热处理对离子注入法制备的二氧化钛薄膜光学性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
TiO_2在紫外光下具有优异的光催化性能,在废水处理、空气净化、抗菌等环保领域有着广泛的应用,但实现其可见光催化一直是研究的难点之一。本论文提出了一种利用离子注入和后续退火制备氮掺杂TiO_2薄膜的方法,以实现TiO_2的可见光催化。首先分别向石英玻璃和蓝宝石(α-Al_2O_3单晶)中注入Ti离子,随后在氮气中退火到900℃,从而制备了N掺杂TiO_2薄膜。同时,又将注入态样品在氧气中退火,对比研究了不同基体和不同退火气氛对TiO_2薄膜光学性能的影响。
     本文采用SRIM 2006模拟程序、卢瑟福背散射谱(RBS)、X射线光电子能谱(XPS)测试、透射电子显微分析(TEM)和紫外-可见光吸收谱(UV-Vis),分别研究了石英玻璃和蓝宝石中注入Ti离子前后的微观结构和宏观光学性能,并对比研究样品在不同气氛中退火处理后,光学性能和微观结构上的变化,主要得到以下结果:
     1.室温下在石英玻璃和蓝宝石中同时注入能量为80 keV、注量为1×10~(17)cm~(-2)的Ti离子,离子注入过程在基体中引入大量缺陷,紫外光区吸收显著增强,但没有明显的吸收峰出现。注入态样品中Ti主要以金属Ti和TiO_2的形式存在。
     2.注入态样品分别在N_2和O_2气氛中从400℃到900℃等时退火。N_2中退火到500℃时,石英玻璃基体中开始出现TiO_2的吸收边,退火到600℃时蓝宝石基体也开始出现TiO_2的吸收边,当退火温度升高到900℃时,金属Ti转变成TiO_2,同时N原子替代少量的晶格O原子形成了O-Ti-N化合物。在石英玻璃基体中TiO_2的光学带隙从500℃时的3.98 eV红移到900℃时的3.30 eV,在蓝宝石基体中TiO_2的光学带隙从600℃时的3.90 eV红移到900℃时的3.45 eV,TiO_2吸收边末端延伸到可见光区,在可见光区的吸收强度明显增加;同样,在O_2中退火时,在石英玻璃基体中TiO_2的光学带隙从500℃时的3.97 eV红移到900℃时的3.60eV,在蓝宝石基体中TiO_2的光学带隙从500℃时的3.98 eV红移到900℃时的3.60eV,随退火温度的升高,吸收边红移,但没有在氮气中明显。
     3.对比分析在不同基体表面形成的TiO_2薄膜的光学性能发现,不同基体对TiO_2薄膜的光学性能影响不大,然而,不同的退火气氛对TiO_2薄膜光学性能影响较大,在O_2气氛下退火由于没有N元素的掺入,光学带隙的变化并不明显;在N_2气氛下退火由于N原子替代少量的晶格O原子形成了O-Ti-N化合物,使TiO_2薄膜的光学带隙明显降低,TiO_2吸收边末端延伸到可见光区,这说明氮的引入,可使TiO_2具有可见光活性。
TiO_2 has application in the filed of environmental science, e.g., wastewater treatment, air purification and antibacterial aspect, due to its excellent photocatalytic performance in UV light. In this paper, ion implantation and subsequent annealing in N_2 have been used to prepare TiO_2 films in order to obtain TiO_2 with catalysis in visible light. Ti ion-implantated fused silica andα-Al_2O_3 single crystals have been annealed in N_2 ambience. In this way, N-doped TiO_2 films are successfully prepared.
     In this work, optical absorption spectroscopy, Rutherford backscattering spectrometry (RBS) , transmission electron microscopy (TEM) , X-ray photoelectron spectroscopy ( XPS ) and SRIM 2006 calculation code have been utilized to characterize the optical and structural properties of samples. The results are listed as follows:
     1. 80 keV Ti ion implantation was performed at room temperature up at a fluence of 1×10~(17) cm~(-2) in both fused silica andα-Al_2O_3 single crystals (sapphire) . The implantation of Ti ions has introduced many defects in substrates. Therefore, the absorption of UV waveband increased, however, there is no clear absorption peak appeared. According to XPS results, metallic Ti~0 and TiO_2 film coexisted in the as-implanted samples.
     2. The as-implanted samples have been annealed in N_2 and O_2 ambience, respectively. The optical absorption edge of TiO_2 appeared in fused silica matrix at 500℃and in sapphire at 600℃, respectively, after annealing in N_2 ambience. After annealing at 900 C in N_2 ambience, a red shift of the optical absorption edge of TiO_2 was observed from 3.98 eV (500℃) to 3.30 eV (900℃) in fused silica while 3.90 eV(600℃) to 3.45 eV (900℃) in sapphire, due to the formation of O-Ti-N compound. The tail of the absorption edge extends to the visible waveband and the absorption intensity of TiO_2 increases in the visible waveband. After annealing in O_2 ambience at 500℃, the optical absorption edge of TiO_2 in both fused silica and sapphire appeared. But the red shift is not so clear as that in N_2 ambient with the increasing temperature.
     3. The results show that the optical properties of TiO_2 film in fused silica and α-Al_2O_3 single crystals are similar. However, the annealing ambience plays a very important role in the optical properties of TiO_2 film. For the samples annealed in the N_2 ambience at 900℃, a new compound of O-Ti-N formed because a small amount of O atoms are substituted by N atoms in the lattice of TiO_2. The formation of O-Ti- N makes the tail of the absorption edge extend to the visible waveband and the absorption intensity of TiO_2 increase in the visible waveband. This result shows that nitrogen-doped TiO_2 has catalysis in the visible light.
引文
[1] Wang R, Hashimoto K, Fujishima A, et al. Light-induced amphiphilic surfaces. Nature, 1997,388:431-432
    
    [2] Saien J, Aardjmand R, Iloukhani R. Photocatalytic decomposition of sodium dodecyl benzene sulfonate under aqueous media in the presence of TiO_2. Physics and Chemistry of Liquids, 2003,41:519-531
    [3] Asahi R, Morikawa T, Ohwaki T, et al. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science, 2001,293:269-271
    [4] Lichtin, Norman N, Thomas M. Catalytic process for degradation of organic materials in aqueous and organic fluids to produce environmentally compatible products. U. S. Patent, 1989,861(4):484-491
    [5] Honda K, Fujishima A. Electrochemical photocatalysis of water at a semiconductor electrode.Nature, 1972,238:37-38
    [6] Frank S N, Bard A J. Heterogeneous Photocatalytic Oxidation of Cyanide and Sulfite in Aqueous Solutions at Semiconductor Powders. J. Phys. Chem., 1977, 81:1484-1488
    [7] Testa J J, Grela M A, Litter M I. Heterogeneous Photocatalytic Reduction of Chromium(Ⅵ) over TiO_2 Particles in the Presence of Oxalate: Involvement of Cr( V) Species. Environ. Sci. Technol.,2004,38:1589-1594
    [8] Chenthamarakshan C R, Rajeshwar K, Wolfrum E J. Heterogeneous Photocatalytic Reduction of Cr(Ⅵ) in UV-Irradiated Titania Suspensions: Effect of Protons, Ammonium Ions, and Other Interfacial Aspects. Langmuir, 2000, 16:2715-2721
    [9] Litter M I. Heterogeneous photocatalysis Transition metal ions in photocatalytic systems. Applied Catalysis B: Environmental, 1999, 23:89-114
    
    [10] Deng B L, Stone A L. Surface-Catalyzed Chromium(Ⅵ) Reduction: Reactivity Comparisons of Different Organic Reductants and Different Oxide Surfaces. Environ. Sci. Technol., 1996,30:2484-2494
    
    [11] Bokhimi X, Morales A, Aguilar M, et al. Local Order in Titania Polymorphs. Int. J. of Hydrogen Energy, 2001, 26:1279-1287
    
    [12] Zhang W F, He Y L, Zhang M S, et al. Raman scattering study on anatase TiO_2 nanocrystals. J.
    ??Phys. D: Appl. Phys., 2000,33:912-916
    
    [13] Kim D W, Enomoto N, Nakagawa Z. Molecular Dynamic Simulation in Titanium DioxidePolymorphs: Rutile, Brookite and Anatase. J.Am. Ceram. Soc, 1996,79:1095-1100
    
    [14] Bokhimi X, Morales A, Novaro O, et al. Effect of Copper Precursor on the Stabilization ofTitania Phases, and the Optical Properties of Cu/TiO_2 Prepared with the Sol-Gel Technique.Chem. Mater., 1997,9:2616-2620
    
    [15] Gotic M, Ivanda M, SekulicA, et al. Microstructure of nanosized TiO_2 obtained by sol-gelsynthesis. Mater. Lett., 1996,28:225-229
    
    [16] Bastow T J, Doran G, Whitfield H J. Electron Diffraction and 47,49 Ti and 17O NMR Studiesof Natural and Synthetic Brookite. Chem. Mater., 2000,12:436-439
    
    [17] Wen T F, Gao J P, Shen J Y, et al. Preparation and characterization of TiO_2 thin films by thesol-gel process. J. Mater. Sci., 2001,36:5923-5926
    
    [18] Pedraza F, Vazquez A. Obtention of TiO_2 rutile at room temperature through direct oxidation ofTiCl_3. J. Phys. Chem. Solids, 1999,60:445-448
    
    [19] Gratzel M. Heterogeneous Photochemical Electron Transfer. CRC Press, Baton Rouge, FL,1988
    
    [20]吴海宝,董晓.太阳能TiO_2非均相光催化氧化染料污水脱色研究.中国环境科学,1997, 17(1):93-96
    
    [21] Litter M I. Heterogeneous photocatalysis transition metal ions in photocatalytic systems.Applied Catalysis B: Environmental, 1999,23:89-114
    
    [22] Fujishima A, Rao T N, Tryk D A. Titanium dioxide photocatalysis. J. Photochem. & Photobio.C: Photochem. Rev., 2000, 1:1-21
    
    [23] Fuerte A, Hemandez-Alonso M D, Maira A J, et al. Visible light-activated nanosizeddoped-TiO_2 photocatalysts. Chem. Commun., 2001,24:2718-2719
    
    [24] Anpo M, Takeuchi M. The design and development of highly reactive titanium oxidephotocatalysts operating under visible light irradiation. J. Catal., 2003, 216:505-516
    
    [25] Sato S. Photocatalytic activity of NO_x-doped TiO_2 in the visible light region. Chem. Phys. Lett.,1986, 123(1-2):126-128
    
    [26] Lindgren T, Mwabora J M, Avendano E, et al. Photoelectrochemical and Optical Properties ofNitrogen Doped Titanium Dioxide Films Prepared by Reactive DC Magnetron Sputtering. J.Phys. Chem. B, 2003, 107(24):5709-5716
    
    [27] Kazemeini M H, Berezin A A, Fukuhara N. Formation of thin TiN_xO_y films by using a hollow??cathode reactive DC sputtering system. Thin Solid Films, 2000,372(1-2):70-77
    
    [28] Irie H, Washizuka S, Yoshino N, et al. Visible-light induced hydrophilicity on nitrogen-substituted titanium dioxide films. Chem. Comm., 2003,11:1298-1299
    
    [29] Suda Y, Kawasaki H, Ueda T, et al. Preparation of high quality nitrogen doped TiO_2 thin film asa photocatalyst using a pulsed laser deposition method. Thin Solid Films, 2004, 453/454:162-166
    
    [30] Irie H, Watanabe Y, Hashimoto K. Nitrogen-concentration dependence on photocatalyticactivity of TiO_(2-x)N_x powders. J. Phys. Chem. B, 2003,107(23): 5483-5486
    
    [31] Miyauchi M, Ikezawa A, Tobimatsu H, et al. Zeta potential and photocatalytic activity ofnitrogen doped TiO_2 thin films. Phys.Chem. Chem.Phys., 2004,6:865-870
    
    [32] Sakthivel S, Kisch H. Photocatalytic and photoelec-trochemical properties of nitrogen-dopedtitanium diox-ide. Chem. Phys. Chem. 2003,4(5):487-490
    
    [33] Ihara T, Miyoshi M, Iriyama Y, et al. Visible-light-active titanium oxide photocatalyst realizedby an oxygen-deficient structure and by nitrogen doping. Appl. Catal. B, 2003,42(4):403-409
    
    [34] Burda C, Lou Y, Chen X, et al. Enhanced nitrogen doping in TiO_2 nanoparticles. Nano Letters,2003,3(8): 1049-1051
    
    [35] Gole J L, Stout J D, Burda C, et al. Highly efficient formation of visible light tunable TiO_(2-x)N_xphotocatalysts and their transformation at the nanoscale. J. Phys. Chem. B, 2004, 108(4):1230-1240
    
    [36] Yin S, Yamaki H, Komatsu M, et al. Preparation of nitrogen-doped titania with high visiblelight induced photocatalytic activity by mechanochemical reaction of titania andhexamethylenetetramine. J. Mater. Chem., 2003, 13:2996-3001
    
    [37] Yin S, Zhang Q W, Saito F, et al. Preparation of visible light-activated titania photocatalyst bymechanochemical method. Chem. Lett., 2003, 32(4):358-359
    
    [38] Okada M, Yamada Y, Jin P et al. Fabrication of multifunctional coating which combines low-eproperty and visible-light-responsive photocatalytic activity. Thin Solid Films, 2003,442:217-221
    
    [39] Diwald O, Thompson T, Goralski E, et al. The Effect of Nitrogen Ion Implantation onPhtoactivity of TiO_2 Rutile Single Crystals. J. Phys. Chem. B, 2004, 108:52-57
    
    [40]孔令红,熊予莹,符斯列,等.用ECR氮等离子对纳米TiO_2薄膜光谱响应改性的研究. 2004,10(3):379-382
    
    [41] Miao L, Tanemura S, Watanabe H, et al. The Improvement of Optical Reactivity for TiO_2 Thin??Films byN_2-H_2 Plasma Surface-Treatment. J. Cryst. Growth, 2004,260:118-124
    
    [42] Nukumizu K, Nunoshige J, Takata T, et al. TiN_xO_yF_z as a stable photocatalyst for wateroxidation in visible light (570nm). Chem. Lett., 2003,32(2):196-197
    
    [43] Morikawa T, Asahi R, Ohwaki T, et al. Band-gap narrowing of titanium dioxide by nitrogendoping. Jpn. J. Appl. Phys., 2001,40:561-563
    
    [44] Shin H, Joo H, Park J, et al. Photocatalytic Ecomaterials. Materials Science Forum, 2004,449/452:1257-1260
    
    [45] Jung S H, Kang S W. Formation of TiO_2 thin films using NH_3 as catalyst by metalorganicchemical vapor deposition. Jpn. J. Appl. Phys., 2001,40:3147-3152
    
    [46]崔晓莉,江志裕.纳米TiO_2薄膜的制备方法.化学进展,2002,14<5):325-331
    
    [47] Li D, Haneda H. Enhancement of Photocatalytic Activity of Sprayed Nitrogen-Containing ZnOPowders by Coupling with Metal Oxides during the Acetaldehyde Decomposition.Chemosphere, 54(8): 1099-1110
    
    [48] Li D, Haneda H. Photocatalysis of Sprayed Nitrogen-Containing Fe_2O_3-ZnO and WO_3-ZnOComposite Powders in Gas-Phase Acetaldehyde Decomposition. J. Photochem. Photobiol.A-Chem., 2003,160(3):203-212
    
    [49] http://www.tytlabs.co.jp/eindex.html
    
    [50] http://www.ecodevice.co.jp/fpress72.html
    
    [51] http://www.photonics.com/spectra/tech/XQ/ASP/techid. 1256/QX/read.html
    
    [52] Ziegler J E, Biersack J P, Littmark U. The Stopping and Range of Ions in solids. PergamonPress, 1985
    
    [53] Chu W K, Mayer J W, Nicolet M A. Backscattering Spectrometry. New York: Academic Press,1978
    
    [54] Sakthivel S, Janczarek M, Kisch H. Visible Light Activity and Photoelectrochemical Propertiesof Nitrogen-Doped TiO_2. J. Phys. Chem. B, 2004, 108:19384-19387
    
    [55] Chen X, Burda C. Photoelectron Spectroscopic Investigation of Nitrogen-Doped TitaniaNanoparticles. J. Phys. Chem. B, 2004,108:15446-15449
    
    [56]张德恺,胡晓云,李婷,等.TiO_2纳米薄膜微观结构及光学性能研究.光子学报,2004, 33(8):982-985
    
    [57]尹荔松,周歧发,危韧勇,等.纳米TiO_2薄膜的制备及其光学特性研究.中山大学学报(自 然科学版),2000,39(4):52-56
    
    [58]王齐祖,陈玉峰,田军,等.离子注入对α-Al_2O_3陶瓷材料的表面改性研究.核技术,1996,??19(2):75-79
    
    [59]汤德平,江爱耕,段建平,等.福建明溪蓝宝石的谱学特征及颜色成因.矿物学报,1998, 18(4):533-540
    
    [60]谢东珠,朱德彰,曹建清,等.In~+离子注入蓝宝石(α-Al_2O_3单晶)的表面改性研究.核技 术,1998,21(9):513-518
    
    [61] Kirkpatrick A, Harris D C, Johnson L F. Effect of ion implantation on the strength of sapphireat 300-600 ℃. Journal of Materials Science, 2001, 36(9):2195-2201
    
    [62] Gea L A, Boatner L A, Evans H M, et al. Optical active surfaces formed by ion implantationand thermal treatment. Nucl. Instr. and Meth. B, 1997,127/128:553-556
    
    [63] Alves E, da Silva M F, Soares J C, et al. Effect of crystal orientation on defect production andoptical activation of Er-implanted sapphire. Nucl Instr and Meth, B, 2000,166/167:183-187
    
    [64] Morpeth L D, McCallum J C. Formation of Ti~(3+) in sapphire by Co-implantation of Ti and Oions. Appl. Phys. Lett., 2000, 76(4):424-426

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700