage gas-sensitive characters of nanocrystalline LaFeO3 [J]. Materials Chemistry and Physics, 2000, 64: 269-272.
    [76] X. Qian, D. Qin, Q. Song, et al. Surface photovoltage spectra and photoelectrochemical properties of semiconductor-sensitized nanostructured TiO2 electrodes [J]. Thin Solid Films, 2001, 385: 152-161.
    [77]王宝辉,王德军,崔毅,等. CdS超微粒子薄膜电极的光电化学特性[J].高等学校化学学报, 1995, 16: 1610-1613.
    [78] Y. Lin, D. Wang, Q. Zhao, et al. A study of quantum confinement properties of photogenerated charges in ZnO nanoparticles by surface photovoltage spectroscopy [J]. J. Phys. Chem. B, 2004, 108: 3202-3206.
    [79] N. Ashkenasy, M. Leibovitch, Y. rosenwaks, et al. Characterization of quantum well structures using surface photovoltage spectroscopy [J]. Mat. Sci. Eng. B, 2000, 74: 125-132.
    [80] B. Q. Wang, L. Q. Jing, Y. C. Qu, et al. Enhancement of the photocatalytic activity of TiO2 nanoparticles by surface-capping DBS groups [J]. Appl. Surf. Sci., 2006, 252: 2817-2852.
    [81] K. Marek. The significance of the difference in the point of xero charge between rutile and anatase [J]. Adv. Colloid Interface Sci., 2002, 99: 255-264.
    [82] M. L. Taylor, G. E. Morris and R. S. C. Smart. Influence of aluminum doping on titania pigment structural and dispersion properties [J]. J. Colloid Interf. Sci., 2003, 262: 81-88.
    [83] J. C. Schulz and G. G. Warr. Adsorbed layer structure of cationic and anionic surfactants on mineral oxide surfaces [J]. Langmuir, 1999, 18: 3191-3197.
    [84] C. Jing, X. Meng, S. Liu, et al. Surface complexation of organic arsenic on nanocrystalline titanium oxide [J]. J. Colloid Interface Sci., 2005, 290: 14-21.
    [85]李竟先,刘树罗,方晖.纳米TiO2颗粒表面无机包覆方法及原理[J].中国陶瓷工业. 2005, 12: 40-45.
    [86]孙振世,杨哗,陈英旭,朱松.纳米TiO2薄膜光催化降解2,4-二氯酚的动力学研究[J].环境科学学报, 2003, 23: 716-720.
    [87] B. J. Ninness, D. W. Bousfield and C. P. Tripp. The importance of adsorbed cationic surfactant structure in dictating the subsequent interaction of anionic surfactants and polyelectrolytes with pigment surfaces [J]. Colloids and Surfaces A, Physicochem. Eng. Aspects, 2002, 203: 21-36.
    [88] E. Sánchez, T. López, R. Gómez, Bokhimi, A. Morales and O. Novaro. Synthesis and characterization of sol-gel Pt/TiO2 catalyst [J]. J. Solid State Chem., 1996, 122: 309-314.
    [89] J. C. Yu, L. Z. Zhang, Z. Zheng and J. C. Zhao. Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity [J]. Chem. Mater., 2003, 15: 2280-2286.
    [90] Y. Suda and T. Morimoto. Molecularly adsorbed H2O on the bare surface of TiO2 (Rutile) [J]. Langmuir, 1987, 3: 786-788.
    [91] Z. Ding, G. Q. Lu and P. F. Greenfield. Role of the crystallite phase of TiO2 in heterogeneous photocatalysis for phenol oxidation in water [J]. J. Phys. Chem. B, 2000, 104: 4815-4820.
    [92] P. Mohapatra, T. Mishra and K. M. Parida. Effect of microemulsion composition on textural and photocatalytic activity of titania nanomaterial [J]. Applied Catalysis A: General, 2006, 310: 183-189.
    [93]谢晶曦,常俊标,王绪明.红外光谱在有机化学和药物化学中的应用[M].科学出版社, 2001, 12.
    [94] K. D. Dobson, A. D. Roddick-Lanzilotta and A. J. McQuillan. An in situ infrared spectroscopic investigation of adsorption of sodium dodecylsulfate and of cetyltrimethylammonium bromide surfactants to TiO2, ZrO2, Al2O3, and Ta2O5 particle films from aqueous solutions [J]. Vibrational Spectroscopy, 24, 2000: 287-295.
    [95] J. B. Xia, F. Y. Li and C. H. Huang. Novel quasi-solid-state dye-sensitized solar cell based on monolayer capped TiO2 nanoparticles framework materials [J]. Chinese Journal of Chemistry, 2004, 22: 687-690.
    [96] Y. J. Xiong, Y. Xie, G. Du and X. B. Tian. A solvent-reduction and surface-modification technique to morphology control of tetragonal In2S3 nanocrystals [J]. J. Mater. Chem., 2002, 12: 98-102.
    [97] H. Y. Li and C. P. Tripp. Sectroscopic identification and dynamics of adsorbed cetyltrimethylammonium bromide structures on TiO2 surfaces [J]. Langmuir, 2002, 18, 9441-9446.
    [98] J. C. Yu, J. G. Yu, W. K. Ho, Z. T. Jiang and L. Z. Zhang. Effects of F- doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 Powders [J]. Chem. Mater., 2002, 14: 3808-3816.
    [99] L. Q. Jing, B. F. Xin, F. L. Yuan, L. P. Xue, B. Q. Wang and H. G. Fu. Effects of surface oxygen vacancies on photophysical and photochemical processes of Zn-doped TiO2 nanoparticles and their relationships [J]. J. Phys. Chem. B, 2006, 110: 17860-17865.
    [100] L. Q. Jing, S. D. Li, S. Song, L. P. Xue, H. G. Fu. Investigation on the electron transfer between anatase and rutile in nanosized TiO2 by means of surface photovoltage technique and its effects on the photocatalytic activity [J]. Sol. Energy Mater. Sol. Cells, 2008, be in published.
    [101] B. S. Zou, L. Z. Xiao and T. J. Li. Absorption red shift in TiO2 ultrafine particles with surfacial dipole layer. Appl. Phys. Lett., 1991, 59(15): 1826-1828.
    [102] T. Rajh, J. M. Nedeljkovic, L. X. Chen, O. Poluektov and M. C. Thurnauer. Improving optical and charge separation properties of nanocrystalline TiO2 by surface modification with vitamin C. J. Phys. Chem. B, 1999, 103: 3515-3519.
    [103] T. Rajh, O. Poluektov, A. A. Dubinski, G. Wiederrecht, M. C. Thurnauer and A. D. Trifunac. Spin polarization mechanisms in early stages of photoinduced charge separation in surface-modified TiO2 nanoparticles. Chem. Phys. Lett., 2001, 344: 31-39.
    [104] L. Q. Jing, X. J. Sun, J. Shang, et al. Review of surface photovoltage spectra of nano-sized semiconductor and its applications in heterogeneous photocatalysis [J]. Sol Energy Mater Sol Cells, 2003, 79:133-151.
    [105]刘恩科,朱秉升,罗晋生.半导体物理学[M].国防工业出版社, 2002: 1-371.
    [106]王子忱,王晓慧,杨桦等.量子尺寸效应对超微粉TiO2表面态的影响[J].吉林大学自然科学学报, 1994, 1: 113-115.
    [107] J. Hong, J. Cao, J. Sun, et al. Electronic structure of titanium dioxide nanotubles [J]. Chem. Phys. Lett., 2003, 380: 366-371.
    [108] J. Zhang, D. J. Wang, T. S. Shi, et al. Photovoltaic properties of porhyrin solid films with electric-field induction [J]. Thin Solid Films, 1996, 284-285: 596-599.
    [109] P. Salvador anf C. Gutierrez. The nature of surface states involved in the photo- and electroluminescence spectra of n-titanium dioxide electrode [J]. J. Phys. Chem., 1984, 88: 3696-3698.
    [110] M. Anpo and M. Takeuchi. The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation [J]. Journal of Catalysis, 2003, 216: 505-516.
    [111]郑顺旋.激光拉曼光谱学[M] .上海:上海科技出版社, 1985, 1, 65-66.
    [112] Y.-H. Zhang, C. K. Chan, J. F. Porter and W. Guo. Micro-Raman spectroscopic characterization of nano-sized TiO2 powders prepared by vapor hydrolysis [J]. J. Mater. Res., 1998, 13(9): 2602-2609.
    [113] C. C. Hyun, M. J. Young, B. K. Seung. Size effects in the Raman spectra of TiO2 nanoparticles [J]. Vibrational Spectroscopy, 2005, 37: 33-38.
    [114]潘晓燕,马学鸣.纳米TiO2的Raman光谱研究进展[J].材料科学与工程, 2001, 19: 138-142.
    [115] J. G. Yu, X. J. Zhao, Q. N. Zhao and G. Wang. Preparation and characterization of super-hydrophilic porous TiO2 coating films [J]. Mater. Chem. Phys., 2001, 68: 253-259.
    [116] J. C. Yu, J. G. Yu, W. Ho and J. C. Zhao. Light-induced super-hydrophilicity and photocatalytic activity of mesoporous TiO2 thin films [J]. J. Photochem. Photobiol., A, 2002, 148: 331-339.
    [117] J. C. Yu, J. G. Yu, H. Y. Tang and L. Z. Zhang. Effect of surface microstructure on the photoinduced hydrophilicity of porous TiO2 thin films [J]. J. Mater. Chem.,2002, 12, 81-85.
    [118] C. C. Weng and K. H. Wei. Selective distribution of surface-modified TiO2 nanoparticles in polystyrene-b-poly (methyl methacrylate) diblock copolymer [J]. Chem. Mater., 2003, 15: 2936-2941.
    [119] A. Nakajima, S. Koizumi, T. Watanabe and K. Hashimoto. Photoinduced amphiphilic surface on polycrystalline anatase TiO2 thin films [J]. Langmuir, 2000, 16: 7048-7050.
    [120] M. Miyauchi and H. Tokudome. Super-hydrophilic and transparent thin films of TiO2 nanotube arrays by a hydrothermal reaction [J]. J. Mater. Chem., 2007, 17: 2095-2100.
    [121] J. Bico, U. Thiele and D. Quéré. Wetting of textured surfaces [J]. Colloids Surf. A, 2002, 206(1-3): 41-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700