阈值光电子—光离子符合速度成像及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分子吸收真空紫外光子后会经常发生光电离和光解离等现象,这些现象广泛存在于星际空间、大气化学和等离子体等领域之中,是化学反应动力学研究中的一个重要内容。从分子层次上分析和研究这些现象,能够帮助人们加深认识和理解这些现象的物理本质。光电子—光离子符合(PEPICO)技术同时检测光电离过程中产生的光电子和光离子,可以提供反应物的内能态、解离速率、产物的通道分支比和能量分布等信息。当前研究中采用的阈值光电子—光离子符合(TPEPICO)速度成像结合了同步辐射、符合光谱和速度成像等技术的优势,利用双速度聚焦电场同时对光电子和光离子进行控制,检测零动能的阈值光电子及其符合的离子,对电子和离子都具有较高的收集效率和能量分辨率,可以得到产物离子的全部三维速度分布等信息,能够在较大能量范围内制备具有态选择的离子,并进一步研究其解离动力学。本论文的研究内容主要包括如下几个部分:
     1)阈值光电子—光离子符合速度成像谱仪的研制。我们发展了阈值光电子—光离子符合速度成像技术,首次在阈值光电子—光离子符合技术中对光电子和光离子同时进行速度成像控制,提高了电子和离子的收集效率和能量分辨率,可以获得起始于不同内能态的离子解离碎片图像,精确得到离子的三维速度分布等信息。其中,通过引入排斥型的速度聚焦电场,使光电子所成的图像得到了有效放大,减少了热电子对阈值光电子谱和阈值光电子—光离子符合测量的影响。经实验测量证实,当前阈值光电子谱的能量分辨为9 meV(半高全宽),符合成像谱仪的质谱分辨本领(M/DM)大于900,离子速度成像的能量分辨率(DE/E)优于3%,能够与传统的激光离子速度成像相媲美。
     2)阈值光电子—光离子符合速度成像技术的改进。尽管排斥型速度聚焦电场对热电子具有较强的抑制能力,但仍然不能完全消除热电子对阈值光电子检测的影响,特别是在分子的Franck-Condon gap区域中,自电离产生的热电子几率往往会远大于直接光电离的几率。我们通过改进电子面罩和电子收集阳极的形状和结构,由同一电子检测器MCP接收阈值光电子和热电子信号,然后采用相减的方法来消除热电子对阈值光电子谱的影响,能够获得几乎“纯净”的阈值光电子谱。
     此外,为克服符合实验中误符合事件和分子束的速度分布对图像的影响,我们发展了符合图像的数据处理方法,如误符合图像的扣除、去卷积等。NO~+(c~3P, v~+=0)离子解离碎片N~+离子符合时间切片图像的数据处理证明这一方法是可靠的。
     3)阈值光电子—光离子符合速度成像技术的应用。采用符合速度成像技术,我们开展了一些分子的光电离/光解离电离实验,获得了相应的阈值光电子谱、TPEPICO质谱、TPEPICO光谱和TPEPICO成像等结果,讨论了相关离子的解离机理。
     首先,我们开展了具有振动态选择O2~+(B~2Σ_g~ˉ, v~+=0~6)离子的解离动力学研究。通过获得O_2~+(B~2Σ_g~ˉ, v~~+)离子解离产生的O~~+碎片的符合时间切片图像,得到了其速率和角向分布等信息。实验结果显示,在该能量范围内,O2~+(B~2Σ_g~ˉ, v~+)离子会分别沿着O~+(4S)~+O~(3P)和O~+(4S)~+O~(1D)两个通道进行解离,其通道分支比会随着振动量子数而剧烈改变。结合理论计算得到的势能曲线,我们提出了新的O_2~+(B2Σgˉ)离子的预解离机理。
     其次,我们开展了N2O分子经离子C2Σ~+电子态的光解离-电离实验研究。在N2O~+(C2Σ~+)电子态的能量范围内,NO~+,N2~+,O~+和N~+四种碎片离子同时出现,并且NO~+和N~+离子始终是最主要的解离产物。其中,NO~+碎片离子的符合时间切片成像研究表明,N2O~+(C2Σ~+)离子会沿着NO~+(X~1Σ~+)~+N~(2P)和NO~+(X~1Σ~+)~+N~(2D)两个通道解离,而且两通道产生的NO~+碎片振动布居十分相似。此外,两个通道的分支比表现出对N2O~+(C2Σ~+)离子的振动激发模式的依赖性,如反对称伸缩振动模的激发能够明显促进NO~+(X1Σ~+)~+N(2D)通道的解离几率。获得NO~+碎片离子沿各解离通道的各向异性参数均接近于0.5,意味着解离过程具有平行解离的特征。结合势能曲线图,我们进一步讨论和推测了N2O~+(C2Σ~+)离子的解离机理。
     我们还开展了CH3Cl分子的光解离-电离实验研究。作为典型的具有高度对称性的离子,CH3Cl~+(X2E)电子基态具有稳定的结构,A2A1和B2E电子激发态的CH3Cl~+离子会完全解离生成CH3~+和CH2Cl~+等碎片。我们通过测量CH3~+碎片离子的符合图像,得到CH3Cl~+离子各电子态解离过程中释放的平动能和碎片内能分布等信息。其中,CH3Cl~+(A2A1)离子解离过程中伴随有较大平动能的释放,具有明显的平行解离趋势,产生v2振动模激发的CH3~+碎片离子;而由CH3Cl~+(B2E)离子解离得到的CH3~+碎片离子的平动能分布没有显示出明显的的振动结构。基于势能曲线,我们讨论了CH3Cl~+离子A2A1和B2E电子态的解离机理,其中A2A1电子态的解离是典型的快速直接解离,而B2E电子态则是先通过内转换过程跃迁到X2E基态的高振动能级,再统计解离生成CH3~+碎片离子。
     最后,我们开展了符合光谱技术在混合物体系中的初步应用研究。通过开展Xe/Ar/Ne惰性混合气体的阈值光电子谱、符合质谱和具有质量选择性的符合光谱测量,证实了混合物中各组成分子的符合光谱与其纯净样品的阈值光电子谱相同,各组分的光谱之间彼此互不干扰。因此,质量选择的阈值光电子—光离子符合光谱是开展混合物分子体系光电离和解离实验的有效工具,可以期望被应用于团簇、自由基和燃烧化学等领域内的研究。
When a molecule absorbs a vacuum ultraviolet (VUV) photon, the phenomena of photoionization and photodissociation are usually the predominant processes, which widely exist in the areas of interstellar space, atmospheric chemistry and plasma, and are also the important parts of chemical reaction dynamics. The detailed study of the phenomena at molecular scale can improve our understanding and knowledge. Photoelectron-photoion coincidence (PEPICO) detected electrons and ions in photoionization, and could provide a lot of infromation at one time, for example, internal state of reactor, speed of dissocation, branching ratio and energy distribution of products. Threshold photoelectron-photoion coincidence (TPEPICO) velocity imaging combined the characteristics of synchrotron radiation, coincidence spectroscopy and velocity map imaging, and collected threshold photoelectrons and corresponding photoions, which was powerful to prepare and analyze the dissociation of widely state-selected ions. A double velocity map imaging was used in TPEPICO velocity imaging to control the trajectories of electrons and ions simultaneously, and could improve their collection efficiencies and energy resolutions. This dissertation mainly includes the following parts:
     1) Construction of TPEPICO velocity imaging spectrometer. A TPEPICO velocity imaging spectrometer, in which a set of open electron and ion lenses were utilized to map velocity images of electrons and ions simultaneously, was constructed at the U14-A beamline of National Synchrotron Radiation Laboratory. It had the ability that the full 3-Dimensional velocity distribution of products dissociated from definite state-selected ions could be obtained conveniently. In order to suppress the contribution of hot electrons in threshold photoelectron spectroscopy (TPES) and mass-selected TPEPICO spectroscopy, a repelling electric field using extra lens, instead of traditional accelerating field, was applied to magnify images of electrons. The typical energy resolution of TPES was measured to be 9 meV (FWHM) as shown on the 2P1/2 ionization of argon. The measured mass resolving power for the present TPEPICO imaging spectrometer was above 900 of M/ΔM, and the kinetic energy resolution of TPEPICO image was better than 3% ofΔE/E.
     2) Advancements of TPEPICO velocity imaging. The repelling electric field could suppress hot electrons more efficiently than the accelerating field, but the goal of completely filtering hot electrons in TPES was still beyond the ability of the TPEPICO imaging spectrometer. Especially in the region of Franck-Condon gap, sometimes the probability of autoionization could be much stronger than direct photoionization. So to obtain a pure TPES without the contamination of hot electrons, the subtraction method of hot electrons should be a good choice. Unlike other groups’configuration, a couple of MCPs, simply refined electron mask and anodes were used to actualize the subtraction. After some TPES experiments, it was demonstrated that the subtraction method could work properly and efficiently with the repelling field.
     TPEPICO velocity imaging has some different characters with the traditional laser-based imaging, for example, the representation of false coincidence events and the influence of molecular beam in TPEPICO image, which would lead the obstacle that the experimental results could not obtain directly. To overcome the obstacle, data disposure schemes for TPEPICO image were also introduced in the article. As a representative, TPEPICO 3D time-sliced image of N~+ fragment ions dissociated from state-selected NO~+(c3P, v~+=0) ions was chosen to exhibit the effects of the data disposure schemes.
     3) Applications of TPEPICO velocity imaging. Using synchrotron radiation as light source, some TPEPICO velocity imaging studies were performed to investigate the photoionization and dissociative photoionization processes of molecules. TPES, TPEPICO time-of-flight mass spectra, mass-selected TPEPICO spectra and TPEPICO images were obtained experimentally, and the dissociation dynamics of ions were also discussed in the dissertation.
     First, the dissociation of vibrational state-selected O2~+(B2Σgˉ, v~+=0~6) ions was investigated by TPEPICO velocity imaging. Both speed and angular distributions of O~+ fragment ions dissociated from individually vibronic levels of O2~+(B2Σgˉ) were obtained directly from TPEPICO 3D time-sliced images. Two channels, O~+(4S)~+O(3P) and O~+(4S)~+O(1D), were respectively observed for the dissociation of O2~+(B2Σgˉ, v~+) ions, and their branching ratios were found dramatically dependent on the vibrational states. Based on the calculated potential energy curves, a new intersection mechanism was suggested for the predissociation of O2~+( B2Σgˉ, v~+=0~6) ions.
     Second, the dissociative photoionization of N2O molecule via the C2Σ~+ ionic state was studied by TPEPICO velocity imaging. Four fragment ions, NO~+, N2~+, O~+ and N~+, were observed respectively, and the NO~+ and N~+ ions were always dominant in the whole excitation energy range. Subsequently, the TPEPICO 3D time-sliced images of NO~+ dissociated from vibrational state-selected N2O~+(C2Σ~+) ions were recorded. Thus kinetic and internal energy distributions of NO~+ fragments were obtained directly, suggesting that the NO~+ fragments were formed via both NO~+(X1Σ~+)~+N(2P) and NO~+(X1Σ~+)~+N(2D) dissociation channels. Almost the same vibrational population reversions were identified for the both dissociation pathways. Interestingly, the obtained branching ratios of the two channels exhibited some dependence on the excited vibrational mode of N2O~+(C2Σ~+), in which the excited asymmetrical stretching potentially promoted dissociation possibility along the NO~+(X1Σ~+)~+N(2D) pathway. In addition, the measured anisotropic parameters of NO~+ were close to 0.5, indicating that the C2Σ~+ state was fully pedissociative indeed with a tendency of parallel dissociation, and therefore the corresponding predissociation mechanisms for the N2O~+(C2Σ~+) ions were depicted.
     Third, as a prototype of high symmetric molecule, the dissociation of CH3Cl~+ ions was also explored by TPEPICO velocity imaging. The ground CH3Cl~+(X2E) state was stable, and both A2A1 and B2E ionic states could dissociate to form CH3~+ and CH2Cl~+ fragment ions. The kinetic energy released distribution and angular distribution of CH3~+ fragment ions were acquired directly from TPEPICO images. The experimental results showed that the CH3~+ fragment ions dissociated from CH3Cl~+(A2A1) ions exhibited with a large kinetic energy released distribution, and displayed an obvious excitation of v2 vibrational mode. However, after increased the photon energy, the image and kinetic energy released distribution of CH3~+ fragment ions dissociated from CH3Cl~+(B2E) state did not show any structure. With the help of previously calculated potential energy curve, the changeable dissociation dynamics of A2A1 and B2E states were also discussed. It was found that the dissociation of A2A1 state followed a rapid direct process, whereas the B2E state performed internal conversion to the ground X2E state and then statistically dissociated.
     Last, TPEPICO spectroscopy was applied to study the mixture of Xe/Ar/Ne noble gases. TPES, TPEPICO time-of-flight mass spectra and TPEPICO spectra of the mixture gases were obtained experimentally. It was found that the mass-selected TPEPICO spectra for every components of the mixture was very similar to the TPES of the corresponding pure sample, and every TPEPICO spectra did not interfere with each other. The above consequence demonstrated that the mass-selected TPEPICO spectroscopy had the power to study the components of mixture, and we hoped it could be applied to investigate clusters, free radicals, combustion chemistry, and other fields in the future.
引文
[1] T. Baer, W. L. GHase, Unimolecular reaction dynamics: theory and experiments. New York, Oxford University Press, Inc. 1996.
    [2] R. Schinke, Photodissociation dynamics. Cambridge, Cambridge University Press 1993.
    [3]马兴孝,孔繁敖,激光化学.合肥,中国科学技术大学出版社1990.
    [4] G. Herzberg, Molecular spectra and molecular structure III. Spectra of polyatomic molecules. New York, Van Nostrand Reinhold Company 1967.
    [5] L. McDonnell, A. J. R. Heck, J. Mass Spectrom. 33, 415 (1998).
    [6] A. J. R. Heck, D. W. Chandler, Annu. Rev. Phys. Chem. 46, 335 (1995).
    [7] R. N. Zare, D. R. Herschbach, Proc. IEEE 51, 173 (1963).
    [8] R. N. Zare, Mol. Photochem. 4, 1 (1972).
    [9] G. Inoue, M. Kawasaki, H. Sato, et al, J. Chem. Phys. 87, 5722 (1987).
    [10] W. M. Gerbalt, Annu. Rev. Phys. Chem. 28, 323 (1977).
    [11] C. Y. Ng, Annu. Rev. Phys. Chem. 53, 101 (2002).
    [12] P. M. Johnson, C. E. Otis, Annu. Rev. Phys. Chem. 32, 139 (1981).
    [13] M. N. R. Ashfold, J. D. Howe, Annu. Rev. Phys. Chem. 45, 57 (1994).
    [14] P. M. Guyon, I. Nenner, Appl. Opt. 19, 4068 (1980).
    [15] Y. Hatano, Phys. Rep. 313, 110 (1999).
    [16] E. W. Schlag, Time-of-flight mass spectrometry and its applications. Amsterdam, Elsevier 1994.
    [17] U. Boesl, R. Weinkauf, E. W. Schlag, Int. J. Mass Spectrom. Ion Processes 112, 121 (1992).
    [18] B. A. Mamyrin, Int. J. Mass spectrom. 206, 251 (2001).
    [19] B. A. Mamyrin, V. I. Karataev, D. V. Shmikk, et al, Sov. Phys. JETP 37, 45 (1973).
    [20] T. Bergmann, T. P. Martin, H. Schaber, Rev. Sci. Instrum. 60, 792 (1989).
    [21] W. C. Wiley, I. H. Mclaren, Rev. Sci. Instrum. 26, 1150 (1955).
    [22] J. H. D. Eland, Photoelectron spectroscopy. An introduction to ultraviolet photoelectron spectroscopy in the gas phase. Southampton, Butterworth & Co Ltd. 1984.
    [23] J. W. Rabalais, Principles of ultraviolet photoelectron spectroscopy. New York, John Wiley& Sons, Inc. 1977.
    [24] T. Baer, Annu. Rev. Phys. Chem. 40, 637 (1989).
    [25] T. Baer, Gas Phase Ion Chemistry. New York, Academic 1979, p 153.
    [26] P. M. Guyon, Laser Chem. 11, 131 (1991).
    [27] I. Fischer, R. Lindner, K. Mullerdethlefs, J. Chem. Soc., Faraday Trans. 90, 2425 (1994).
    [28] R. Lindner, H. J. Dietrich, K. Mullerdethlefs, Chem. Phys. Lett. 228, 417 (1994).
    [29] A. Eppink, D. H. Parker, Rev. Sci. Instrum. 68, 3477 (1997).
    [30] T. Baer, Y. Li, Int. J. Mass spectrom. 219, 381 (2002).
    [31] B. Brehm, E. V. Puttkamer, Z. Naturforsch. 22A, 8 (1967).
    [32] C. J. Danby, J. H. D. Eland, Int. J. Mass Spectrom. Ion Phys. 8, 153 (1972).
    [33] J. H. D. Eland, Int. J. Mass Spectrom. Ion Phys. 8, 143 (1972).
    [34] G. K. Jarvis, K. M. Weitzel, M. Malow, et al, Rev. Sci. Instrum. 70, 3892 (1999).
    [35] G. A. Garcia, H. Soldi-Lose, L. Nahon, Rev. Sci. Instrum. 80, 023102 (2009).
    [36] A. Bodi, M. Johnson, T. Gerber, et al, Rev. Sci. Instrum. 80, 034101 (2009).
    [37] R. E. Continetti, Annu. Rev. Phys. Chem. 52, 165 (2001).
    [38] F. R. Elder, A. M. Gurewitsch, R. V. Langmuir, et al, Phys. Rev. 71, 829 (1947).
    [39]马礼敦,杨福家,同步辐射应用概论.上海,复旦大学出版社2001.
    [40]盛六四,光化学站新实验方法及一些分子同步辐射光电离研究.博士学位论文,中国科学技术大学,合肥, (1998).
    [41] D. W. Chandler, P. L. Houston, J. Chem. Phys. 87, 1445 (1987).
    [42] R. N. Strickland, D. W. Chandler, Appl. Opt. 30, 1811 (1991).
    [43] L. M. Smith, D. R. Keefer, J. Quant. Spectrosc. Radiat. Transfer 39, 367 (1988).
    [44] T. Bergmann, T. P. Martin, H. Schaber, Rev. Sci. Instrum. 60, 347 (1989).
    [45] J. J. Lin, J. G. Zhou, W. C. Shiu, et al, Rev. Sci. Instrum. 74, 2495 (2003).
    [46] G. R. Wu, W. Q. Zhang, H. L. Pan, et al, Rev. Sci. Instrum. 79, 094104 (2008).
    [47] M. L. Lipciuc, A. J. van den Brom, L. Dinu, et al, Rev. Sci. Instrum. 76, 123103 (2005).
    [48] V. Dribinski, A. Ossadtchi, V. A. Mandelshtam, et al, Rev. Sci. Instrum. 73, 2634 (2002).
    [49] C. R. Gebhardt, T. P. Rakitzis, P. C. Samartzis, et al, Rev. Sci. Instrum. 72, 3848 (2001).
    [50] M. N. R. Ashfold, N. H. Nahler, A. J. Orr-Ewing, et al, Phys. Chem. Chem. Phys. 8, 26 (2006).
    [51] D. Townsend, M. P. Minitti, A. G. Suits, Rev. Sci. Instrum. 74, 2530 (2003).
    [52] S. Kauczok, N. Godecke, A. I. Chichinin, et al, Rev. Sci. Instrum. 80, 083301 (2009).
    [53] A. I. Chichinin, K. H. Gericke, S. Kauczok, et al, Int. Rev. Phys. Chem. 28, 607 (2009).
    [1] T. Baer, Gas Phase Ion Chemistry. New York, Academic 1979, p 153.
    [2] T. Baer, W. L. GHase, Unimolecular reaction dynamics: theory and experiments. New York, Oxford University Press, Inc. 1996.
    [3] C. Y. Ng, Vacuum ultraviolet photoionization and photodissociation of molecules and clusters. Singpore, Word Scientific 1991.
    [4] C. Y. Ng, Annu. Rev. Phys. Chem. 53, 101 (2002).
    [5]齐飞,中国科学技术大学学报37, 414 (2007).
    [6] C. Y. Ng, Photoionization and photodetachment, Advanced series in Physical Chemistry Vol. 10. Singapore, Word Scientific 1999.
    [7] T. A. Cool, A. McIlroy, F. Qi, et al, Rev. Sci. Instrum. 76, 094102 (2005).
    [8] J. N. Shu, K. R. Wilson, M. Ahmed, et al, Rev. Sci. Instrum. 77, 043106 (2006).
    [9] C. Q. Huang, B. Yang, R. Yang, et al, Rev. Sci. Instrum. 76, 126108 (2005).
    [10] B. Brehm, E. V. Puttkamer, Z. Naturforsch. 22A, 8 (1967).
    [11] J. H. D. Eland, Int. J. Mass Spectrom. Ion Phys. 12, 389 (1973).
    [12] T. Baer, W. B. Peatman, E. W. Schlag, Chem. Phys. Lett. 4, 243 (1969).
    [13] R. Spohr, P. M. Guyon, W. A. Chupka, et al, Rev. Sci. Instrum. 42, 1872 (1971).
    [14] Stockbau.R, J. Chem. Phys. 58, 3800 (1973).
    [15] A. Bodi, M. Johnson, T. Gerber, et al, Rev. Sci. Instrum. 80, 034101 (2009).
    [16] G. A. Garcia, H. Soldi-Lose, L. Nahon, Rev. Sci. Instrum. 80, 023102 (2009).
    [17] R. Thissen, C. Alcaraz, J. Hepburn, et al, Int. J. Mass spectrom. 199, 201 (2000).
    [18] M. Richardviard, O. Atabek, O. Dutuit, et al, J. Chem. Phys. 93, 8881 (1990).
    [19] G. K. Jarvis, K. M. Weitzel, M. Malow, et al, Rev. Sci. Instrum. 70, 3892 (1999).
    [20] K. M. Weitzel, J. Mahnert, Int. J. Mass spectrom. 214, 175 (2002).
    [21] B. Sztaray, T. Baer, Rev. Sci. Instrum. 74, 3763 (2003).
    [22] D. P. Seccombe, R. Y. L. Chim, G. K. Jarvis, et al, Phys. Chem. Chem. Phys. 2, 769 (2000).
    [23] R. I. Hall, A. McConkey, K. Ellis, et al, Meas. Sci. Technol. 3, 316 (1992).
    [24] P. A. Hatherly, M. Stankiewicz, K. Codling, et al, Meas. Sci. Technol. 3, 891 (1992).
    [25] T. Baer, P. M. Guyon, I. Nenner, et al, J. Chem. Phys. 70, 1585 (1979).
    [26] F. Merkt, P. M. Guyon, J. Chem. Phys. 99, 3400 (1993).
    [27] F. Merkt, P. M. Guyon, J. Hepburn, Chem. Phys. 173, 479 (1993).
    [28] K. M. Weitzel, F. Guthe, Chem. Phys. Lett. 251, 295 (1996).
    [29] G. K. Jarvis, R. C. Shiell, J. W. Hepburn, et al, Rev. Sci. Instrum. 71, 1325 (2000).
    [30] X. M. Qian, K. C. Lau, G. Z. He, et al, J. Chem. Phys. 120, 8476 (2004).
    [31] A. Eppink, D. H. Parker, Rev. Sci. Instrum. 68, 3477 (1997).
    [32] M. N. R. Ashfold, N. H. Nahler, A. J. Orr-Ewing, et al, Phys. Chem. Chem. Phys. 8, 26 (2006).
    [33] T. Baer, Y. Li, Int. J. Mass spectrom. 219, 381 (2002).
    [34] T. Baer, B. Sztaray, J. P. Kercher, et al, Phys. Chem. Chem. Phys. 7, 1507 (2005).
    [35] A. Bodi, B. Sztaray, T. Baer, et al, Rev. Sci. Instrum. 78, 084102 (2007).
    [36] R. Vasudev, R. N. Zare, R. N. Dixon, J. Chem. Phys. 80, 4863078 (1984).
    [37] H. F. Xu, Y. Guo, Q. F. Li, et al, J. Chem. Phys. 121, 3069 (2004).
    [38] S. S. Wang, R. H. Kong, X. B. Shan, et al, J. Synchrotron Radiat. 13, 415 (2006).
    [39]单晓斌,孔蕊弘,王思胜, et al,中国科学技术大学学报39, 922 (2009).
    [40]张泰昌,朱爱国,洪新, et al,中国科学技术大学学报37, 582 (2007).
    [41] J. J. Lin, J. G. Zhou, W. C. Shiu, et al, Rev. Sci. Instrum. 74, 2495 (2003).
    [42] J. L. Wiza, Nucl. Instrum. Methods 162, 587 (1979).
    [43] J. A. Davies, J. E. LeClaire, R. E. Continetti, et al, J. Chem. Phys. 111, 1 (1999).
    [44] H. L. Offerhaus, C. Nicole, F. Lepine, et al, Rev. Sci. Instrum. 72, 3245 (2001).
    [45] J. L. Franklin, P. M. Hierl, D. A. AWhan, J. Chem. Phys. 47, 3148 (1967).
    [46] G. A. Garcia, L. Nahon, C. J. Harding, et al, Rev. Sci. Instrum. 76, 053302 (2005).
    [47] C. R. Gebhardt, T. P. Rakitzis, P. C. Samartzis, et al, Rev. Sci. Instrum. 72, 3848 (2001).
    [48] D. Townsend, M. P. Minitti, A. G. Suits, Rev. Sci. Instrum. 74, 2530 (2003).
    [49] W. C. Wiley, I. H. Mclaren, Rev. Sci. Instrum. 26, 1150 (1955).
    [50] T. Bergmann, T. P. Martin, H. Schaber, Rev. Sci. Instrum. 60, 347 (1989).
    [51] A. Osterwalder, M. J. Nee, J. Zhou, et al, J. Chem. Phys. 121, 6317 (2004).
    [52] M. Evans, C. Y. Ng, C. W. Hsu, et al, J. Chem. Phys. 106, 978 (1997).
    [53] D. Irimia, R. Kortekaas, M. H. M. Janssen, Phys. Chem. Chem. Phys. 11, 3958 (2009).
    [54] N. F. Ramsey, Molecular beams. New York, Oxford University 1985.
    [55] H. F. Xu, Y. Guo, Q. F. Li, et al, Acta Phys. Sin. 53, 1027 (2004).
    [56] L. M. Zhang, F. Wang, Z. Wang, et al, J. Phys. Chem. A 108, 1342 (2004).
    [57] B. Buijsse, W. J. van der Zande, A. Eppink, et al, J. Chem. Phys. 108, 7229 (1998).
    [58] T. Akahori, Y. Morioka, M. Watanabe, et al, J. Phys. B 18, 2219 (1985).
    [59] M. Richardviard, O. Dutuit, M. Lavollee, et al, J. Chem. Phys. 82, 4054 (1985).
    [60] M. Evans, S. Stimson, C. Y. Ng, et al, J. Chem. Phys. 110, 315 (1999).
    [61] V. Dribinski, A. Ossadtchi, V. A. Mandelshtam, et al, Rev. Sci. Instrum. 73, 2634 (2002).
    [1] M. C. R. Cockett, J. M. Dyke, H. Zamanpour, Vacuum ultraviolet photoionization and photodissociation of molecules and clusters. Singapore, World Scientific 1991, 43.
    [2] F. I. Vilesov, B. L. Kurbatov, A. N. Terenin, Sov. Phys. Dokl. 6, 490 (1961).
    [3] M. I. Al-Joboury, D. W. Turner, J. Chem. Phys. 37, 3007 (1962).
    [4] J. L. Gardner, J. A. R. Samson, J. Chem. Phys. 61, 5472 (1974).
    [5] J. L. Gardner, J. A. R. Samson, J. Chem. Phys. 62, 4460 (1975).
    [6] J. A. R. Samson, J. L. Gardner, J. Chem. Phys. 67, 755 (1977).
    [7] V. Kumar, E. Krishnakumar, J. Electron. Spectrosc. Relat. Phenom. 22, 109 (1981).
    [8] J. H. D. Eland, Photoelectron spectroscopy. An introduction to ultraviolet photoelectron spectroscopy in the gas phase. Butterworth & Co Ltd 1984.
    [9] R. Locht, B. Leyh, K. Hottmann, et al, Chem. Phys. 220, 217 (1997).
    [10] N. S. Shuman, M. A. Ochieng, B. Sztaray, et al, J. Phys. Chem. A 112, 5647 (2008).
    [11] T. Baer, Gas phase ion chemistry. New York, Academic 1979, p 153.
    [12] A. Held, E. W. Schlag, Acc. Chem. Res. 31, 467 (1998).
    [13] P. Zhang, J. Li, Y. X. Mo, J. Phys. Chem. A 111, 8531 (2007).
    [14] Y. Song, M. Evans, C. Y. Ng, et al, J. Chem. Phys. 111, 1905 (1999).
    [15] R. Spohr, P. M. Guyon, W. A. Chupka, et al, Rev. Sci. Instrum. 42, 1872 (1971).
    [16]高辉,张允武,盛六四, et al,原子与分子物理学报13, 150 (1996).
    [17] G. C. King, M. Zubek, P. M. Rutter, et al, J. Phys. E 20, 440 (1987).
    [18] R. I. Hall, A. McConkey, K. Ellis, et al, Meas. Sci. Technol. 3, 316 (1992).
    [19] A. S. Werner, T. Baer, J. Chem. Phys. 62, 2900 (1975).
    [20] K. M. Weitzel, F. Guthe, Chem. Phys. Lett. 251, 295 (1996).
    [21] G. K. Jarvis, Y. Song, C. Y. Ng, Rev. Sci. Instrum. 70, 2615 (1999).
    [22] A. Eppink, D. H. Parker, Rev. Sci. Instrum. 68, 3477 (1997).
    [23] T. Baer, Y. Li, Int. J. Mass spectrom. 219, 381 (2002).
    [24] B. Sztaray, T. Baer, Rev. Sci. Instrum. 74, 3763 (2003).
    [25] T. Baer, B. Sztaray, J. P. Kercher, et al, Phys. Chem. Chem. Phys. 7, 1507 (2005).
    [26] A. F. Lago, T. Baer, J. Phys. Chem. A 110, 3036 (2006).
    [27] A. Bodi, M. Johnson, T. Gerber, et al, Rev. Sci. Instrum. 80, 034101 (2009).
    [28] G. A. Garcia, H. Soldi-Lose, L. Nahon, Rev. Sci. Instrum. 80, 023102 (2009).
    [29] X. F. Tang, X. G. Zhou, M. L. Niu, et al, Rev. Sci. Instrum. 80, 113101 (2009).
    [30] A. Osterwalder, M. J. Nee, J. Zhou, et al, J. Chem. Phys. 121, 6317 (2004).
    [31] S. S. Wang, R. H. Kong, X. B. Shan, et al, J. Synchrotron Radiat. 13, 415 (2006).
    [32] X. F. Tang, M. L. Niu, X. G. Zhou, et al, Acta Phys. Sin. 59, 6944 (2010).
    [33] X. F. Tang, X. G. Zhou, M. L. Niu, et al, J. Chem. Phys. 134, 054312 (2011).
    [34] J. L. Wiza, Nucl. Instrum. Meth. 162, 587 (1979).
    [35] M. B. Huffman, J. C. Larrabee, Y. Tanaka, J. Chem. Phys. 40, 356 (1964).
    [36] M. Richardviard, O. Dutuit, M. Lavollee, et al, J. Chem. Phys. 82, 4054 (1985).
    [37] F. Merkt, P. M. Guyon, J. Hepburn, Chem. Phys. 173, 479 (1993).
    [38] K. Ellis, R. I. Hall, L. Avaldi, et al, J. Phys. B 27, 3415 (1994).
    [39] T. Akahori, Y. Morioka, T. Tanaka, et al, J. Chem. Phys. 107, 4875 (1997).
    [40] K. Tanaka, I. Tanaka, J. Chem. Phys. 59, 5042 (1973).
    [41] P. M. Dehmer, W. A. Chupka, J. Chem. Phys. 62, 4525 (1975).
    [42] W. C. Price, G. Collins, Phys. Rev. 48, 714 (1935).
    [1] X. F. Tang, X. G. Zhou, M. L. Niu, et al, Rev. Sci. Instrum. 80, 113101 (2009).
    [2] X. F. Tang, M. L. Niu, X. G. Zhou, et al, Acta Phys. Sin. 59, 6940 (2010).
    [3] C. Y. Ng, Annu. Rev. Phys. Chem. 53, 101 (2002).
    [4] T. Baer, Annual Reviews in Physical Chemistry 40, 637 (1989).
    [5] A. Eppink, D. H. Parker, Rev. Sci. Instrum. 68, 3477 (1997).
    [6] H. Wang, X. G. Zhou, S. L. Liu, et al, J. Chem. Phys. 132, 244309 (2010).
    [7] M. N. R. Ashfold, N. H. Nahler, A. J. Orr-Ewing, et al, Phys. Chem. Chem. Phys. 8, 26 (2006).
    [8] Y. Z. Liu, B. F. Tang, H. Shen, et al, Opt. Express 18, 5791 (2010).
    [9] Y. S. Hao, C. Zhou, Y. X. Mo, J. Phys. Chem. A 113, 2294 (2009).
    [10] W. Q. Zhang, G. R. Wu, H. L. Pan, et al, J. Phys. Chem. A 113, 4652 (2009).
    [11] T. Baer, Gas Phase Ion Chemistry. New York, Academic 1979.
    [12] T. Baer, Y. Li, Int. J. Mass spectrom. 219, 381 (2002).
    [13] A. I. Chichinin, T. Einfeld, C. Maul, et al, Rev. Sci. Instrum. 73, 1856 (2002).
    [14] A. Vredenborg, W. G. Roeterdink, M. H. M. Janssen, Rev. Sci. Instrum. 79, 063108 (2008).
    [15] J. D. Sun, X. B. Shan, F. Y. Liu, et al, Chin. J. Chem. Phys. 22, 509 (2010).
    [16] X. F. Tang, M. L. Niu, X. G. Zhou, et al, J. Chem. Phys. 134, 054312 (2011).
    [17] S. S. Wang, R. H. Kong, X. B. Shan, et al, J. Synchrotron Radiat. 13, 415 (2006).
    [18] O. Edqvist, L. Asbrink, E. Lindholm, Z. Naturforsch. 26A, 1407 (1971).
    [19] J. H. D. Eland, J. Chem. Phys. 70, 2926 (1978).
    [20] Y. Lu, W. C. Stolte, J. A. R. Samson, J. Electron. Spectrosc. Relat. Phenom. 87, 109 (1997).
    [21] J. H. D. Eland, E. J. Duerr, Chem. Phys. 229, 1 (1998).
    [22] G. K. Jarvis, M. Evans, C. Y. Ng, et al, J. Chem. Phys. 111, 3058 (1999).
    [23] J. L. Franklin, P. M. Hierl, D. A. AWhan, J. Chem. Phys. 47, 3148 (1967).
    [24] K. M. Weitzel, J. Mahnert, Int. J. Mass spectrom. 214, 175 (2002).
    [25] D. P. Seccombe, R. Y. L. Chim, G. K. Jarvis, et al, Phys. Chem. Chem. Phys. 2, 769 (2000).
    [26] F. Guthe, M. Malow, K. M. Weitzel, et al, Int. J. Mass spectrom. 172, 47 (1998).
    [27] D. Townsend, M. P. Minitti, A. G. Suits, Rev. Sci. Instrum. 74, 2530 (2003).
    [28] C. R. Gebhardt, T. P. Rakitzis, P. C. Samartzis, et al, Rev. Sci. Instrum. 72, 3848 (2001).
    [29] T. Horio, T. Suzuki, Rev. Sci. Instrum. 80, 013706 (2009).
    [30] D. Irimia, R. Kortekaas, M. H. M. Janssen, Phys. Chem. Chem. Phys. 11, 3958 (2009).
    [31] R. S. Gao, P. S. Gibner, J. H. Newman, et al, Rev. Sci. Instrum. 55, 1756 (1984).
    [32] M. Galanti, R. Gott, J. F. Renaud, Rev. Sci. Instrum. 42, 1818 (1971).
    [33] M. L. Lipciuc, A. J. van den Brom, L. Dinu, et al, Rev. Sci. Instrum. 76, 123103 (2005).
    [34] R. N. Zare, Mol. Photochem. 4, 1 (1972).
    [35] F. Y. Wang, M. L. Lipciuc, X. M. Yang, et al, Phys. Chem. Chem. Phys. 11, 2234 (2009).
    [36] A. Lafosse, M. Lebech, J. C. Brenot, et al, Phys. Rev. Lett. 84, 5987 (2000).
    [1] A. Eppink, D. H. Parker, Rev. Sci. Instrum. 68, 3477 (1997).
    [2] X. F. Tang, M. L. Niu, X. G. Zhou, et al, Acta Phys. Sin. 59, 6944 (2009).
    [3] X. F. Tang, X. G. Zhou, M. L. Niu, et al, Rev. Sci. Instrum. 80, 113101 (2009).
    [4] N. H. F. Beebe, E. W. Thulstrup, A. Andersen, J. Chem. Phys. 64, 2080 (1976).
    [5] M. Evans, S. Stimson, C. Y. Ng, et al, J. Chem. Phys. 110, 315 (1999).
    [6] N. Honjou, K. Tanaka, K. Ohno, et al, Mol. Phys. 35, 1569 (1978).
    [7] O. Edqvist, E. Lindholm, L. E. Selin, et al, Phys. Scr. 1, 25 (1970).
    [8] J. L. Gardner, J. A. R. Samson, J. Chem. Phys. 61, 5472 (1974).
    [9] P. M. Guyon, T. Baer, L. F. A. Ferreira, et al, J. Phys. B: At., Mol. Opt. Phys. 11, L141 (1978).
    [10] K. Ellis, R. I. Hall, L. Avaldi, et al, J. Phys. B: At., Mol. Opt. Phys. 27, 3415 (1994).
    [11] F. Merkt, P. M. Guyon, J. Phys. Chem. 99, 15775 (1995).
    [12] T. Tanaka, H. Yoshii, Y. Morioka, et al, J. Chem. Phys. 108, 6240 (1998).
    [13] C. W. Hsu, P. Heimann, M. Evans, et al, J. Chem. Phys. 106, 8931 (1997).
    [14] C. W. Hsu, M. Evans, S. Stimson, et al, Chem. Phys. 231, 121 (1998).
    [15] R. Bombach, A. Schmelzer, J. P. Stadelmann, Chem. Phys. 61, 215 (1981).
    [16] R. Bombach, A. Schmelzer, J. P. Stadelmann, Int. J. Mass Spectrom. Ion Processes 43, 211 (1982).
    [17] R. G. C. Blyth, I. Powis, C. J. Danby, Chem. Phys. Lett. 84, 272 (1981).
    [18] T. Akahori, Y. Morioka, M. Watanabe, et al, J. Phys. B: At., Mol. Opt. Phys. 18, 2219 (1985).
    [19] M. Richard-Viard, O. Dutuit, M. Lavollee, et al, J. Chem. Phys. 82, 4054 (1985).
    [20] A. Lafosse, J. C. Brenot, A. V. Golovin, et al, J. Chem. Phys. 114, 6605 (2001).
    [21] T. Baer, Annu. Rev. Phys. Chem. 40, 637 (1989).
    [22] J. L. Franklin, P. M. Hierl, D. A. Whan, J. Chem. Phys. 47, 3148 (1967).
    [23] K. M. Weitzel, J. Mahnert, Int. J. Mass spectrom. 214, 175 (2002).
    [24] H. L. Offerhaus, C. Nicole, F. Lepine, et al, Rev. Sci. Instrum. 72, 3245 (2001).
    [25] S. S. Wang, R. H. Kong, X. B. Shan, et al, J. Synchrotron Rad. 13, 415 (2006).
    [26] X. F. Tang, X. G. Zhou, M. L. Niu, et al, J. Chem. Phys. 134, 054312 (2011).
    [27] B. Sztaray, T. Baer, Rev. Sci. Instrum. 74, 3763 (2003).
    [28] F. Merkt, P. M. Guyon, J. Hepburn, Chem. Phys. 173, 479 (1993).
    [29]T. Baer, State selection by photoion-photoelectron coincidence. In Gas Phase Ion Chemistry, Bowers, M. T., Ed. Academic Press: New York, 1979; pp 153.
    [30] D. Townsend, M. P. Minitti, A. G. Suits, Rev. Sci. Instrum. 74, 2530 (2003).
    [31] D. Irimia, R. Kortekaas, M. H. M. Janssen, Phys. Chem. Chem. Phys. 11, 3958 (2009).
    [32] T. Horio, T. Suzuki, Rev. Sci. Instrum. 80, 013706 (2009).
    [33] A. Bodi, B. Sztaray, T. Baer, et al, Rev. Sci. Instrum. 78, 084102 (2007).
    [34] C. Y. Ng, Annu. Rev. Phys. Chem. 53, 101 (2002).
    [35] J. H. D. Eland, E. J. Duerr, Chem. Phys. 229, 1 (1998).
    [36] R. N. Zare, Mol. Photochem. 4, 1 (1972).
    [1] D. G. Hopper, J. Am. Chem. Soc. 100, 1019 (1978).
    [2] X. Li, Y. L. Huang, G. D. Flesch, et al, J. Chem. Phys. 106, 1373 (1997).
    [3] G. Chambaud, H. Gritli, P. Rosmus, et al, Mol. Phys. 98, 1793 (2000).
    [4] J. W. Duff, D. R. Smith, J. Atmos. Sol.-Terr. Phys. 62, 1199 (2000).
    [5] J. L. Le Garrec, S. Carles, T. Speck, et al, Chem. Phys. Lett. 372, 485 (2003).
    [6] J. C. Lorquet, C. Cadet, Int. J. Mass Spectrom. Ion Phys. 7, 245 (1971).
    [7] C. R. Brundle, D. W. Turner, Int. J. Mass Spectrom. Ion Phys. 2, 195 (1969).
    [8] J. M. Hollas, Sutherle.Ta, Chem. Phys. Lett. 21, 167 (1973).
    [9] H. Koppel, L. S. Cederbaum, W. Domcke, Chem. Phys. 69, 175 (1982).
    [10] S. D. Peyerimhoff, R. J. Buenker, J. Chem. Phys. 49, 2473 (1968).
    [11] D. W. Turner, D. P. May, J. Chem. Phys. 46, 1156 (1967).
    [12] M. J. Weiss, Chem. Phys. Lett. 39, 250 (1976).
    [13] P. M. Dehmer, J. L. Dehmer, W. A. Chupka, J. Chem. Phys. 73, 126 (1980).
    [14] R. Locht, G. Caprace, J. Momigny, Chem. Phys. Lett. 111, 560 (1984).
    [15] I. Nenner, P. M. Guyon, T. Baer, et al, J. Chem. Phys. 72, 6587 (1980).
    [16] M. Richard-Viard, A. Delboulbe, M. Vervloet, Chem. Phys. 209, 159 (1996).
    [17] M. Richard-Viard, O. Atabek, O. Dutuit, et al, J. Chem. Phys. 93, 8881 (1990).
    [18] S. Y. Chiang, C. I. Ma, J. Phys. Chem. A 104, 1991 (2000).
    [19] R. T. Wiedmann, E. R. Grant, R. G. Tonkyn, et al, J. Chem. Phys. 95, 746 (1991).
    [20] W. Kong, D. Rodgers, J. W. Hepburn, Chem. Phys. Lett. 221, 301 (1994).
    [21] W. W. Chen, J. B. Liu, C. Y. Ng, J. Phys. Chem. A 107, 8086 (2003).
    [22] J. L. Olivier, R. Locht, J. Momigny, Chem. Phys. 68, 201 (1982).
    [23] J. L. Olivier, R. Locht, J. Momigny, Chem. Phys. 84, 295 (1984).
    [24] R. Locht, G. Hagenow, K. Hottmann, et al, Chem. Phys. 151, 137 (1991).
    [25] H. F. Xu, Y. Guo, Q. F. Li, et al, J. Chem. Phys. 119, 11609 (2003).
    [26] H. F. Xu, Y. Guo, Q. F. Li, et al, Acta Phys. Sin. 53, 1027 (2004).
    [27] H. F. Xu, Y. Guo, Q. F. Li, et al, J. Chem. Phys. 121, 3069 (2004).
    [28] H. Wang, X. G. Zhou, S. L. Liu, et al, J. Chem. Phys. 132, 244309 (2010).
    [29] P. Coppens, J. Smets, M. G. Fishel, et al, Int. J. Mass Spectrom. Ion Phys. 14, 57 (1974).
    [30] J. Berkowitz, J. H. D. Eland, J. Chem. Phys. 67, 2740 (1977).
    [31] S. Abed, M. Broyer, M. Carre, et al, Chem. Phys. 74, 97 (1983).
    [32] M. Larzilliere, C. Jungen, Mol. Phys. 67, 807 (1989).
    [33] J. H. D. Eland, Int. J. Mass Spectrom. Ion Phys. 12, 389 (1973).
    [34] E. Kinmond, J. H. D. Eland, L. Karlsson, Int. J. Mass spectrom. 187, 437 (1999).
    [35] A. Eppink, D. H. Parker, Rev. Sci. Instrum. 68, 3477 (1997).
    [36] M. Lebech, J. C. Houver, D. Dowek, et al, J. Chem. Phys. 117, 9248 (2002).
    [37] X. F. Tang, X. G. Zhou, M. L. Niu, et al, Rev. Sci. Instrum. 80, 113101 (2009).
    [38] S. S. Wang, R. H. Kong, X. B. Shan, et al, J. Synchrotron Radiat. 13, 415 (2006).
    [39] R. Frey, B. Gotchev, W. B. Peatman, et al, Chem. Phys. Lett. 54, 411 (1978).
    [40] Y. Shi, Q. F. Li, H. Wang, et al, Acta Phys. Sin. 54, 2418 (2005).
    [41] D. P. Seccombe, R. Y. L. Chim, G. K. Jarvis, et al, Phys. Chem. Chem. Phys. 2, 769 (2000).
    [42] K. M. Weitzel, J. Mahnert, Int. J. Mass spectrom. 214, 175 (2002).
    [43] D. Townsend, M. P. Minitti, A. G. Suits, Rev. Sci. Instrum. 74, 2530 (2003).
    [44] J. E. Bartmess, NIST Chemistry WebBook. Gaithersburg, NIST 2005.
    [45] J. A. Coxon, M. A. A. Clyne, D. W. Setser, Chem. Phys. 7, 255 (1975).
    [46] R. N. Zare, Mol. Photochem. 4, 1 (1972).
    [47] M. Lebech, J. C. Houver, D. Dowek, et al, J. Chem. Phys. 120, 8226 (2004).
    [1] B. P. Tsai, T. Baer, A. S. Werner, et al, J. Phys. Chem. 79, 570 (1975).
    [2] J. H. D. Eland, R. Frey, A. Kuestler, et al, Int. J. Mass Spectrom. Ion Processes 22, 155 (1976).
    [3] D. M. Mintz, T. Baer, J. Chem. Phys. 65, 2407 (1976).
    [4] L. Karlsson, R. Jadrny, L. Mattsson, et al, Phys. Scr. 16, 225 (1977).
    [5] I. Powis, Chem. Phys. 74, 421 (1983).
    [6] C. L. Lugez, D. Forney, M. E. Jacox, et al, J. Chem. Phys. 106, 489 (1997).
    [7] C. L. Lugez, D. Forney, M. E. Jacox, et al, J. Mol. Struct. 449, 111 (1998).
    [8] Y. Song, X. M. Qian, K. C. Lau, et al, J. Chem. Phys. 115, 4095 (2001).
    [9] D. M. P. Holland, I. Powis, G. Ohrwall, et al, Chem. Phys. 326, 535 (2006).
    [10] R. Locht, B. Leyh, D. Dehareng, et al, Chem. Phys. 323, 458 (2006).
    [11] H. W. Xi, M. B. Huang, J. Phys. Chem. A 110, 8167 (2006).
    [12] A. Bodi, N. S. Shuman, T. Baer, Phys. Chem. Chem. Phys. 11, 11013 (2009).
    [13] F. Y. Wang, M. L. Lipciuc, X. M. Yang, et al, Phys. Chem. Chem. Phys. 11, 2234 (2009).
    [14] W. V. Niessen, L. Asbrink, G. Bieri, J. Electron. Spectrosc. Relat. Phenom. 26, 173 (1982).
    [15] R. Locht, B. Leyh, A. Hoxha, et al, Chem. Phys. 272, 293 (2001).
    [16] T. N. Olney, G. Cooper, W. F. Chan, et al, Chem. Phys. 205, 421 (1996).
    [17] R. Locht, B. Leyh, A. Hoxha, et al, Chem. Phys. 272, 277 (2001).
    [18] X. H. Liu, R. L. Gross, A. G. Suits, Science 294, 2527 (2001).
    [19] D. Townsend, M. P. Minitti, A. G. Suits, Rev. Sci. Instrum. 74, 2530 (2003).
    [20] I. Novak, J. M. Benson, A. W. Potts, J. Electron. Spectrosc. Relat. Phenom. 41, 225 (1986).
    [21] Y. Hikosaka, J. H. D. Eland, T. M. Watson, et al, J. Chem. Phys. 115, 4593 (2001).
    [22] S. Tsuda, W. H. Hamill, J. Chem. Phys. 41, 2713 (1964).
    [23] S. Tsuda, C. E. Melton, W. H. Hamill, J. Chem. Phys. 41, 689 (1964).
    [24] F. P. Lossing, Bull. Soc. Chim. Belges. 81, 125 (1972).
    [25] A. S. Werner, B. P. Tsai, T. Baer, J. Chem. Phys. 60, 3650 (1974).
    [26] B. Brunetti, P. Candori, J. DeAndres, et al, J. Phys. Chem. A 101, 7505 (1997).
    [27] M. Alberti, J. M. Lucas, B. Brunetti, et al, J. Phys. Chem. A 104, 1405 (2000).
    [28] I. C. Lane, I. Powis, J. Phys. Chem. 97, 5803 (1993).
    [29] R. G. Orth, R. C. Dunbar, J. Chem. Phys. 68, 3254 (1978).
    [30] D. S. Won, M. S. Kim, J. C. Choe, et al, J. Chem. Phys. 115, 5454 (2001).
    [31] H. W. Xi, M. B. Huang, B. Z. Chen, et al, J. Phys. Chem. A 109, 4381 (2005).
    [32] T. Baer, A. S. Werner, B. P. Tsai, et al, J. Chem. Phys. 61, 5468 (1974).
    [33] X. F. Tang, X. G. Zhou, M. L. Niu, et al, Rev. Sci. Instrum. 80, 113101 (2009).
    [34] X. F. Tang, M. L. Niu, X. G. Zhou, et al, J. Chem. Phys. 134, 054312 (2011).
    [35] A. Eppink, D. H. Parker, Rev. Sci. Instrum. 68, 3477 (1997).
    [36] X. F. Tang, M. L. Niu, X. G. Zhou, et al, Acta Phys. Sin. 59, 6944 (2010).
    [37] S. S. Wang, R. H. Kong, X. B. Shan, et al, J. Synchrotron Radiat. 13, 415 (2006).
    [38] D. Irimia, R. Kortekaas, M. H. M. Janssen, Phys. Chem. Chem. Phys. 11, 3958 (2009).
    [39] C. R. Gebhardt, T. P. Rakitzis, P. C. Samartzis, et al, Rev. Sci. Instrum. 72, 3848 (2001).
    [40] R. N. Zare, Mol. Photochem. 4, 1 (1972).
    [41] R. Locht, B. Leyh, A. Hoxha, et al, Chem. Phys. 272, 259 (2001).
    [1] X. F. Tang, X. G. Zhou, M. L. Niu, et al, Rev. Sci. Instrum. 80, 113101 (2009).
    [2] S. S. Wang, R. H. Kong, X. B. Shan, et al, J. Synchrotron Radiat. 13, 415 (2006).
    [3]齐飞,中国科学技术大学学报37, 414 (2007).
    [4] A. Eppink, D. H. Parker, Rev. Sci. Instrum. 68, 3477 (1997).
    [5] B. Sztaray, T. Baer, Rev. Sci. Instrum. 74, 3763 (2003).
    [6] M. P. Barrow, Biofuels 1, 651 (2010).
    [7] J. A. Booze, T. Baer, J. Chem. Phys. 96, 5541 (1992).
    [8] K. M. Weitzel, J. Mahnert, Int. J. Mass spectrom. 214, 175 (2002).
    [9] F. Qi, R. Yang, B. Yang, et al, Rev. Sci. Instrum. 77, 084101 (2006).
    [10] J. Wang, Y. Y. Li, Z. Y. Tian, et al, Rev. Sci. Instrum. 79, 103504 (2008).
    [11] T. Baer, Gas Phase Ion Chemistry. New York, Academic 1979, p 153.
    [12] T. Baer, Annu. Rev. Phys. Chem. 40, 637 (1989).
    [13]C. Y. Ng, Vacuum Ultraviolet Photoionization and Photodissociation of Molecules and Clusters. World Scientific: Singapore, 1991.
    [14]单晓斌,孔蕊弘,王思胜, et al,中国科学技术大学学报39, 922 (2009).
    [15] A. Bodi, B. Sztaray, T. Baer, et al, Rev. Sci. Instrum. 78, 084102 (2007).
    [16]张泰昌,朱爱国,洪新, et al,中国科学技术大学学报37, 582 (2007).
    [17] J. E. Bartmess, NIST Chemistry WebBook. Gaithersburg, NIST 2005.
    [18] T. Baer, Y. Li, Int. J. Mass spectrom. 219, 381 (2002).
    [19] R. Spohr, P. M. Guyon, W. A. Chupka, et al, Rev. Sci. Instrum. 42, 1872 (1971).
    [20] R. I. Hall, A. McConkey, K. Ellis, et al, Meas. Sci. Tech. 3, 316 (1992).
    [21] G. A. Garcia, H. Soldi-Lose, L. Nahon, Rev. Sci. Instrum. 80, 023102 (2009).
    [22] A. Vredenborg, W. G. Roeterdink, M. H. M. Janssen, Rev. Sci. Instrum. 79, 063108 (2008).
    [23] C. Q. Huang, B. Yang, R. Yang, et al, Rev. Sci. Instrum. 76, 126108 (2005).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700