上转换微纳米晶@TiO_2核/壳结构红外光催化材料的制备和表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光催化是通过催化剂利用光能进行物质转化的一种方式。由于光催化在治理环境污染方面具有极大的应用前景,受到了很多研究者的关注。TiO2以其催化活性高、稳定性好、无毒和成本低等有点,被广泛应用于光催化降解有机和无机污染物的研究。但是由于TiO2的禁带宽度达到了3.2eV,只有波长小于387nm的紫外光才能将其激发产生光催化作用。紫外光在整个太阳光谱中所占的比例只有~5%,而可见光和近红外光的比例则分别为~48%和~44%。对太阳能的利用率低限制了TiO2光催化的实际应用。人们在合成具有可见光响应特性的TiO2催化剂方面做了大量研究,但是,与可见光能量相当的近红外光仍然没有被用于光催化。
     上转换材料可以吸收低能量光子并发射高能量光子,Yb/Tm共掺杂的氟化物在980nm近红外光的激发下可以发出紫外光,而紫外光可以激发TiO2。我们提出可以用这种红外—紫外上转换材料敏化TiO2,得到一种可以用红外光激发的新型光催化材料。如果将这两种材料结合,那么将得到的复合材料制成以TiO2包覆上转换材料的核/壳结构是一种理想的选择。因为这种结构既不会减少TiO2与被降解物质的接触,又能最大限度的保护氟化物上转换材料,避免外界环境对上转换材料的破坏而造成对其发光性能的不利影响。基于上述原因,我们开展了下面的一些工作。
     (1)根据实验的需要,以及在实际测试过程中的不断探索,设计一系列新型的红外光催化反应器,这些反应器都可以利用近红外光完成光催化的测试。最初我们设计了可以利用980nm二极管激光、太阳光中的近红外光作为激发光源的反应器,并使用它完成了红外光催化反应的测试。随着我们研究工作的深入,上述两种反应器已经不能满足测试的需要,因此我们又设计了以980nm光纤激光以及用小功率氙灯为激发光源的反应器。本文中还对这些光催化反应器的优点和缺点做了详细的分析和讨论。
     (2)通过微乳液法合成了YF3:Yb3+,Tm3+微米晶,然后以聚乙烯吡咯烷酮(PVP)为表面活性剂和空间稳定剂,通过钛酸丁酯(TBOT)水解,首次合成了TiO2包覆稀土离子掺杂氟化物上转换材料的核/壳结构粒子。通过实验发现,TBOT的浓度以及使用适合的表面活性剂,对于最终得到的样品的形貌有很大影响。TEM测试结果表明,当使用PVP为表面活性剂、钛酸丁酯的浓度为0.003mmol/mL时,得到的TiO2包覆层最为均匀,厚度约为10-20nm。测试了980nm红外光激发下YF3:Yb3+,Tm3+微米晶的上转换发光光谱,观察到了290nm、346nm和362nm的紫外发光和451nm、477nm和643nm的可见光发射峰,并对上转换发光机理进行了分析。通过对TiO2包覆YF3:Yb3+,Tm3+微米晶上转换光谱的测量,表明均匀的包覆层对上转换发光强度影响较小。通过对这一结果的分析,我们认为形貌均匀的包覆层可以减少对激发光的散射,从而使激发光的强度降低的较少,因此更有利于上转换发光。
     (3)我们提供了一种将红外—紫外上转换材料与TiO2相结合用于光催化的新方法。首先用水热法合成YF3:Yb3+,Tm3+纳米晶,再通过上面所述的钛酸丁酯水解制备了核/壳结构的YF3:Yb3+,Tm3+/TiO2纳米粒子。透射电镜照片表明在YF3:Yb3+,Tm3+上转换纳米晶表面形成了均匀的Ti02包覆层。通过YF3:Yb3+,Tm3+与核/壳结构纳米粒子在980nm二极管激光激发下的上转换发光光谱的比较和分析,证明TiO2包覆层可以有效的吸收上转换材料发射的紫外光。核/壳结构纳米粒子吸收光谱的测试结果说明这中光催化材料可以吸收980nm左右的近红外光。使用这种核/壳结构的纳米粒子作为催化剂,在980nm激光和太阳光中近红外光(λ>700 nm)的激发下,分别进行了分解亚甲基蓝的实验。在980nm激光照射30 h后,亚甲基蓝的分解量为61%,在太阳光中的近红外光照射9h后,亚甲基蓝的分解量达到了51%。这表明YF3:Yb3+,Tm3+/TiO2纳米粒子在近红外光的激发下具有光催化活性。以紫外光为激发光源分解甲基橙,核/壳结构纳米粒子和TiO2的催化活性基本相同,说明由于上转换发光材料包覆在TiO2内部,因此对TiO2在紫外光下的催化活性基本没有不利影响。此外,这种核/壳结构的组合方式更便于进一步改进TiO2,以获得一种对于紫外光、可见光和近红外光辐照均有响应的新型光催化材料。本章的研究首次报道了一种将近红外光能量用于光催化的新方法,相同的方法在提高基于TiO2的光化学和光电材料对太阳能的利用效率方面有广阔的应用前景。
     (4)使用PVP为螯合剂和表面活性剂,通过溶剂热法制备了形貌均匀的NaYF4:Yb,Tm纳米晶,纳米晶的尺寸为50nm左右。利用保留在NaYF4:Yb,Tm纳米晶表面的PVP作为表面活性剂,通过钛酸乙酯(TEOT)水解法可以直接在纳米晶表面均匀包覆一层TiO2,这种方法使TiO2包覆上转换材料的制备过程过程大大简化,因此对合成TiO2包覆上转换材料的红外光催化剂具有重要的意义。当TEOT的水解反应时间为15min、45min和180min时,TiO2包覆层的厚度分别为10nm、14nm和16.5nm。这一结果表明这种方法可以通过控制钛酸乙酯的水解反应时间,可以很容易的调节TiO2包覆层的厚度,从而可以调节TiO2在核/壳结构红外光催化材料中的质量分数。这就为进一步探讨TiO2层厚对这种红外光催化材料的催化性能的影响提供了一种简单有效的途径。
Photocatalysis is a process of transforming materials by catalyst with utilization of photon energy. Photocatalysis has gained significant interest as it has great potential in the environmental remediation. TiO2 has widely studied has been widely studied on the degradation of inorganic or organic pollutants for its high activity, stability, avirulence and cheapness. The bandgap of pure TiO2 is up to 3.2 eV; hence, the ultraviolet (UV) light (λ< 380 nm) is necessary to activate pure TiO2 for photocatalytic reactions. However, the percentage of UV light in the solar spectrum is only 5%, which is very low compared to the visible light (-48%) and the near-infrared (NIR) light (-44%). The low-usage of sunlight has been restraining the photocatalytic efficiency of pure TiO2 in the environmental remediation. Numerous methods have been adopted to modify TiO2 for the utilization of visible light. However, the NIR of large fraction in sunlight remains untapped for photocatalysis.
     The upconversion materials emit one higher-energy photon after absorbing two or more lower-energy photons. Yb/Tm co-doped fluoride has ultraviolet (UV) emissions under the excitation of 980 nm near-infrared (NIR) light. We propose that the UV-to-NIR upconversion materials could be used as sensitizers for TiO2 to obtain new photocatalysts which can be activated by NIR light. It is a good method to coat TiO2 on the surface of upconversion particles for the combination of them, because this will protect the fluoride and will not reduce the adsorption of pollutants on the surface of TiO2. Our studies are as follows.
     (1) New reactors for the photocatalysis under NIR excitation were fabricated according to the experimental conditions. The new reactors can be used in the measurement of photocatalysis reaction. In the beginning, we fabricated the reactors which are effective for the photocatalsis under 980 nm diode laser and the NIR in sunlight. The reactors equipped with 980 nm fiber laser and low-power xenon lamp were designed as the development of our study. The advantages and disadvantages of the new reactors were discussed in the paper.
     (2) YF3:Yb3+,Tm3+ microcrystals were prepared by a microemulsion method. For the first time, the fluoride microcrystals were successfully coated with TiO2 by hydrolysis of titanium n-butoxide (TBOT) with polyvinylpyrrolidone K-30 (PVP) as a stabilizer and surfactant. The surfactant and concentration of TBOT had great influence on the morphology of the core/shell samples. The uniform TiO2 coatings with thickness of 10-20 nm can be prepared when the PVP was used and the concentration of TBOT was 0.003 mmol/mL. The upconversion luminescence properties of YF3:Yb3+,Tm3+ microcrystals were studied under 980-nm excitation. The 290 nm,346 nm.362 nm UV emissions and 451 nm,477 nm,643 nm visible emissions were observed and the mechanism of upconversion was discussed. The upconversion spectrum of TiO2-coated YF3:Yb3+, Tm3+ illustrated that the uniform TiO2 coatings compromise the upconversion emissions minimally. This maybe caused by the weak scattering effect by the uniform coatings on the excitation light. The little reduction of the excitation is beneficial for the upconversion emissions.
     (3) We presented a novel method of combining TiO2 and UV-to-NIR upconversion agents for photocatalysis. YF3:Yb3+,Tm3+ nanocrystals were prepared by hydrothermal method, and then the YF3:Yb3+,Tm3+/TiO2 core/shell nanoparticls were synthesized by the TBOT hydrolysis method mentioned above. TEM images illustrated that the uniform TiO2 coatings were formed on the surface of YF3:Yb3+.Tm3+ nanocrystals. The upconversion spectrum of YF3:Yb3+,Tm3+and YF3:Yb3+,Tm3+/Ti02 indicated that the TiO2 coatings can effectively absorb the UV emissions of YF3:Yb3+,Tm3+. The absorbance spectra of YF3:Yb3+,Tm3+/TiO2 particles indicated that the 980 nm NIR can be absorbed by the particles. After 30 h irradiation by 980 nm NIR,61% of MB was decomposed by the YF3:Yb3+,Tm3+/TiO2 particles. After 9 h NIR irradiation of sunlight,58% of MB has been degraded by YF3:Yb3+,Tm3+/TiO2 NPs. The results indicate that the YF3:Yb3+,Tm3+/TiO2 NPs have photocatalytic activity under NIR irradiation. Additionally, the catalytic activities of the pure TiO2 and YF3:Yb3+,Tm3+/TiO2 NPs were compared by decomposing methyl orange (MO) under UV irradiation. The results indicate that the uniform TiO2 shell reduce greatly the optical filting effect of YF3:Yb3+,Tm3+ on the UV light. It is the first time to use NIR light as driving source for photocatalysis. The same strategy has great potential in improving the utility rate of solar energy for photochemical and photoelectrical applications based on TiO2 materials.
     (4) NaYF4:Yb,Tm nanocrystals were prepared by a solvothermal method with PVP as chelating agent and surfactant. The nanocrystals were uniform with size of about 50 nm. The nanocrystals could be coated with TiO2 directly with the aid of PVP retained on the surface of the nanocrystals. This simplified the process of preparing of TiO2 coatings. The TiO2 shell thickness of TiO2 shell was~10 nm when the hydrolysis time was 15 min. At 45 min and 180 min, the thickness of TiO2 shell reached~14 nm and-16.5 nm, respectively. The shell thickness was readily adjusted through controlling the reaction time of TEOT hydrolysis. Thereby it is easy to change the weight percentage of TiO2 in the core/shell nanoparticles, which has great influence on the efficiency of composite photocatalysts.
引文
[1]Fujishima, A, Honda K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature,1972,238:37-38.
    [2]黄昆,韩汝其.固体物理学[M].高等教育出版社,1988.
    [3]Nosaka Y, Fox M A. Kinetics for electron transfer from laser-pulse irradiated colloidal semiconductors to adsorbed methylviologen: dependence of the quantum yield on incident pulse width [J]. J. Phys. Chem.,1988,92:1893-1897.
    [4]Linsebigler A L, Lu G, Yates J T. Photocatalysis on TiO2 Surfaces:Principles, Mechanisms, and Selected Results [J]. Chem. Rev.,1995,95:735-758.
    [5]张彭义,余刚,蒋展鹏.半导体光催化剂及其改性技术进展[J].环境科学进展,1997,5:1.
    [6]Talukdar R K, Gierezak T, Goldfarb L. Kinetics of Hydroxyl Radical Reactions with Isoto-Picaily Labeled Hydrogen [J], J. Phys. Chem.,1996, 100:3037-3043.
    [7]Kang Y S, McManus H J D, Liang K, Kevan L, Photoinduced electron transfer from (alkoxyphenyl)triphenylporphyrins to interface water of aerosol dioctyl-and cetyltrimethylammonium bromide/alcohol reverse micelles at 77 K [J]. J. Phys. Chem.,1994,98:1044-1048.
    [8]Ollis D F, Contaminant Degradation in Water [J]. Environ. Sci. Technol., 1985,19:480-484.
    [9]Kim Y, Yoon M.TiO2/Y-Zeolite Encapsulating Intramoleeular Charge Transfer Moleeules:a New Pllotoeatalyst for Photoreduction of Methyl Orange in Aqueous Medium [J]. J. Mol. Catal. A:Chem.,2001,168:257.
    [10]Matthews R W, Photooxidative Degradation of Coloured Organics in Water Using Supported Catalysts TiO2 on Sand [J]. Water. Res.,1991,25:1169.
    [11]Pelizzetti E, Maurino V, Minero C, et al. Photocatalytic degradation of atrazine and other s-triazine herbicides [J]. Environ. Sci. Technol.,1990,24, 1559-1565.
    [12]张志军,包志成,王克欧,等.二氧化钛催化下的氯代二苯并-对-二恶英光解反应[J].环境化学,1996,15:47.
    [13]Hidaka H, Asai Y, Zhao J. et al. Photoeleetrochemical Decomposition of Surfactants on aTiO2/TCO Particulate Film [J]. J. Phys. Chem.,1995,99:8244.
    [14]HidakaH, Ihara K, Fujita Y, et al. Photodegradation of Surfactant IV: photodegradion of Nonionic Surfactants in Aqueous Titanium Dioxide Suspensions [J]. J. Photochem. Photobiol., A,1988,42:375.
    [15]Heller A. Abstracts of the First International Conference on TiO2 Photoeataiytic Purification and Treatment of Water and Air [C]. London. ontario. Canada.1992,17.
    [16]Barbeni M. Sunlight photodegradation of 2,4,5-trichlorphenoxy-acetic acid and 2,4.5-trichlorphenol on TiO2:Identification of intermediates and degradation pathway [J]. Chemosphere,1987,16:1165-1179.
    [17]杨佳才译.金属和有机化合物污水的处理:Ti02光催化剂的研究[J].国外环境科学技术,1995,3:37-44.
    [18]沈伟韧,赵文宽,贺飞,等.Ti02光催化反应及其在废水处理中的应用[J].化学进展,1998,10(4):349-361.
    [19]Inoue T, Fujishima A, Konishi S, et al. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders [J]. Nature,1979, 277:637-638.
    [20]Yamakata A, Ishibashi T, Onishi H. Effects of accumulated electrons on the decay kinetics of photogenerated electrons in Pt/TiO2 photocatalyst studied by time-resolved infrared absorption spectroscopy [J]. J. Photochem. Photobiol., A,2003, 160:33-36.
    [21]Lee Y L, Chi C F, Liau S Y. CdS/CdSe Co-Sensitized TiO2 Photoelectrode for Efficient Hydrogen Generation in a Photoelectrochemical Cell [J]. Chem. Mater., 2010,22:922-927.
    [22]Sugimoto T, Kojima T. Formation Mechanism of Amorphous TiO2 Spheres in Organic Solvents.1. Roles of Ammonia [J]. J. Phys. Chem. C,2008,112, 18760-18771
    [23]Yan J, Li X, Cheng S, et al. Facile synthesis of titania zirconia monodisperse microspheres and application for phosphopeptides enrichmentw [J]. Chem. Commun., 2009,2929-2931.
    [24]Sathish M, Viswanathan B, Viswanath R P, et al. Synthesis, Characterization, Electronic Structure, and Photocatalytic Activity of Nitrogen-Doped TiO2 Nanocatalyst [J]. Chem. Mater.,2005,17:6349-6353
    [25]Widoniak J, Eiden-Assmann S, Maret G. Synthesis and characterisation of porous and non-porous monodisperse TiO2 and ZrO2 particles [J]. Colloids Surf., A, 2005,270-271:329-334.
    [26]Li H, Bian Z, Zhu J, et al. Mesoporous Titania Spheres with Tunable Chamber Stucture and Enhanced Photocatalytic Activity [J]. J. Am. Chem. Soc.,2007, 129:8406-8407.
    [27]Lu X. Huang F, Mou X, A General Preparation Strategy for Hybrid TiO2 Hierarchical Spheres and Their Enhanced Solar Energy Utilization Efficiency [J]. Adv. Mater.,2010,22,3719-3722.
    [28]Zhang Y, Li G, Wu Y, et al. The Formation of Mesoporous TiO2 Spheres via a Facile Chemical Process [J]. J. Phys. Chem. B,2005.109:5478-5481.
    [29]Ghicov A, Macak J M, Tsuchiya H, et al. Ion Implantation and Annealing for an Efficient N-Doping of TiO2 Nanotubes [J]. Nano Lett.,2006,6:1080-1082
    [30]Liu G, Yang H G, Wang X, et al. Visible Light Responsive Nitrogen Doped Anatase TiO2 Sheets with Dominant {001} Facets Derived from TiN [J]. J. Am. Chem. Soc.,2009,131:12868-12869.
    [31]Wang J, Tafen D N. Lewis J P, et al. Origin of Photocatalytic Activity of Nitrogen-Doped TiO2 Nanobelts [J]. J. Am. Chem. Soc.,2009,131:12290-12297.
    [32]Huo Y, Bian Z, Zhang X. et al. Highly Active TiO2-xNx Visible Photocatalyst Prepared by N-Doping in Et3N/EtOH Fluid under Supercritical Conditions [J]. J. Phys. Chem. C.2008,112:6546-6550.
    [33]Wang H. Wu Z, Liu Y. A Simple Two-Step Template Approach for Preparing Carbon-Doped Mesoporous TiO2 Hollow Microspheres [J]. J. Phys. Chem. C.2009, 113:13317-13324.
    [34]Xiao Q, Zhang J. Xiao C, et al. Solar photocatalytic degradation of methylene blue in carbon-doped TiO2 nanoparticles suspension [J]. Sol. Energy,2008. 82:706-713.
    [35]Umebayashi T, Yamaki T, Itoh H, et al. Band gap narrowing of titanium dioxide by sulfur doping [J]. App. Phys. Lett.,2002,81:454-456.
    [36]Yu J C, Yu J, Ho W, et al. Effects of F-Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders [J]. Chem. Mater., 2002,14:3808-3816.
    [37]Ho W, Yu J C. Lee S. et al. Synthesis of hierarchical nanoporous F-doped TiO2 spheres with visible light photocatalytic activity [J]. Chem. Commun.,2006, 1115-1117.
    [38]Bally A R, Korobeinikova E N, Schmid P E, et al. Structural and electrical properties of Fe-doped TiO2 thin films [J]. J. Phys. D:Appl. Phys.,1998,31:1149.
    [39]Yu J, Yu H, Ao C H, et al. Preparation, characterization and photocatalytic activity of in situ Fe-doped TiO2 thin films [J]. Thin Solid Films,2006,496:273-280.
    [40]Li H, Liu G, Chen S, et al. Novel Fe-doped mesoporous TiO2 microspheres: Ultrasonic-hydrothermal synthesis, characterization,andphotocatalyticproperties [J]. Physica E,2010,42:1844-1849.
    [41]Klosek S, Raftery D. Visible Light Driven V-Doped TiO2 Photocatalyst and Its Photooxidation of Ethanol [J]. J. Phys. Chem. B,2001,105:2815-2819.
    [42]Sene J J, Zeltner W A, Anderson M A. Fundamental Photoelectrocatalytic and Electrophoretic Mobility Studies of TiO2 and V-Doped TiO2 Thin-Film Electrode Materials [J]. J. Phys. Chem. B,2003,107:1597-1603
    [43]Martin S T, Morrison C L, Hoffmann M R. Photochemical Mechanism of Size-Quantized Vanadium-Doped TiO2 Particles [J]. J. Phys. Chem.,1994, 98:13695-13704.
    [44]Vomiero A, Mea G D, Ferronic M, et al. Preparation and microstructural characterization of nanosized Mo-TiO2 and Mo-W-O thin films by sputtering: tailoring of composition and porosity by thermal treatment [J]. Mater. Sci. Eng., B, 2003,101:216-221.
    [45]Devi L G, Murthy B N. Characterization of Mo Doped TiO2 and its Enhanced Photo Catalytic Activity Under Visible Light [J]. Catal. Lett.,2008, 125:320-330.
    [46]Cong Y, Zhang J, Chen F, et al. Preparation, Photocatalytic Activity, and Mechanism of Nano-TiO2 Co-Doped with Nitrogen and Iron (Ⅲ) [J]. J. Phys. Chem. C.2007,111:10618-10623.
    [47]Gopal N O, Lo H H, Ke S C. Chemical State and Environment of Boron Dopant in B,N-Codoped Anatase TiO2 Nanoparticles:An Avenue for Probing Diamagnetic Dopants in TiO2 by Electron Paramagnetic Resonance Spectroscopy [J]. J. Am. Chem. Soc.,2008,130:2760-2761.
    [48]Wang Y. Wang Y, Meng Y, et al. A Highly Efficient Visible-Light-Activated Photocatalyst Based on Bismuth-and Sulfur-Codoped TiO2 [J]. J. Phys. Chem. C. 2008,112:6620-6626.
    [49]Valentin C D, Pacchioni G, Onishi H, et al. Cr/Sb co-doped TiO2 from first principles calculations [J]. Chem. Phys. Lett.,2009,469:166-171.
    [50]Chen D, Jiang Z. Geng J. A facile method to synthesize nitrogen and fluorine co-doped TiO2 nanoparticles by pyrolysis of (NH4)2TiF6[J]. J. Nanopart. Res., 2009,11:303-313.
    [51]Ao Y, Xu J. Fu D, et al. Visible-light responsive C,N-codoped Titania hollow spheres for X-3B dye photodegradation [J]. Microporous Mesoporous Mater., 2009,118:382-386.
    [52]Burda C. Lou Y, Chen X, et al. Enhanced Nitrogen Doping in TiO2 Nanoparticles [J]. Nano Lett.,2003,3:1049-1051.
    [53]Han W, Liu P. Yuan R. et al. Low-temperature synthesis of regenerable TiO2-xNx nanocrystals in Nafion membrane and the promotive effect of Nafion in photocatalysis and N-doping [J]. J. Mater. Chem.,2009,19:6888-6895.
    [54]Xu J, Ao Y, Fu D, et al. A simple route to synthesize highly crystalline N-doped TiO2 particles under low temperature [J]. J. Cryst. Growth,2008, 310:4319-4324.
    [55]Jiang Z, Yang F, Luo N, et al. Solvothermal synthesis of N-doped TiO2 nanotubes for visible-light-responsive photocatalysisw [J]. Chem. Commun.,2008. 6372-6374.
    [56]Choi W, Termin A, Hoffmann M R. The Role of Metal Ion Dopants in Quantum-Sized TiO2:Correlation between Photoreactivity and Charge Carrier Recombination Dynamics [J]. J. Phys. Chem.,1994,98:13669-13679.
    [57]Kannaiyan D, Cha M A, Jang Y H, et al. Efficient photocatalytic hybrid Ag/ TiO2 nanodot arrays integrated into nanopatterned block copolymer thin films [J]. New J. Chem.,2009,33:2431-2436.
    [58]Smith W, Mao S, Lu G, et al. The effect of Ag nanoparticle loading on the photocatalytic activity of TiO2 nanorod arrays [J]. Chem. Phys. Lett.,2010, 485:171-175.
    [59]Es-Souni M, Es-Souni M, Habouti S, et al. Brookite Formation in TiO2-Ag Nanocomposites and Visible-Light-Induced Templated Growth of Ag Nanostructures in TiO2 [J]. Adv. Funct. Mater.,2010,20:377-385.
    [60]Yu J, Yue L, Liu S, et al. Hydrothermal preparation and photocatalytic activity of mesoporous Au-TiO2 nanocomposite microspheres [J]. J. Colloid Interface Sci.,2009,334:58-64.
    [61]Bian Z, Zhu J, Cao F, et al. In situ encapsulation of Au nanoparticles in mesoporous core-shell TiO2 microspheres with enhanced activity and durability [J]. Chem. Commun.,2009,3789-3791.
    [62]Yang J C, Kim Y C, Shul Y G, et al. Characterization of photoreduced Pt/ TiO2 and decomposition of dichloroacetic acid over photoreduced Pt/TiO2 [J]. Appl. Surf. Sci.,1997,121-122:525-529.
    [63]Shi X, Zhang C, He H, et al. Activation of Pt/TiO2 Catalysts by Structural Transformation of Pt-Sites [J]. Catal. Lett.,2006,107:1-4
    [64]Subramanian V, Wolf E E, Kamat P V. Catalysis with TiO2/Gold Nanocomposites. Effect of Metal Particle Size on the Fermi Level Equilibration [J]. J. Am. Chem. Soc.,2004,126;4943-4950.
    [65]Kowalska E, Mahaney O OP, Abe R, et al. Visible-light-induced photocatalysis through surface plasmon excitation of gold on titania surfaces [J]. Phys. Chem. Chem. Phys.,2010,12:2344-2355.
    [66]Bessekhouad Y, Chaoui N. Trzpit M, et al. UV-vis versus visible degradation of Acid Orange Ⅱ in a coupled CdS/TiO2 semiconductors suspension [J]. J. Photochem. Photobiol., A,2006,183:218-224.
    [67]Xie Y, Heo S H, Kim Y N, et al. Synthesis and visible-light-induced catalytic activity of Ag2S-coupled TiO2 nanoparticles and nanowires [J]. Nanotechnology,2010 21:015703-015709.
    [68]Serpone N, Maruthamuthu P, Pichat P. et al. Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol,2-chlorophenol and pentachlorophenol:chemical evidence for electron and hole transfer between coupled semiconductors [J]. J. Photochem. Photobiol., A,1995,85.247-255.
    [69]Adachi M, Murata Y, Takao J, et al. Highly Efficient Dye-Sensitized Solar Cells with a Titania Thin-Film Electrode Composed of a Network Structure of Single-Crystal-like TiO2 Nanowires Made by the "Oriented Attachment" Mechanism [J]. J. Am. Chem. Soc.,2004,126,14943-14949.
    [70]Lobedank J, Bellmann E, Bendig J. Sensitized photocatalytic oxidation of herbicides using natural sunlight [J]. J. Photochem. Photobiol. A,1997,108:89-93.
    [71]Cho Y, Choi W, Lee C H, et al. Visible Light-Induced Degradation of Carbon Tetrachloride on Dye-Sensitized TiO2 [J]. Environ. Sci. Technol.,2001, 35:966-970.
    [72]Zhao W, Sun Y, Castellano F N. Visible-Light Induced Water Detoxification Catalyzed by PtII Dye Sensitized Titania [J]. J. Am. Chem. Soc,2008, 130:12566-12567.
    [73]Wang J, Zhang G, Zhang Z, et al. Investigation on photocatalytic degradation of ethyl violet dyestuff using visible light in the presence of ordinary rutile TiO2 catalyst doped with upconversion luminescence agent [J]. Water Res., 2006,40:2143-2150.
    [74]Wang J, Ma T, Zhang G, et al. Preparation of novel nanometer TiO2 catalyst doped with upconversion luminescence agent and investigation on degradation of acid red B dye using visible light [J]. Cata. Commun.,2007,8:607-611.
    [75]Wang J, Li R, Zhang Z, et al. Efficient photocatalytic degradation of organic dyes over titanium dioxide coating upconversion luminescence agent under visible and sunlight irradiation [J]. Appl. Catal., A,2008,334:227-233.
    [76]Feng G, Liu S, Xiu Z, et al. Visible Light Photocatalytic Activities of TiO2 Nanocrystals Doped with Upconversion Luminescence Agent [J]. J. Phys. Chem. C, 2008,112:13692-13699.
    [77]Auzel F. Upconversion and Anti-Stokes Processes with f and d Ions in Solids [J]. Chem. Rev.,2004,104:139.
    [78]Joubert M-F. Photon avalanche upconversion in rare earth laser materials [J]. Opt. Mater.,1999,11:181.
    [79]Anh T, Benalloul P, Barthou C, et al. Luminescence, Energy Transfer, and Upconversion Mechanisms of Y2O3 Nanomaterials Doped with Eu3+, Tb3+, Tm3+, Er3+ and Yb3+Ions [J]. J. Nanomater.,2007,48247.
    [80]Li Y, Zhang Y, Hong G, et al. Upconversion luminescence of Yb3+ nanoparticles prepared by a homogeneous precipitation method [J].J.Rare Earths,2008,26:450-454.
    [81]Wang Y, Bai Y, Song Y. Multi-photon upconversion luminescence of Er3+-doped Y2O3 nanocrystals [J]. Chin. Opt. Lett.,2009,7:524-526.
    [82]Liu H, Wang L, Chen S. Effect of Yb3+concentration on the upconversion of Er3+ion doped La2O3 nanocrystals under 980 nm excitation [J]. Mater. Lett.,2007, 61:3629-3631.
    [83]Singh S K, Singh A K, Kumar D, Efficient UV-visible up-conversion emission in Er+/Yb3+co-doped La2O3 nano-crystalline phosphor [J]. Appl. Phys. B, 2010,98:173-179.
    [84]Wang L. Xue X. Shi F, et al. Ultraviolet and violet upconversion fluorescence of europium (Ⅲ) doped in YF3 nanocrystals [J]. Opt. Lett.,2009, 34:2781-2783.
    [85]Nunez N O, Quintanilla M, Cantelar E, et al. Uniform YF3:Yb.Er up-conversion nanophosphors of various morphologies synthesized in polyol media through an ionic liquid [J]. J. Nanopart. Res.,2009,12:2553-2565.
    [86]Huang S, Lai S T, Lou L, et al. Upconversion in LaF3:Tm3+[J]. Phys. Rev. B.1981.24:59-63.
    [87]Ramage G, Patrick S. Houston S. et al. Red laser-induced up-conversion mechanisms in Ho3+doped LaF3 crystal [J]. J. Lumin.,1998,78:289-293.
    [88]Zhang X, Serrano C, Daran E, et al. Infrared-laser-induced upconversion from Nd3+:LaF3 heteroepitaxial layers on CaF2(Ⅲ) substrates by molecular beam epitaxy [J]. Phys. Rev. B,2000,62:4446-4454.
    [89]Hu H, Chen Z, Cao T. et al. Hydrothermal synthesis of hexagonal lanthanide-doped LaF3 nanoplates with bright upconversion luminescence [J]. Nanotechnology,2008,19:375702
    [90]Zeng J H, Su J, Li Z H, et al. Synthesis and Upconversion Luminescence of Hexagonal-Phase NaYF4:Yb3+, Er3+Phosphors of Controlled Size and Morphology [J]. Adv. Mater.,2005,17:2119-2123.
    [91]Pan W, Gong J. Synthesis and Characteristics of Infrared-to-Visible Upconversion Nanoparticles through a Microemulsion System [J]. Key Eng. Mater., 2007,336-338:101-104.
    [92]Boyer J C, Vetrone F, Cuccia L A, et al. Synthesis of Colloidal Upconverting NaYF4 Nanocrystals Doped with Er3+, Yb3+and Tm3+, Yb3+via Thermal Decomposition of Lanthanide Trifluoroacetate Precursors [J]. J. Am. Chem. Soc., 2006,128:7444-7445
    [93]Yi G S, Chow G M. Synthesis of Hexagonal-Phase NaYF4:Yb,Er and NaYF4:Yb,Tm Nanocrystals with Efficient Up-Conversion Fluorescence [J]. Adv. Funct. Mater.,2006,16:2324-2329.
    [94]Boyer J C, Cuccia L A, Capobianco J A. Synthesis of Colloidal Upconverting NaYF4:Er3+/Yb3+and Tm3+/Yb3+Monodisperse Nanocrystals [J]. Nano Lett,2007,7:847-852.
    [95]Li Z, Zhang Y. An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF4:Yb, Er/Tm nanocrystals with controllable shape and upconversion fluorescence [J]. Nanotechnology,2008,19:345606-345610.
    [96]Li Z, Zhang Y, Jiang S. Multicolor Core/Shell-Structured Upconversion Fluorescent Nanoparticles [J]. Adv. Mater.,2008,20:4765-4769.
    [97]Qin G, Qin W, Wu C, et al. Enhancement of ultraviolet upconversion in Yb3+ and Tm3+codoped amorphous fluoride film prepared by pulsed laser deposition [J]. J. Appl. Phys.,2003,93:4328.
    [98]Qin G, Qin W, Wu C, et al. Infrared to ultraviolet up-conversion luminescence from AlF3:Tm3+,Yb3+particles prepared by pulsed laser ablation [J]. Solid State Commun.,2003.125:377.
    [99]Qin G, Qin W, Wu C. et al. Intense ultraviolet upconversion luminescence from Yb3+and Tm3+codoped amorphous fluoride particles synthesized by pulsed laser ablation [J]. Opt. Commun.,2004,242:215-219.
    [100]Wang G, Qin W, Wang L. et al. Intense ultraviolet upconversion luminescence from hexagonal NaYF4:Yb3+/Tm3+microcrystals [J]. Opt. Express, 2008,33:11907-11914.
    [101]Cao C, Qin W, Zhang J, et al. Ultraviolet upconversion emissions of Gd3+ [J]. Opt. Lett.,2008,33:857-859.
    [102]Qin W. Cao C, Wang L, et al. Ultraviolet upconversion fluorescence from 6Dj of Gd3+induced by 980 nm excitation [J]. Opt. Lett.,2008,33:2167-2169.
    [103]Sakai H. Hajime Kawahara H, Shimazaki M. et al. Preparation of Ultrafine Titanium Dioxide Particles Using Hydrolysis and Condensation Reactions in the Inner Aqueous Phase of Reversed Micelles:Effect of Alcohol Addition [J]. Langmuir,1998, 14:2208-2212.
    [104]Sugimoto T. Okada K, Itoh H. Synthesis of Uniform Spindle-Type Titania Particles by the Gel-Sol Method [J]. J. Colloid Interface Sci.,1997.193:140-143.
    [105]Joselevich E, Willner I. Photosensitization of Quantum-Size TiO2 Particles in Water-in-Oil Microemulsions [J]. J. Phys. Chem.,1994,98:7628-7635.
    [106]Chhabra V, Pillai V, Mishra B K, et al. Synthesis, Characterization, and Properties of Microemulsion-Mediated Nanophase TiO2 Particles [J]. Langmuir 1995, 11:3307-3311.
    [107]Li G L, Wang G H. Synthesis Of Nanomater-sized TiO2 Particles By A Microemulsion Method [J].Nanostruct. Mater.,1999,11:663-668.
    [108]Barringer E A, Bowen H K. Formation. Packing, and Sintering of Monodisperse TiO2 Powders [J]. J. Am. Ceram. Soc.,1982,65:C199-C201.
    [109]Barringer E A, Bowen H K. High-Purity, Monodisperse TiO2 Powders by Hydrolysis of Titanium Tetraethoxide.1. Synthesis and Physical Properties [J]. Langmuir,1985,1:414-420.
    [110]Jean J H, Ring T A. Nucleation and Growth of Monosized TiO2 Powders from Alcohol Solution [J]. Langmuir,1986,2:251-255.
    [111]Jiang X, Herricks T, Xia Y. Monodispersed Spherical Colloids of Titania: Synthesis, Characterization, and Crystallization [J]. Adv. Mater.,2003,15:1205-1209.
    [112]Eiden-Assmann S. Widoniak J, Maret G. Synthesis and Characterization of Porous and Nonporous Monodisperse Colloidal TiO2 Particles [J]. Chem. Mater., 2004,16:6-11.
    [113]Chen D, Cao L, Huang F, et al. Synthesis of Monodisperse Mesoporous Titania Beads with Controllable Diameter, High Surface Areas, and Variable Pore Diameters (14-23 nm) [J]. J. Am. Chem. Soc.,2010,132:4438-4444.
    [114]Caruso F, Shi X, Caruso R A, et al. Hollow Titania Spheres from Layered Precursor Deposition on Sacrificial Colloidal Core Particles [J]. Adv. Mater.,2001, 13:740-744.
    [115]Fu X, Qutubuddin S. Synthesis of titania-coated silica nanoparticles using a nonionic water-in-oil microemulsion [J]. Colloids Surf., A,2010,65-70.
    [116]Chueh Y L, Hsieh C H, Chang M T, et al. RuO2 Nanowires and RuO2/TiO2 Core/Shell Nanowires:From Synthesis to Mechanical, Optical, Electrical, and Photoconductive Properties [J]. Adv. Mater.,2007,19:143-149.
    [117]Holgado M, Cintas A, Ibisate M, et al. Three-Dimensional Arrays Formed by Monodisperse TiO2 Coated on SiO2 Spheres [J]. J. Colloid Interface Sci.,2000, 229:6-11.
    [118]Kim K D, Bae H J, Kim H T. Synthesis and growth mechanism of TiO2-coated SiO2 fine particles [J]. Colloids Surf., A,2003,221:163-173.
    [119]Graf C, Vossen D L J, Imhof A, et al. A General Method To Coat Colloidal Particles with Silica [J]. Langmuir,2003,19:6693-6700.
    [120]Gu S, Kondo T, Mine E, et al. Fabrication of sub-micrometer-sized jingle bell-shaped hollow spheres from multilayered core-shell particles [J]. J. Colloid Interface Sci.,2004,279:281-283.
    [121]Wang P, Chen D, Tang F Q. Preparation of Titania-Coated Polystyrene Particles in Mixed Solvents by Ammonia Catalysis [J]. Langmuir,2006, 22:4832-4835.
    [122]Zheng R, Meng X, Tang F. A general protocol to coat titania shell on carbon-based composite cores using carbon as coupling agent [J]. J. Solid State Chem., 2009,182:1235-1240.
    [123]Demirors A F, Blaaderen A v, and Arnout Imhof A. A General Method to Coat Colloidal Particles with Titania [J]. Langmuir,2010,26:9297-9303.
    [124]Albu S P. Ghicov A, Macak J M, et al. Self-Organized, Free-Standing TiO2 Nanotube Membrane for Flow-through Photocatalytic Applications [J]. Nano Lett., 2007,7:1286-1289.
    [125]Ghosh J P, Langford C H, Achari G. Characterization of an LED Based Photoreactor to Degrade 4-Chlorophenol in an Aqueous Medium Using Coumarin (C-343) Sensitized TiO2 [J]. J. Phys. Chem. A,2008,112:10310-10314.
    [126]Li Y, Jiang Y, Peng S, et al. Nitrogen-doped TiO2 modified with NH4F for efficient photocatalytic degradation of formaldehyde under blue light-emitting diodes [J]. J. Hazard. Mater.,2010,182:90-96.
    [127]Mayya K S. Gittins D I, Caruso F. Gold-Titania Core-Shell Nanoparticles by Polyelectrolyte Complexation with a Titania Precursor [J]. Chem. Mater.,2001, 13:3833-3836.
    [128]Lekeufack D D, Brioude A, Mouti A. Core-shell Au@(TiO2, SiO2) nanoparticles with tunable morphology [J]. Chem. Commun.,2010,46:4544-4546.
    [129]Pastoriza-Santos I, Koktysh D S, Mamedov A A, et al. One-Pot Synthesis of Ag@ TiO2 Core-Shell Nanoparticles and Their Layer-by-Layer Assembly [J]. Langmuir,2000,16:2731-2735.
    [130]Zhang D, Song X, Zhang R, et al. Preparation and Characterization of Ag@ TiO2 Core-Shell Nanoparticles in Water-in-Oil Emulsions [J]. Eur. J. Inorg. Chem.,2005,1643-1648.
    [131]Sakai H, Kanda T, Shibata H, et al. Preparation of Highly Dispersed Core/Shell-type Titania Nanocapsules Containing a Single Ag Nanoparticle [J]. J. Am. Chem. Soc.,2006,128:4944-4945.
    [132]Wang X, Neff C, Graugnard E, et al. Photonic Crystals Fabracated Using Patterned Nanorod Arrays [J]. Adv. Mater.,2005,17:2103-2106.
    [133]Greene L E, Law M, Yuhas B D, et al. ZnO-TiO2 Core-Shell Nanorod/P3HT Solar Cells [J]. J. Phys. Chem. C,2007,111:18451-18456.
    [134]Chen C T, Chen Y C. Fe3O4/TiO2 Core/Shell Nanoparticles as Affinity Probes for the Analysis of Phosphopeptides Using TiO2 Surface-Assisted Laser Desorption/Ionization Mass Spectrometry [J]. Anal. Chem.,2005.77:5912-5919.
    [135]Chen W J, Tsai P J, Chen Y C. Functional Fe3O4/TiO2 Core/Shell Magnetic Nanoparticles as Photokilling Agents for Pathogenic Bacteria [J]. Small,2008, 4:485-491.
    [136]Lee B T, Han J K. Gain A K, et al. TEM microstructure characterization of nano TiO2 coated on nano ZrO2 powders and their photocatalytic activity [J]. Mater. Lett.,2006,60:2101-2104.
    [137]Hsu W P, Yu R, Matijevic E. Paper whiteners—I. Titania coated silica [J]. J. Colloid Interface Sci.,1993,156:56-65.
    [138]Soni S S, Henderson M J, Bardeau J F, et al. Visible-Light Photocatalysis in Titania-Based Mesoporous Thin Films [J]. Adv. Mater.,2008,20:1493-1498.
    [139]Krmer K W, Biner D, Frei G, et al. Hexagonal Sodium Yttrium Fluoride Based Green and Blue Emitting Upconversion Phosphors [J]. Chem. Mater.,2004,16. 1244-1251.
    [140]Heer S, Kompe k, Gudel H U, et al. Highly Efficient Multicolour Upconversion Emission in Transparent Colloids of Lanthanide-Doped NaYF4 Nanocrystals [J]. Adv. Mater.,2004.16:2102-2105.
    [141]Yi G, Lu H. Zhao S, et al. Synthesis, Characterization, and Biological Application of Size-Controlled Nanocrystalline NaYF4:Yb,Er Infrared-to-Visible Up-Conversion Phosphors [J]. Nano Lett.,2004.4:2191-2196.
    [142]Yang Y, Li J, Mu J, et al. A gold nanocomposite made soluble in both water and oil by the addition of a second adsorption layer of poly-N-vinyl-2-pyrrolidone on gold nanoparticles that have been made hydrophobic [J].Nanotechnology,2006,17:461.
    [143]Li Q, Dong P. Preparation of nearly monodisperse multiply coated submicrospheres with a high refractive index [J]. J. Colloid Interface Sci.,2003, 261:325-329.
    [144]Li C, Wang F, Zhua J, et al. NaYF4:Yb,Tm/CdS composite as a novel near-infrared-driven photocatalyst [J]. Appl. Catal., B,2010,100:433-439.
    [145]Li T, Liu S, Zhang H, et al. Ultraviolet upconversion luminescence in Y2O3:Yb3+,Tm3+ nanocrystals and its application in photocatalysis [J]. J. Mater. Sci., 2011,46:2882-2886.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700