光催化氧化联合工艺处理不同污染物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光催化技术因其鲜明的特点被认为是最具发展潜力的水处理技术之一。现阶段,制约光催化实际应用的瓶颈问题未得到根本性解决,针对目标水体特性选择光催化与其它工艺组成联合工艺,通过两者优势互补获得更好处理效果,则更具实际意义。本文针对光催化技术处理难降解有机废水、印染废水以及硝酸盐污染地下水时存在的缺陷,分别组建联合工艺,进行了光电联合催化处理苯酚废水、电化学-光催化组合工艺处理酸性橙Ⅱ废水以及生物慢滤-光催化组合技术处理硝酸盐微污染地下水的研究。主要结论如下:
     (1)采用光电联合催化工艺处理苯酚废水,在发挥光催化、电化学各自降解功效的同时产生了协同作用,溶液中氯离子的存在可以显著地提高协同增强的效应。在光催化和电化学工艺间的交互影响下氧化物质产率的提高是联合体系中协同增强作用出现的原因。光电联合工艺可明显缩短苯酚降解以及矿化的时间,提升单位电耗的矿化效率。在电流密度30mA/cm2、NaCl投加量0.3g/L、pH为6左右的反应条件下,初始浓度50mg/L苯酚在2.5小时内被完全去除,降解6小时后,TOC去除率达到75%;
     (2)采用电化学-光催化组合工艺处理酸性橙Ⅱ废水,电化学氧化前处理使溶液迅速褪色的同时也使大分子有机物发生了分解,有效的提高了后续光催化氧化工艺的TOC降解速率;而后续的光催化氧化工艺可无选择的氧化有机物,避免降解过程中出现中间产物的累积。3L初始浓度50mg/L的酸性橙Ⅱ溶液经1h电解加上6h光催化氧化降解,TOC的去除率达到了81%,矿化所需时间大大缩短。组合工艺完成50%矿化率时的耗电量仅是电化学工艺完成相同矿化率耗电量的71%;
     (3)采用生物慢滤-光催化组合工艺处理硝酸盐氮微污染地下水,组合工艺中前置的生物慢滤工艺可有效地脱除水中的硝酸盐,后置的光催化氧化工艺则对慢滤出水中残余的有机物、氨氮以及细菌总数起到削减作用。当原水硝氮含量在27.8-43.7mg/L,滤速0.35m/h,以碳氮比2:1外加碳源时,组合工艺出水硝氮含量低于《生活饮用水卫生标准》中的规定,经过后续光催化处理后CODMn和细菌总数也达到饮用水的要求。
Because of its notable advantages, photocatalytic oxidation is considered as one of the most potential water treatment techniques. At present, the bottlenecks which restrict the application of photocatalytic technique have not been solved. Therefore, it is practical to develop the combined process of photocatalysis and other technique according to the feature of target pollutant. In combined process, the advantages of both single processes could be utilized, and the more efficient or economical removal could be achieved. In this study, a combined independent photocatalytic and electrochemical process (CPE) was investigated for phenol degradation, a coupled electrochemical and photocatalytic process (CEP) for Acid Orange II (AOII) mineralization and a coupled biology slow filtration and photocatalytic process (CFP) for nitrate removal form solution. The main results were as follows:
     (1) The CPE process exploited both single processes to produce a synergistic enhancement effect, and this effect was enhanced by adding NaCl into solution. The higher productivity of oxidizing substances resulting from the interaction between photocatalysis and electrolysis is probably the main reason for this synergy. In CPE process, the required time for mineralization was shorter and the energy efficiency was higher than that in both single processes. In this process,100% of phenol and 75% of total organic carbon were removed within 6 hours in the presence of 0.3 g/L NaCl electrolyte at a current density of 30 mA/cm2 and initial pH 6.10;
     (2) During the degradation of AOII with the CEP process, the electrochemical pretreatment made the solution faded rapidly and the dye molecular decomposed. Thus, the removal rate of TOC with the posterior photocatalysis increased significantly. Moreover, the accumulation of intermediates which appeared during the anterior electrolysis was eliminated efficiently by the posterior photocatalysis. After one hour of electrolysis followed with six hours of photocatalysis,81% of TOC was removed from the solution. The time consumed for mineralization with CEP process was much shorter than that with photocatalysis. The power consumption for 50% of TOC removal by CEP process was just 71% of that for the same TOC removal by electrolysis;
     (3) In the CFP process, the nitrate in the polluted groundwater was removed efficiently by the anterior biological slow filtration, and the residual organics, ammonia and total ba(?)terial count was reduced partially in the subsequent photocatalytic treatment. Under the running conditions of influent NO3--N=27.8-43.7mg/L, dosage of glucose as C/N=2:1 and filtering velocity=0.35 m/h, the effluent NO3--N was always below normative limit of drinking water in china, and the CODMn and tatal bacterial count also met the drinking water requirement after photocatalytic treatment.
引文
An T C, Zhang W B, Xiao X M, et al. Photoelectrocatalytic degradation of quinoline with a novel three-dimensional electrode-packed bed photocatalytic reactor. Journal Of Photochemistry And Photobiology A-Chemistry,2004,161(2-3):233-242.
    An T C, Zhu X H, Xiong Y. Feasibility study of photoelectrochemical degradation of methylene blue with three-dimensional electrode-photocatalytic reactor. Chemosphere,2002, 46(6):897-903.
    Asmussen R M, Tian M, Chen A C. A new approach to wastewater remediation based on bifunctional electrodes. Environmental Science & Technology,2009,43(13):5100-5105.
    Augugliaro V, Litter M, Palmisano L, et al. The combination of heterogeneous photocatalysis with chemical and physical operations:A tool for improving the photoprocess performance. Journal of Photochemistry and Photobiology C-Photochemistry Reviews,2006,7(4):127-144.
    Bacsa R R, Kiwi J. Effect of rutile phase on the photocatalytic properties of nanocrystalline titania during the degradation of p-coumaric acid. Applied Catalysis B,1998,16(1):19-29.
    Bandara J, Pulgarin C, Peringer P, et al. Chemical (photo-activated) coupled biological homogeneous degradation of p-nitro-o-toluene-sulfonic acid in a flow reactor. Journal of Photochemistry and Photobiology A:Chemistry,1997, 111(1-3):253-263.
    Beltran F J, Encinar J, Gonzalez J F. Industrial wastewater advanced oxidation. Part 2. Ozone combined with hydrogen peroxide or UV radiation. Water Research,1997a,31(10):2415-2428.
    Beltran F J, Gonzalez M, Gonzalez J F. Industrial wastewater advanced oxidation. Part 1. UV radiation in the presence and absence of hydrogen peroxide. Water Research,1997b, 31(10):2405-2414.
    Box G E P, Hunter J S, Hunter W G..试验应用统计设计、创新和发现.北京:机械工业出版社,2005.
    Burns R A, Crittenden J C, Hand D W, et al. Effect of inorganic ions in heterogeneous photocatalysis of TCE. Journal of Environmental Engineering-Asce,1999,125(1):77-85.
    Carey J H, Lawrence J, Tosine H M. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions. Bulletin of Environment Contamination and Toxicology,1976, 16(6):697-701.
    Chiang L, Chang J, Wen T. Indirect oxidation effect in electrochemical oxidation treatment of landfill leachate. Water Research,1995,29(2):671-678.
    Chiou C, Wu C, Juang R. Photocatalytic degradation of phenol and m-nitrophenol using irradiated TiO2 in aqueous solutions. Separation and Purification Technology,2008,62(2):559-564.
    Comninellis C. Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for wastewater treatment. Electrochimica Acta,1994,39(11):1857-1862.
    Comninellis C, De Battisti A. Electrocatalysis in anodic oxidation of organics with simultaneous oxygen evolution. Journal de Chimie Physique et de Physico-Chimie Biologique,1996, 93(4):673-679.
    Comninellis C, Nerini A. Anodic oxidation of phenol in the presence of NaCl for wastewater treatment. Journal of Applied Electrochemistry,1995,25(3):23-28.
    Comninellis C, Pulgarin C. Anodic oxidation of phenol for waste water treatment. J. Appl. Electrochem.,1991,21(5):703-708.
    Cozzolino M, Di Serio M, Tesser R, et al. Grafting of titanium alkoxides on high-surface SiO2 support:An advanced technique for the preparation of nanostructured TiO2/SiO2 catalysts. Applied Catalysis A-General,2007,325(2):256-262.
    Czarnetzki L R, Janssen L J J. Formation of hypochlorite, chlorate and oxygen during NaCl electrolysis from alkaline solutions at an. Journal Of Applied Electrochemistry,1992,22(3):315-324.
    Daneshvar N, Aber S, Vatanpour V, et al. Electro-Fenton treatment of dye solution containing Orange Ⅱ:Influence of operational parameters. Journal of Electroanalytical Chemistry,2008, 615(2):165-174.
    Ding Z, Lu G Q, Greenfield P F. A kinetic study on photocatalytic oxidation of phenol in water by silica-dispersed titania nanoparticles. Journal of Colloid and Interface Science,2000,232(1):1-9.
    Doan H D, Saidi M. Simultaneous removal of metal ions and linear alkylbenzene sulfonate by combined electrochemical and photocatalytic process. Journalof Hazardous Materials,2008, 158(2-3):557-567.
    Elizalde-Gonzalez M P, Hernandez-Montoya V. Removal of acid orange 7 by guava seed carbon:A four parameter optimization study. Journal of Hazardous Materials,2009,168(1):515-522.
    Fan C M, Wang Y, LIANG Z, et al. Interactive Oxidation of Photocatalysis and Electrocatalysis for Degradation of Phenol in a Photoreactor. The Chinese Journal of Process Engineering,2009, 9(5):916-921.
    Feng Y J, Li X Y. Electro-catalytic oxidation of phenol on several metal-oxide electrodes in aqueous solution. Water Research,2003,37(10):2399-2407.
    Fernandes A, Morao A, Magrinho M, et al. Electrochemical degradation of C. I. Acid Orange 7. Dyes and Pigments,2004,61(3):287-296.
    Frank S N, Bard A J. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solution at TiO2 powder. Journal of American Chemistry Society,1977,99:303-304.
    Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature,1972,238:37-38.
    Gogate P R, Pandit A B. A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Advances In Environmental Research,2004, 8(3-4):501-551.
    Gokel G W. Dean's Handbook of Organic Chemistry. Beijing:McGraw-Hill Education (Asia) Co. and Chemical Industry Press,2006.
    Hamed E, Sakr A. Application of multiple response optimization technique to extended release formulations design. Journal of Controlled Release,2001,73(8):329-338.
    He C, Xiong Y, Zhu X H. A novel regeneration method of Cu(0)-deposited TiO2 photocatalytic film:Air-assisted electrochemical oxidation. Chinese Chemical Letters,2002a,13(11):1127-1130.
    He C, Xiong Y, Zhu X H. A novel method for improving photocatalytic activity of TiO2 film: the combination of Ag deposition with application of external electric field. Thin Solid Films,2002b, 422(1-2):235-238.
    Hepel M, Luo J. Photoelectrochemical mineralization of textile diazo dye pollutants using nanocrystalline WO3 electrodes. Electrochimica Acta,2001,47(5):729-740.
    Herrmann J. Heterogeneous photocatalysis:fundamentals and applications to the removal of various types of aqueous pollutants. Catalysis Today,1999,53:115-129.
    Herrmann J, Matos J, Disdier J, et al. Solar photocatalytic degradation of 4-chlorophenol using the synergistic effect between titania and activated carbon in aqueous suspension. Catalysis Today, 1999,54(2-3):255-265.
    Hidaka H, Asai Y, Zhao J, et al. Photoelectrochemical decomposition of surfactants on a TiO/TCO particulate film electrode assembly. The Journal of Physical Chemistry,1995, 99(20):8244-8248.
    Hou Y I, Qu J H, Zhao X, et al. Electro-photocatalytic degradation of acid orange II using a novel TiO2/ACF photoanode. Science of the Total Environment,2009,407(7):2431-2439.
    Imai H, Hirashima H. Preparation of porous anatase coating from sol-gel-derived titanium dioxide and titanium dioxide-silica by water-vapor exposure. Journal of the American Ceramic Society,1999,82(9):2301-2304.
    Imai H, Morimoto H,Tominaga A, et al. Structural changes in sol-gel derived SiO2 and TiO3 films by exposure to water vapor. Journal of Sol-Gel Science and Technology,1997,10(1):45-54.
    Ingo G M, Riccucci C, Bultrini G, et al. Thermal and microchemical characterisation of sol-gel SiO2, TiO2 and xSi02-(1-x)Ti02 ceramic materials. Journal of Thermal Analysis and Calorimetry, 2001,66(10):37-46.
    Kabra K, Chaudhary R, Sawhney R L. Treatment of hazardous organic and inorganic compounds through aqueous-phase photocatalysis:A review. Industrial & Engineering Chemistry Research,2004,43(24):7683-7696.
    Kim K W, Kim Y J, Kim I T, et al. Electrochemical conversion characteristics of ammonia to nitrogen. Water Research,2006,40(7):1431-1441.
    Kominami H, Furusho A, Murakami S, et al. Effective photocatalytic reduction of nitrate to ammonia in an aqueous suspension of metal-loaded titanium(IV) oxide particles in the presence of oxalic acid. Catalysis Letters,2001,76(1-2):31-34.
    Kotani Y, Matsuda A, Tatsumisago M, et al. Formation of anatase nanocrystals in sol-gel derived TiO2-SiO2 thin films with hot water treatment. Journal of Sol-Gel Science and Technology, 2000,19(1-3):585-588.
    Lee J, Park H, Choi W. Selective photocatalytic oxidation of NH3 to N2 on plantation TiO2 in water. Environmental Science & Technology,2002,36(24):5462-5468.
    Li L, Zhu W, Chen L, et al. Photocatalytic ozonation of dibutyl phthalate over TiO2 film. Journal of Photochemistry and Photobiology A:Chemistry,2005,175(2-3):172-177.
    Li L, Zhu W, Zhang P, et al. Photocatalytic oxidation and ozonation of catechol over carbon-black-modified nano-TiO2 thin films supported on Al sheet. Water Research,2003, 37(15):3646-3651.
    Li M, Feng C P, Hu W W, et al. Electrochemical degradation of phenol using electrodes of Ti/RuO2-Pt and Ti/IrO2-Pt. Journal of Hazardous Material,2009a,162(1):455-462.
    Li M, Feng C P, Zhang Z Y, et al. Electrochemical reduction of nitrate using various anodes and a Cu/Zn cathode. Electrochemistry Communications,2009b, 11(10):1853-1856.
    Li M, Feng C P, Zhang Z Y, et al. Optimization of process parameters for electrochemical nitrate removal using Box-Behnken design. Electrochimica Acta,2011,56(1):265-270.
    Li T H, Gao S Y, Li F, et al. Photocatalytic property of a keggin-type polyoxometalates-containing bilayer system for degradation organic dye model. Journal of Colloid and Interface Science,2009,338(2):500-505.
    Li X Y, Cui Y H, Feng Y J, et al. Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes. Water Research,2005,39(10):1972-1981.
    Li X Z, Zhao Y G. Advanced treatment of dyeing wastewater for reuse. Water Science and Technology,1999,39(10-11):249-255.
    Liu H, Wu M, Wu H J, et al. Photocatalytic activity and electrochemical impedance spectroscopy of TiO2 thermally treated by hydrogen. Acta Physico-Chimica Sinica,2001, 17(3):286-288.
    Martinez-Huitle C A, Brillas E. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods:A general review. Applied Catalysis B-Environmental,2009, 87(3-4):105-145.
    Matos J, Laine J, Herrmann J. Synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon. Applied Catalysis B:Environmental,1998, 18(3-4):281-291.
    Minero C, Pelizzetti E, Malato S, et al. Large solar plant photocatalytic water decontamination: Degradation of pentachlorophenol. Chemosphere,1993,26(12):2103-2119.
    Mohanty S, Rao N N, Khare P, et al. A coupled photocatalytic-biological process for degradation of 1-amino-8-naphthol-3,6-disulfonic acid (H-acid). Water Research,2005, 39(20):5064-5070.
    Mohseni-Bandpi A, Elliott D J. Groundwater denitrification with alternative carbon sources. 1998,38(6):237-243.
    Mohseni-Bandpi A, Elliott D J, Momeny-Mazdeh A. Denitrification of groundwater using acetic acid as a carbon source.1999,40(2):53-59.
    Neelavann M G, Revathi M, Basha C A. Photocatalytic and electrochemical combined treatment of textile wash water. Journal of Hazardous Materials,2007,149(2):371-378.
    Neelavannan M G, Basha C A. Electrochemical-assisted photocatalytic degradation of textile washwater. Separation and Purification Technology,2008,61(2):168-174.
    Niu J, Chen J, Henkelmann B, et al. Photodegradation of PCDD/Fs adsorbed on spruce (Picea abies) needles under sunlight irradiation. Chemosphere,2003,50(9):1217-1225.
    Okamoto K,Yamamoto Y,Tanaka H, et al. Heterogeneous photocatalytic decomposition of phenol over TiO2 power. Bulletin of the Chemical Society Of Japan,1985,58(7):2015-2019.
    Ollis D F, Al-Ekabi H. Photocatalytic purification and treatment of water and air. Amsterdam: Elsevier Science,1993.
    Park O H, Kim C S. Experimental study on the treatment of volatile organic compound vapors using a photoreactor equipped with photo catalyst-coated fabrics. Journal of Applied Polymer Science, 2004,91(5):3174-3179.
    Parra S, Malato S, Pulgarin C. New integrated photocatalytic-biological flow system using supported TiO2 and fixed bacteria for the mineralization of isoproturon. Applied Catalysis B: Environmental,2002,36(2):131-144.
    Qu J H, Zhao X. Design of BDD-TiO2 hybrid electrode with P-N function for photoelectrocatalytic degradation of organic contaminants. Environmental Science & Technology, 2008,42(13):4934-4939.
    Quan X, Yang S, Ruan X, et al. Preparation of titania nanotubes and their environmental applications as electrode. Environmental Science & Technology,2005,39(10):3770-3775.
    Rajkumar D, Palanivelu K. Electrochemical treatment of industrial wastewater. Journal of Hazardous Materials,2004,113(3):125-131.
    Ranjit K T, Varadarajan T K, Viswanathan B. Photocatalytic reduction of nitrite and nitrate ions to ammonia on Ru/TiO2 catalysts. Journal of Photochemistry and Photobiology A-Chemistry,1995, 89(1):67-68.
    Rosenfeldt E J, Linden K G. Degradation of endocrine disrupting chemicals bisphenol A, ethinyl estradiol, and estradiol during UV photolysis and advanced oxidation processes. Environmental Science & Technology,2004,38(20):5476-5483.
    Sharpless C M, Linden K G. DV photolysis of nitrate:effects of natural organic matter and dissolved inorganic carbon and implications for UV water disinfection. Environmental Science & Technology,2001,35(14):2949-2955.
    Suryaman D, Hasegawa K, Kagaya S. Combined biological and photocatalytic treatment for the mineralization of phenol in water. Chemosphere,2006,65(11):2502-2506.
    Vinodgopal K, Hotchandani S, Kamat P V. Electrochemically assisted photocatalysis:titania particulate film electrodes for photocatalytic degradation of 4-chlorophenol. The Journal of Physical Chemistry,1993,97(35):9040-9044.
    Vinodgopal K, Kamat P V. Enhanced rates of photocatalytic degradation of an azo dye using SnO2/TiO2 coupled semiconductor thin films. Environmental Science & Technology,1995, 29(3):841-845.
    Vinodgopal K, Stafford U, Gray K A, et al. Electrochemically assisted photocatalysis.2. The role of oxygen and reaction intermediates in the degradation of 4-Chlorophenol on immobilized TiO2 particulate Films. The Journal of Physical Chemistry,1994,98(27):6797-6803.
    Wang K H, Hsieh Y H, Wu C H, et al. The pH and anion effects on the heterogeneous photocatalytic degradation of o-methylbenzoic acid in TiO2 aqueous suspension. Chemosphere,2000, 40(4):389-394.
    Watts M J, Linden K G. Chlorine photolysis and subsequent OH radical production during UV treatment of chlorinated water. Water Research,2007,41(13):2871-2878.
    Woo O T, Chung W K, Wong K H, et al. Photocatalytic oxidation of polycyclic aromatic hydrocarbons:intermediates identification and toxicity testing. Journal of Hazardous Materials,2009, 168(2-3):1192-1199.
    Xiao S, Qu J, Zhao X, et al. Electrochemcial process combined with UV light irradiation for synergistic degradation of ammonia in chloride-containing solutions. Water Research,2009, 43(5):1432-1440.
    Yoneyama H, Yamashita Y, Tamura H. Heterogeneous photocatalytic reduction of dichromate on n-type semiconductor catalysts. Nature,1979,282(5741):817-818.
    Zhang F, Feng C, Li W, et al.Photocatalytic degradation of ammonia nitrogen with suspended TiO2. IEEE Engineering in Medicine and Biology Society,2009.
    Zhang F, Jin R, Chen J, et al. High photocatalytic activity and selectivity for nitrogen in nitrate reduction on Ag/TiO2 catalyst with fine silver clusters. Journal of Catalysis,2005,232(2):424-431.
    Zhang H, Quan X, Chen S, et al. Fabrication and characterization of silica/titania nanotubes composite membrane with photocatalytic capability. Environmental Science & Technology,2006, 40(19):6104-6109.
    Zhang W, An T C, Cui M, et al. Effects of anions on the photocatalytic and photoelectrocatalytic degradation of reactive dye in a packed-bed reactor. Journal of Chemical Technology and Biotechnology,2005,80(2):223-229.
    Zhao X, Liu H J, Qu J H. Photoelectrocatalytic degradation of organic contaminant at hybrid BDD-ZnWO4 electrode. Catalysis Communications,2010a,12(2):76-79.
    Zhao X, Qu J H, Liu H J, et al. Photoelectrochemical degradation of anti-inflammatory pharmaceuticals at Bi2MoO6-boron-doped diamond hybrid electrode under visible light irradiation. Applied Catalysis B-Environmental,2009,91(1-2):539-545.
    Zhao X, Qu J H, Liu H J, et al. Photoelectrochemical treatment of landfill leachate in a continuous flow reactor. Bioresource Technology,2010b,101(3):865-869.
    Zhu X D, Castleberry S R,Nanny M A, et al. Effects of pH and catalyst concentration on photocatalytic oxidation of aqueous ammonia and nitrite in titanium dioxide suspensions. Environmental Science & Technology,2005,39(10):3784-3791.
    Zhu X D, Nanny M A, Butler E C. Photocatalytic oxidation of aqueous ammonia in model gray waters. Water Research,2008,42(10-11):2736-2744.
    Zhu X D, Nanny M A, Butler E C. Effect of inorganic anions on the titanium dioxide-based photocatalytic oxidation of aqueous ammonia and nitrite. Journal of Photochemistry and Photobiology A-Chemistry,2007,185(2-3):289-294.
    安太成,何春,朱锡海,等.三维电极电助光催化降解直接湖蓝水溶液的研究.催化学报,2001,22(02):193-197.
    毕会锋,樊瑞,杨卫身,等.酸性橙Ⅱ的化学氧化脱色和矿化.染料与染色,2005,42(6):45-49.
    曹长春,蒋展鹏,等.Ti02薄膜光电协同催化氧化降解活性艳红.环境科学,2002,23(6):108-110.
    陈德强,吴振斌,成水平,等.UV/H202体系光降解邻苯二甲酸二丁酯研究.环境科学研究,2005,18(6):50-52.
    崔建国.Ti02光催化处理水中难降解有机污染物及环境风险研究:[太原理工大学],2008.
    戴日成,张统,郭茜,等.印染废水水质特征及处理技术综述.给水排水,2000,26(10):33-37.
    樊彩梅,孙彦平.苯酚及其光催化降解中间产物的HPLC法同时测定.分析测试学报,2000,19(04):48-50.
    樊瑞.恒电位和恒电流模式下氧化脱色降解酸性橙Ⅱ:[大连理工大学],2005.
    冯丽娜,刘勇健.Ti02/活性炭光催化技术在印染废水深度处理中的应用研究.污染防治技术,2008,21(6):54-56.
    冯玉杰,李晓岩,尤宏,等.电化学技术在环境工程中的应用.北京:化学工业出版社,2002.
    付宏祥,吕功煊.重金属离子的光催化还原研究进展.感光科学与光化学,1995,13(4):325-333.
    高濂,郑珊,张青红.纳米纳米氧化钛光催化材料及应用.北京:化学工业出版社,2002.
    高廷耀,魏宏斌,徐迪民.二氧化钛膜光催化氧化苯酚的影响因素研究.中国给水排水,1998,15(04):18-20.
    古国榜,柳松,李川.TiO2光催化处理废水中贵重金属的研究进展.环境污染治理技术与设备,2003,4(11):6-11.
    郝红英,邵自强.壳聚糖、活性炭复配水处理剂制备及应用研究.纤维素科学与技术,2006,14(1):11-15.
    胡春,王怡中,汤鸿霄.TiO2光催化氧化苯酚动力学研究.环境科学,1997,18(04):2-5.
    胡春,王怡中,汤鸿霄.表面键联型TiO2/SiO2固定化催化剂的结构及催化性能.催化学报, 2001,22(2):185-188.
    黄锦勇,刘国光,张万辉,等.Ti02光催化还原重金属离子的研究进展.环境科学与技术,2008,31(12):104-108.
    姜成春,庞素艳,江进,等.无机阴离子对类-Fenton反应的影响.环境科学学报,2008,28(05):982-987.
    蒋伟川,谭湘萍.载银Ti02半导体催化剂降解染料水溶液的研究.环境科学,1995,16(2):15-18.
    蒋伟川,俞传明.半导体光催化降解实际印染废水的研究.工业水处理,1994,14(2):25-27.
    蒋展鹏,王海燕,杨宏伟.电助光催化技术研究进展.化学进展,2005,17(4):622-630.
    金赞芳,李文腾,潘志彦,等.地下水硝酸盐去除方法.水处理技术,2006,32(8):34-37.
    冷文华,张昭,成少安,等.光电催化降解苯胺的研究——外加电压的影响.环境科学学报,2001,21(6):710-714.
    李国亭,曲久辉,武荣成.Ti02改性p-Pb02电极光电协同降解偶氮染料酸性橙Ⅱ.科学通报,2005,50(07):632-637.
    李国亭,曲久辉,张西旺,等.光助电催化降解偶氮染料酸性橙Ⅱ的降解过程研究.环境科学学报,2006,26(10):1618-1623.
    李国亭,王海荣,李东颖,等.紫外光协助下DSA电极对1,4-苯醌的强化开环作用研究.环境科学,2009,25(07):1955-1961.
    李咏梅,顾国维,赵建夫,等.焦化废水中几种含氮杂环化合物缺氧降解机理.同济大学学报:自然科学版,2001,29(6):720-723.
    刘春,张磊,杨景亮,等.微气泡曝气中氧传质特性研究.环境工程学报,2010,4(03):585-589.
    刘春艳.纳米光催化及光催化环境净化材料.北京:化学工业出版社,2008.
    刘鸿,冷文华,吴合进,等.光电催化降解磺基水杨酸的研究.催化学报,2000,03):209-212.
    刘惠玲,李湘中.网状Ti/Ti02电极光电催化氧化若丹明B.环境科学,2002,23(4):47-51.
    刘晓艳,于卫东.溶胶-凝胶法改善芳纶织物的耐光性.纺织学报,2009,30(5):84-89.
    刘咏,赵仕林,李启彬,等.苯酚在氯离子体系中的电化学氧化研究.环境科学与技术,2006,29(11):21-24.
    孟凡生,王业耀,薛咏海.饮用水中硝酸盐的去除.净水技术,2005,24(3):34-37.
    闵延琴,樊彩梅,孙彦平.TiO2/ACF光催化降解水中苯酚的研究.太原理工大学学报,2002,23(06):575-577.
    倪珺,冷文华,施晶莹,等.光电协同催化降解水杨酸和苯胺:二氧化钛晶型的影响.环境科学学报,2005,25(06):757-859.
    曲久辉,刘会娟.水处理电化学原理与技术.北京:科学出版社,2007.
    任俊杰,张峰,付晓,等.提高Ti02光催化处理有机废水效率的方法.科技情报开发与经济,2009,19(12):159-160.
    施汉昌,刘季昂.补充碳源对厌氧生物处理2,4,6—三氯酚的影响.环境科学,1999,20(5):11-15.
    宋强,曲久辉.光电协同新技术降解饮用水中微量邻氯酚.科学通报,2003a,48(03):233-238.
    宋强,曲久辉.光电协同效应降解饮用水中邻氯酚的机理与动力学.中国科学(B辑化学),2003b,33(01):80-88.
    谭砂砾,张玉军,郑华德,等.蜂窝陶瓷负载Ti02光催化降解邻氯苯酚水溶液.环境科学与技术,2004,34(06):95-96.
    童桂华,彭昌盛,贾永刚,等.离子交换树脂去除水中硝酸盐的研究.工业用水与废水,2008,17(4):73-76.
    王海燕,蒋展鹏,杨宏伟.电助光催化氧化苯甲酰胺.中国环境科学,2004a,24(6):674-678.
    王海燕,蒋展鹏,杨宏伟.电助光催化氧化反应器的类型和设计要点.环境污染治理技术与设备,2005,6(10):84-87.
    王海燕,蒋展鹏,余刚,等.光电协同催化氧化苯甲酸的试验研究.环境科学,2004b,25(1):25-29.
    王怡中.二氧化钛悬浆体系中八种染料的太阳光催化氧化降解.催化学报,2000,21(4):327-331.
    王怡中,符雁.平板构型太阳光催化反应系统中甲基橙降解脱色研究.环境科学学报,1999,19(2):142-146.
    王怡中,符雁.甲基检溶液多相光催化降解研究.环境科学,1998,19(1):1-4.
    王怡中,胡春,汤鸿霄.在Ti02催化剂上苯酚光催化氧化反应研究1.降解产物分布及反应途径.环境科学学报,1995,15(04):472-479.
    王怡中,胡春,汤鸿霄.在Ti02催化剂上苯酚光催化氧化反应研究2.多相光催化氧化与直接光解反应的比较.环境科学学报,1998,18(03):38-42.
    魏宏斌,严煦世.二氧化钛膜光催化氧化苯酚.上海环境科学,1995,14(10):31-34.
    武婕.含酚废水光催化处理的环境健康风险评价研究:[太原理工大学],2005.
    辛勤.固体催化剂研究方法.北京:科学出版社,2004.
    徐锐,姚大虎.负载型TiO2光催化降解有机及无机废水中的氨氮.河南科技大学学报(自然科学版),2003a,34(3):98-100.
    徐锐,尹卫平.光催化氧化法处理氨氮废水的研究.郑州工程学院学报,2003b,16(03):84-87.
    杨辉,卢文庆.应用电化学.北京:科学出版社,2001.
    张冬梅,彭先福,李忠.紫外光助O3、H2O2氧化降解炼油废碱水的可行性研究.环境污染 治理技术与设备,2004,5(7):22-24.
    张留学.具有光催化活性的纳米TiO2复合抗菌纤维的低温制备及性能研究:[兰州大学],2006.
    张少辉,陈健松,等.地下水中硝酸盐去除的新工艺.中国沼气,2002,20(3):13-16.
    张音波,余煜棉,刘千钧.多相光催化降解染料废水的研究进展.工业水处理,2001,18(12):1-5.
    张志翔,陈亮,包南,等.丝光沸石负载二氧化钛膜光催化降解邻氯苯酚.水资源保护,2006,32(02):59-61.
    赵听,汪严明,叶正芳,等.固定化曝气生物滤池处理采油废水.环境科学,2006,16(6):1155-1161.
    郑展望,雷乐成,邵振华,等. UV/Fenton反应体系Fe2+固定化技术及催化反应工艺研究.高效化学上程学报,2004,18(6):739-744.
    中华人民共和国水利部.2008年中国水资源公报.北京:水利水电出版社,2009.
    周静涛,王弘,黄伯标,等.纳米晶体光催化剂降解染料废水的最新研究进展.人工晶体学报,2004,18(05):736-740.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700