小分子体系的强场动力学
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着强场技术的发展,特别是近年来超快飞秒和阿秒脉冲激光的出现,利用强激光脉冲场研究分子的动力学特性,尤其是分子在强场下的光电离和解离,受到愈来愈广泛的重视。相对弱场而言,强场下原子和分子的动力学行为表现出许多新的特征。例如,多光子电离、隧道电离、阈上电离和解离以及键的软化和硬化,等等。含时量子波包法作为物理化学的一个重要理论研究方法,已经成功应用于分子动力学诸多领域的理论研究中,如光解反应、基元反应和碰撞传能等的量子散射计算,以及激光与物质相互作用的数值模拟等等。含时量子波包法有许多优点,除了数值计算上的高效外,该方法还为动力学提供了物理意义明确而直观的图像,它即具有经典的直观性,又不缺乏量子力学的准确性。而且,含时量子波包法尤其适用于研究体系随时间演化的问题,因而是研究分子动力学问题的强有力工具。
     目前,含时量子波包法在研究化学反应、光电离、光解离、气一固表面相互作用、低温物理、半导体物理等诸多领域均有着重要应用。此外,飞秒脉冲激光技术的出现及其在物理学和化学中的广泛应用在客观上推动了含时量子波包法的发展。飞秒脉冲激光场的出现,使人们实现了利用超短脉冲场在分子的指定激发态上制备一个量子波包并实时探测它的演化过程,这类超短脉冲实验需要采用含时量子波包法进行理论模拟。离开含时量子波包法的理论模拟和计算,仅有实验数据并不能说明太多的物理问题,而且我们也无法得到有关分子在中间过渡态的直观的动力学图像。所以说,超短脉冲实验与量子波包动力学理论相辅相成,互相促进,共同推动了分子动力学领域的蓬勃发展。
     自从含时量子波包法被应用于模拟飞秒激光场和分子的相互作用后,人们逐渐意识到含时方法在处理量子力学问题上有许多的优点,加之快速傅里叶变换(FFT)和离散变量表示(DVR)方案的出现,使得量子基函数的计算更加简洁、精确,含时量子波包方法迅速在分子动力学领域有了广泛的应用。应用现代量子计算方法模拟多原子分子反应散射过程,计算多原子分子本征值问题,模拟分子由超短脉冲场所激发的动力学过程,是含时量子波包法处理分子动力学问题的典范。
     目前,分子在强场下的光电离和解离动力学行为的理论研究主要集中在一些小分子体系上。自从Zewail等人首次把光电离技术应用于NaI分子体系,光电离技术就迅速成为研究电子激发态包括无荧光辐射态的有效工具。分子的光电子能谱可以提供中间激发态的动力学信息,其最大的优点是适用于任何能够被激光场电离的激发态分子。本论文利用飞秒光电离技术和含时量子波包法成功地研究了Nal分子的非绝热效应、强飞秒激光场下K2分子光电子能谱的Aulter-Townes分裂现象,以及强场调控分子体系的缀饰态选择分布。
     论文共包括六章,我们的主要工作放在第三章、第四章和第五章。
     第一章:引言。简要地回顾了近些年来飞秒激光技术的发展和应用,并阐述了强场的范围以及强场引起的动力学现象。随后,我们引出了分子动力学领域的一个重要的概念:波包。对波包的基本性质和波包的制备、探测以及控制的方法做了简单介绍。
     第二章:含时量子波包法。首先从波恩-奥本海默近似出发,写出外场耦合下的含时薛定谔方程。随后介绍了两种常用的数值方法计算分子的初始波包。在此基础之上,利用几种常用的时间传播方法求得初始波包经过演化后的任意时刻的波包,并给出我们所感兴趣的物理量。
     第三章:NaI分子的非绝热效应。NaI分子是研究小分子在强场下光电离的热点,但是大多数理论计算都是基于绝热势能面做的动力学计算。由于NaI分子的离子态和共价态之间存在非绝热交叉,分子会出现一些在绝热势能面下无法观测到的动力学现象。根据大量的文献调研,我们发现在绝热势能面下计算的NaI分子动力学信息并不能很好的模拟和解释实验结果。针对上面存在的问题,我们利用精确的含时量子波包法理论研究了NaI分子被飞秒脉冲激光场激发后波包的传播与分裂,并分别计算了NaI分子在绝热和非绝热势能面下电离的光电子能谱。在此基础之上,我们对非绝热效应的来源做了进一步的解释和说明,阐述了一下我们自己的观点。最后,简单地讨论了非绝热效应随脉冲激光场的波长以及演化时间的变化关系。
     第四章:K2分子光电子能谱的Autler-Townes分裂研究。Autler-Townes分裂现象是分子动力领域的一个热点研究课题,但是其主要研究对象都是针对原子、单分子和量子点系统,然而对分子体系的研究报道主要集中在实验上,并且给出的结论都是基于共振激发的情况。我们利用含时量子波包法理论计算了K2分子系统在强飞秒激光场作用下的光电子能谱,发现了光电子能谱的Autlcr-Towncs分裂现象。在此基础之上,我们研究了K2分子光电子能谱的Autlcr-Towncs分裂随泵浦激光场的强度和波长的变化关系。其中,重点讨论了三种情况下的Autlcr-Towncs分裂:共振激发、近共振激发和远共振激发。在这三种情况下,K2分子光电子能谱表现出来的动力学特性存在很大的差异,本章将给出详细的讨论和解释。
     第五章:分子系统在飞秒强场下的量子调控:缀饰态选择性分布。本章提出了一种全新的量子调控分子系统的缀饰态能量和分布的方法。K2分子作为理论研究体系,该分子在一束超快强场作用下发生三光子电离,我们利用含时量子波包法计算光电子能谱的triple分裂。根据光电子能谱和缀饰态的对应关系,并通过分析光电子能谱的构型,我们可以得到K2分子缀饰态选择性分布的信息。于此同时,我们通过调节激光场的强度来实现缀饰态能量的调控,通过改变激光场的包络形状和波长来高效地调控缀饰态选择性分布。
     第六章:总结和展望。对研究工作做了简单的总结,提出了利用含时量子波包法处理分子反应动力学以及量子态调控问题的下一步发展,展望了含时量子波包法在三原子分子体系和光电子成像技术中的应用和发展。
With the development of the intense field, especially the emergence of the ul-trafast femtosecond or attosccond laser pulses in recent year, the researches of pho-toionization and photodissociation via the intense field arc subject to more and more extensive attention. Compared with the study of weak field, the dynami-cal behaviors of atom and molecule excited by the intense field show many new features, such as multiphoton ionization, tunnel ionization, above-threshold ioniza-tion, above-threshold dissociation and molecular-bond softening and stabilization etc.. The time-dependent wave packet method as an important branch of the phys-ical chemistry, has been successfully applied to the theoretical research of the gas phase dynamics, such as the quantum scattering calculation of photodecomposition, elementary reaction and collision preach can, the numerical simulation of the inter-action between laser and material, etc.. The time-dependent wave packet method has many advantages. In addition to the efficient numerical calculation, this method provides definite physical meanings and intuitive image for the dynamic. And it has the intuition of classical mechanics and no lack of accuracy of quantum mechanics. Besides, the time-dependent wave packet method is especially suitable for the study of molecular evolution after exciting by femosccond laser pulse, thus it becomes a powerful tool for the research of molecular photoionization problems.
     Recently, the time-dependent wave packet method has important application in the fields of chemical reaction, gas-solid surface interaction, photodissociation, photoionization, low temperature physics, semiconductor physics etc.. On the other hand, the emergence of femtosecond laser technology and its application in physics and chemistry objectively have promoted the development of time-dependent wave packet method. Nowadays, people can make use of ultra-short pulse to produce a wave packet on the excited state and detect its evolution process in real-time. This kind of femtosecond experimental requires the simulation by the time-dependent wave packet method. If the theory of wave packet doesn't exist, only the cxperi- mental data can not reveal much problem. The theoretical and experimental de-velopment has formed a new field, wave packets dynamics theory and experiment supplement each other, promote each other and impel the vigorous development of this field.
     Using the time-dependent method to calculate the interactions between the fem-tosecond laser field and molecular interactions, people realize its advantages to deal with problems of quantum mechanics. Besides, the emergence of FFT and DVR technology makes the calculation of basis functions to be more convenient and pre-cise, time-dependent wave packet method is widely applied to the area of molecular dynamics. The exemplification of handling molecular dynamics problems is simulat-ing molecular reactions scattering process by the application of modern quantum computing method, calculating eigenvalue problems and simulating the dynamic process of wave packets excited by ultrafast femtosecond laser pulse.
     Nowadays, the theoretical research of photoionization dynamics behavior of molecule excited by intense field mainly focuses on small molecules system. Since Zcwail at al. first applied photoionization technology to Nal molecular system, photoionization technology is becoming effective tools to discuss the dynamics be-haviors on the excited states. The time-resolved photoclcctron spectra can provide with the relevant information on the excited state. Its great advantage is that any excited states can use this technology when the molecule is ionized by laser field. In this thesis, we employ the time-dependent wave packet method and photoionization technology to study the non-adiabatic effects of Nal molecule, Autlcr-Towncs split-ting in photoelcctron spectra of K2 molecule and quantum control of a molecular system in an intense field via the selective population of dressed states.
     This thesis includes six chapters and our main work is the third chapter, the fourth chapter and the fifth chapter.
     Chapter I:Introduction. We give a brief introduction to development of fem-tosecond laser technology and its application in recent years, and briefly describe the scope of strong field and physical phenomena caused by strong field. Then, We introduce an important concept in the molecular dynamics field:wave packet. The basic properties of wave packet and the method of wave packet preparation, detection and control arc also briefly introduced.
     ChapterⅡ:Time-dependent quantum wave packet method. We first write the timc-dependent Schrodinger equation coupled by the external field. Then, we briefly introduce two common method of numerical calculating the initial wave packet in molecular system. Employing several timc-dcpcndcnt quantum wave packet evo-lution methods, we can calculate the wave packet at any moment and obtain the interested physical quantity.
     ChapterⅢ:Non-adiabatic effects of Nal molecule. Nal molecule is a hot topic in the research of strong photoionization, but most theoretical calculation arc based on the adiabatic potential surfaces. Because the dissociative covalcnt state crosses with the ionic state at an internuclear distance of about 7A forming an avoided crossing at this region, there will emerge some phenomenon which could not ob-serve under the adiabatic potential surfaces. Also, we find that the dynamics of Nal molecule calculated by adiabatic potential surfaces can not give a good expla-nation experimental results. According to above some problems, we use accurate timc-dcpcndcnt quantum wave packet to calculate the propagation and splitting of the wave packet after excited by femtosecond pulse. Then, we calculate the photo-clcctron spectra of Nal molecule both on the adiabatic and diabatic potentials. The non-adiabatic effects are expected to play an import role in the photodissociation dynamics of Nal molecule. On the basis of the study of photoionization of Nal molecule, we further explain the source of non-adiabatic effects and briefly discuss the dependance of non-adiabatic effects on the laser wavelength and evolutive time.
     Chapter IV:Autler-Townes splitting in photoclcctron spectra of K2 molecule. At present, the main research systems of Autlcr-Towncs splitting are atoms, single molecules and quantum dot, only a few experimental studies have addressed the phenomenon in molecular system. Also the research results of Autlcr-Towncs split-ting in molecular system are mainly based on resonant excitation. We theoretically investigate Autlcr-Townes splitting in the photoclcctron spectra of K2 molecule driven by pump-probe pulses via employing the time-dependent wave packet ap-proach. We discuss the influences of the pump laser intensity and/or wavelength on Autlcr-Townes splitting for three case:a resonant laser pulse, near resonant laser pulse and far-off resonant laser pulse. The corresponding features are exhibited differently at varied wavelengths of pump pulses.
     Chapter V:Quantum control of molecular system in an intense field via the selective population of dressed states. We present a novel strong field multi-photon quantum control scheme in molecular system based on the selective population of dressed states. The four states of K2 molecule arc involved, and we theoretically in-vestigate physical mechanism of quantum control on K2 molecule with an ultrafast strong laser pulse by solving the time-dependent Schrodinger equation exactly using the wave packet approach. The structures of the triple splitting in the 3-photon ionization spectra of K2 molecule arc presented to analyze the information of se-lective population of dressed states. It is found that the tunability of the dressed states energies is achieved by regulating laser intensity and high selectivity of the dressed state population is attained by altering the envelope and wavelength of the intense laser pulse.
     Chapter VI:Conclusions and outlook. We give a brief conclusions and an outlook also given in this chapter.
引文
[1]E. Schrodinger. Quantisierung als Eigenwertproblem[J]. Ann. Phys.,1926,79: 489.
    [2]P. Ehrcnfest. Bemerkung uber die angenaherte Gultigkeit der klassischen Mechanik innerhalb der Quantenmechanik[J]. Z. Phys.,1927,45:455.
    [3]E. J. Heller. Time-dependent approach to semiclassical dynamics[J]. J. Chem. Phys.,1975,62:1544.
    [4]G. Drolshagcn, E. J. Heller. A time-dependent wave packet approach to 3-dimensional gas surface scattering[J]. J. Chem. Phys.,1983,79:2072.
    [5]D. Kosloff, R. Kosloff. A fourier method solution for the time dependent Schrodinger equation as a tool in molecular dynamics[J]. J. Comput. Phys., 1983,52:35.
    [6]D. Kosloff, R. Kosloff. Absorbing boundaries for wave-propagation problems[J]. J. Comput. Phys.,1986,63:363.
    [7]R. Kosloff. Time-dependent quantum-mechanical methods for molecular dy-namics[J]. J. Phys. Chem.,1988,92:2087.
    [8]R. Kosloff. Propagation methods for quantum molecular-dynamics[J]. Annu. Rev. Phys. Chem.,1994,45:145.
    [9]M. D. Feit, J. A. Fleck, A. Steiger. Solution of the Schrodinger-equation by a spectral method[J]. J. Comp. Phys.,1982,47:412.
    [10]J. C. Light, I. P. Hamilton, J. V. Lill. Generalized discrete variable approxi-mation in quantum mechanics[J]. J. Chcm. Phys.,1985,82:1400.
    [11]D. H. Zhang, J. Z. H. Zhang. Full-dimensional time-dependent treatment for diatom-diatom reactions:The H2+OH reaction[J]. J. Chem. Phys.,1994, 101:1146.
    [12]J. C. Light, T. Carrington. Discrete-variable representations and their utiliza-tion[J]. Adv. Chem. Phys.,2000,114:263.
    [13]Z. Sun, N. Lou. Splitting in the multiphoton resonance ionization spectrum of molecules produced by ultrashort laser pulses[J]. Phys. Rev. Lett.,2003,191: 023002.
    [14]V. Engel. The calculation of autocorrelation functions for spectroscopy[J]. Chem. Phys. Lett.,1992,189:76.
    [15]N. E. Henriskcn, V. Engel. Femtosecond pump-probe spectroscopy:A theo-retical analysis of transient signals and their relation to nuclear wave-packet motion[J]. Int. Rev. Phys. Chem.,2001,20:93.
    [16]A. H. Zcwail. Femtochemistry[J]. J. Phys. Chem.,1993,97:12427.
    [17]A. H. Zewail. Femtochemistry:Atomic-scale dynamics of the chemical bond[J]. J. Phys. Chem. A,2000,104:5660.
    [18]C. Koltting, E. W. Diau, J. E. Baldwin, A. H. Zcwail. Direct observation of resonance motion in complex elimination reactions:Femtosecond coherent dynamics in reduced space[J]. J. Phys. Chem. A,2001,105:1677.
    [19]C. Koltting, E. W. Diau, T. I. Soiling, A. H. Zewail. Coherent dynamics in complex elimination reactions:Experimental and theoretical femtochemistry of 1,3-dibromopropane and related systems[J]. J. Phys. Chem. A,2002,106: 7530.
    [20]A. Stolow, A. E. Bragg, D. M. Neumark. Femtosecond time-resolved photo-electron spectroscopy[J]. Chem. Rev.,2004,104:1719.
    [21]H. Liu, J. Zhang, S. Yin, L. Wang, N. Lou. CS2 decay dynamics investigated by two-color femtosecond laser pulses[J]. Phys. Rev. A,2004,70:042501.
    [22]R. E. Carlcy, E. Hccsel, H. H. Fielding. Femtosecond lasers in gas phase chemistry[J]. Chcm. Soc. Rev.,2005,34:949.
    [23]J. H. Posthumus. The dynamics of small molecules in intense laser fields[J]. Rep. Prog. Phys.,2004,67:623.
    [24]朱井义.飞秒激光强场中的电离解离动力学[D].大连:中国科学院大连化学物理研究所,2007.
    [25]A. Stingl, M. Lenzncrm, C. Spielmann, F. Krausz. Sub-10fs mirror-dispersion-controlled Ti:Sapphire laser[J]. Opt. Lett.,1995,20:602.
    [26]M. Nisoli, S. D. Silvestri, O. Sveto, R. Szipocs, K. Ferencz, C. Spielmann, S. Sartania, F. Krausz. Compression of high-energy laser pulses below 5fs[J]. Opt. Lett.,1997,22:522.
    [27]A. Baltuska, Z. Wei, A. Wiersma. Optical pulse compression to 5 fs at a 1-MHz repetition rate[J]. Opt. Lett.,1997,22:102.
    [28]A. Zavriyev, P. H. Bucksbaum, H. G. Muller, D. W. Schumacher. Ioniza-tion and dissociation of H2 in intense laser fields at 1.064μm; 532nm; and 355nm[J]. Phys. Rev. A,1990,42:5500.
    [29]A. Giusti-Suzor, X. He,O. Atabek, F. H. Mies. Above-threshold dissociation of H2+ in intense laser fields[J]. Phys. Rev. Lett.,1990,64:515.
    [30]F. Grasbon, G. G. Paulusand, H. Walthcr, P. Villoresi, G. Sansone, S. Stagira, M. Nisoli, S. D. Silvcstri. Above-threshold ionization at the few-cycle limit[J]. Phys. Rev. Lett.,2003,91:173003.
    [31]L. J. Frasinski, J. H. Posthumus, J. Plumridgc, K. Coding, P. F. Taday, A. J. Langley. Manipulation of bond hardening in H2+ by chriping of intense femtosecond laser pulses[J]. Phys. Rev. Lett.,1999,83:3625.
    [32]P. H. Bucksbaum, A. Zavriycv, H. G. Mullcr, D. W. Schumactler. Softening of the H2+ molecular bond in intense laser fields[J]. Phys. Rev. Lett.,1990, 64:1883.
    [33]H. Stapelfeldt, H. Sakai, E. Constant, P. B. Corkum. Deflection of neutral molecules using the nonresonant dipole force[J]. Phys. Rev. Lett.,1997,79: 2787.
    [34]Z. Sun, H. Liu, N. Lou, S. Cong. Selecting ionization path by dynamic stark shiff with strong laser pulse[J]. Chcm. Phys. Lett.,2003,369:374.
    [35]S. Magnicr, M. Persico, N. Rahman. Rabi oscillations between dissociative molecular states[J]. Phys. Rev. Lett.,1999,83:2159.
    [36]M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, A. M. Rubcnchik. Ultrashort-pulse laser machining of dielectric materials[J]. J. Appl. Phys.,1999,85:6803.
    [37]G. Herzberg. Molecular spectra and molecular structures[M]. Florida:Kriegcr, 1989.
    [38]P. F. Bcrnath. Spectra of atoms and moleculars[M]. Oxford:Oxford University Press,1995.
    [39]H. Kato, M. Baba. Dynamics of excited molecules:Predissociation[J]. Chem. Rev.,1995,95:2311.
    [40]R. Ubcrna, M. Khalil, R. M. Williams, J. M. Papanikolas, S. R. Leone. Phase and amplitude control in the formation and detection of rotational wave pack-ets in the 2E+state of Li2[J]. J. Chem. Phys.,1998,108:9259.
    [41]B. M. Garraway, K.-A. Suominen. Wave-packet dynamics:New physics and chemistry in femto-time[J]. Rep. Prog. Phys.,1995,58:365.
    [42]B. M. Garraway, K.-A. Suominen. Wave-packet dynamics in molecules[J]. Contemp. Phys.,2002,43:97.
    [43]M.Braun,C.Mcicr,V.Engel.The reflection of predissociation dynamics in pump/probe photoelectron distributions[J].J.Chem.Phys.,1996,105:530.
    [44]A.Assion,M.Gcislcr,J.Hclbing.Femtosecond pump-probe photoelectron spec-troscopy:mapping of vibrationsl wave-packet motion[J].Phys.Rcv.A,1996, 54:4605.
    [45]I.Fischcr,D.M.Villeneuve,M.J.Vrakking.Femtosecond wave-packet dynam-ics studied by time-resolved zero-linetic energy photoelectron spectroscopy[J]. J.Chcm.Phys.,1995,102:5566.
    [46]E.Charron,A.Suzor-Weiner.Femtosecond dynamics of NaI ionization and dissociative ionization[J].J.Chem.Phys.,1998,108:3922.
    [47]Q.H.Zhong,Z.H.Wang,Y.Sun,Q.H.Zhu,F.Kong.Vibrational relaxation of dye molecules in solution studied by femtosecond time-resolved stimulated emission pumping fluorescence depletion[J].Chen.Phys.Lett.,1996,248: 277.
    [48]S.Chclkowski,P.B.Corkum,A.D.Bandrauk.Femtosecond coulomb ex-plosion imaging of vibrational wave functions[J].Phys.Rev.Lett.,1999,82: 3416.
    [49]A.T.Eppink,D.H.Parker.Velocity map imaging of ions and electrons-ing electrostatic lenses: Application in photoelectron and photoffagment ion imaging of molecular oxygen[J].Rev.Sci.Instrum.,1998,68:3477.
    [50]S.H.Shi,A.Woody,H.Rabitz.Optimal control of selective vibrational exci-tation in harmonic linear chain molecles[J].J.Chcm.Phys.,1988,88:6870.
    [51]W.S.Warren,H.Rabitz,M.Dahlch.Coherent control of quantum dynamics: The dream is alive[J].Scicnce,1993,259:1581.
    [52]A. P. Pcircc, M. A. Dahlch, H. Rabitz. Optimal control of quan-tum—echanical systems:Existence, numerical approximation, and appli-cations[J]. Phys. Rev. A,1988,37:4950.
    [53]Y. J. Yan, R. E. Gillan, R. M. Whitncll, K. R. Wilson, S. Mukamcl. Optical control of molecular dynamics:Liouville—pace theory[J]. J. Phys. Chem., 1993,97:2320.
    [54]J. L. Krause, R. M. Whitncll, K. R. Wilson, Y. J. Yan, S. Mukamcl. Optical control of molecular dynamics:molecular cannons, reflectrons, and wave-packet focusers[J]. J. Chem. Phys.,1993,99:6562.
    [55]D.J.Tannor, S. A.Rice. Coherent pulse sequence control of product formation in chemical reactions[J].Adv. Chcm. Phys.,1988,70:441.
    [56]M.Dantus, M.J.Roskcr,A.H.Zcwail.Femtosecond real-time probing of reactions:The dissociation reaction of ICN[J]. J.Chem. Phys.,1988,89: 6128.
    [57]J.L.Herek, A. Materny, A. H. Zewail. Femtosecond control of an elementary unimolecular reaction from the transition-state region[J]. Chem. Phys. Lett., 1994,228:15.
    [58]T. Xie, Y. Zhao, M. Zhao, K. Han. Calculations of the F+HD reaction on three potential energy surfaces[J]. Phys. Chem. Chem. Phys.,2003,5:2034.
    [59]J. Hu, K. Han, G. He. Correlation quantum dynamics between an electron and D2+ molecule with attosecond resolution[J]. Phys. Rev. Lett.,2005,95: 123001.
    [60]T. Chu, Y. Zhang, K. Han. The time-dependent quantum wave packet ap-proach to the electronically nonadiabatic processes in chemical reactions[J]. Int. Rev. Phys. Chem.,2006,25:201.
    [61]尹淑慧.飞秒实时探测技术研究小分子里德堡态动力学[D].大连:中国科学院大连化学物理研究所,2003.
    [62]孙志刚.小分子飞秒动力学和量子计算模拟[D].大连:中国科学院大连化学物理研究所,2005.
    [63]姚丽.几个重要的基元反应的动力学研究[D].大连:大连理工大学物理系,2005.
    [64]楚天舒.量子含时波包方法研究基元反应的非绝热动力学过程[D].大连:中国科学院大连化学物理研究所,2005.
    [65]元凯军.飞超短脉冲激光场中小分子激发与电离动力学研究[D].大连:大连理工大学物理系,2007.
    [66]苗向阳.双原子分子在飞秒激光强场中的电离解离动力学[D].大连:大连理工大学物理系,2009.
    [67]M. Born, R. Oppcnhcimcr. Born-Oppenheimer approximation[J]. Ann. phys., 1927,84:457.
    [68]R. G. Wollcy, B. T. Sutcliffc. Molecular structure and the Born-Oppenheimer approximation[J]. Chcm. Phys. Lett.,1976,45:393.
    [69]M. Born, K. Huang. The dynamical theory of crystal latties[M]. New York: Oxford University Press,1954.
    [70]S. Stcnholm. Foundations of laser spectroscopy[M]. New York:Wiley,1984.
    [71]D. Bayc, P. H. Hccnen, J. V. Lill. Generalized meshes for quantum-mechanical problems[J]. J. Phys. A,1986,19:2041.
    [72]C. C. Marston, G. G. Balint-Kurti. The Fourier grid Hamiltonian method for bound state eigenvalues and eigenfunctions[J]. J. Chem. Phys.,1989,91: 3571.
    [73]R. Kosloff, H. Tal-Ezer. A direct relaxation method for calculating eigenfunc-tions and eigenvalues of the Schrodinger-equation on a grid[J]. Chem. Phys. Lett.,1986,127:223.
    [74]H. Wei, Jr. T. Carrington. Discrete variable representations of complicated kinetic energy operators[J].J. Chem. Phys.,1994,101:1343.
    [75]J. Echave, D. C. Clary. Potential potimized discrete variable representation[J]. Chem. Phys. Lett.,1992,190:225.
    [76]M.D.Feit, Jr. J. A. Fleck. Solution of the schrodinger equation by a spectral method II:Vibrational energy levels of triatomic molecules[J]. J. Chem. Phys., 1983,78:301.
    [77]D. Neuhauser. Bound state eigenfunctions from wave packets:Time-energy resolution[J]. J. Chem. Phys.,1990,93:2611.
    [78]M. H. Beck, H. D. Meyer. Extracting accutate bound-state spectra from ap-proximate wave packet propagation using the filter-diagonalization method[J]. J. Chem. Phys.,1998,109:3730.
    [79]R. Q. Chen, H. Guo. Efficient calculation of matrix elements in low stotage filter diagonalization[J]. J. Chcm. Phys.,1999,111:464.
    [80]B. R. Johnson. New numerical methods applied to solving the one dimensional eigenvalue problem[J]. J. Chem. Phys.,1977,67:4086.
    [81]H. Sambc. Steady states and quasienergies of a quantum-mechanical system in an oscillating field[J]. Phys. Rev. A,1973,7:2203.
    [82]U. Pcskin, N. Moiseyev. The solution of the time-dependent Schrodinger equation by the (t,t') method:Theory, computational algorithm and appli-cations[J]. J. Chem. Phys.,1993,99:4590.
    [83]P. Pfcitcr, R. D. Levin. A stationary formulation of time-dependent problems in quantum mechanics[J]. J. Chem. Phys.,1983,79:5512.
    [84]U. Peskin, R. Kosloff, N. Moiscycv. The solution of the time dependent Schrodinger equation by the (t,t') method:The use of global polynomial prop-agators for time dependent Hamiltonians[J]. J. Chem. Phys.,1994,100:8849.
    [85]G. Yao, R. E. Wyatt. Stationary approaches for solving the Schrodinger equa-tion with time-dependent Hamiltonians[J]. J. Chem. Phys.,1994,101:1904.
    [86]C. Lcforcsticr, R. H. Bisscling, C. Ccrjan. A comparison of different propa-gation schemes for the time dependent Schrodinger equation[J]. J. Comput. Phys.,1991,94:59.
    [87]A. Askar, A. S. Cakmak. Explicit integration method for the time-dependent Schrodinger equation for collision problems[J]. J. Chcm. Phys.,1978,68: 2794.
    [88]S. Chin, R. C. Chen. Gradient symplectic algorithms for solving the Schrodinger equation with time-dependent potentials[J]. J. Chem. Phys.,2002, 117:1409.
    [89]T. N. Truong, J. J. Tanner, P. Bala, J. A. McCammon, B. Lesyng, D. K. Hoffman. A comparative study of time dependent quantum mechanical wave packet evolution methods[3]. J. Chem. Phys.,1992,96:2077.
    [90]G. Nyman, H. G. Yu. Quantum theory of bimolecular chemical reactions[J]. Rep. Phys. Prog.,2000,63:1001.
    [91]G. Goldstein, D. Baye. Sixth-order factorization of the evolution operator for time-dependent potentials[J]. Phys. Rev. E,2004,70:056703.
    [92]D. Bayc, G. Goldstein, P. Capcl. Fourth-order factorization of the evolution operator for time-dependent potentials[J]. Phys. Lett. A,2003,317:337.
    [93]A. D. Bandrauk, H. Shcn. Exponential split operator methods for solving cou-pled time-dependent Schrodinger equations[J]. J. Chem. Phys.,1993,99:1185.
    [94]R. Meyer. Trigonometric interpolation method for one-mentional quantum mechanical problems[J]. J. Chcm. Phys.,1970,52:2053.
    [95]D. Bayc, M. Hesse, M. Vinckc. The unexplained accuracy of the lagrange-mesh method[J]. Phys. Rev. E,2002,65:026701.
    [96]H. Tar-Ezer, R. Kosloff. An accurate and efficient sheme for propagating the time-dependent Schrodinger equation[J]. J. Chcm. Phys.,1984,81:3967.
    [97]R. Q. Chen, H. Guo. The Chebyshev propagator for quantum systems[J]. Comp. Phys. Comm.,1999,119:19.
    [98]B. W. Shore. Coherence in the quasi-continuum model[J]. Chem. Phys. Lett. 1983,99:240.
    [99]C. Meier, V. Engel, U. Manthe. An effective method for the quantum mechan-ical description of photoionization with ultrashort intense laser pulses[J]. J. Chem. Phys.,1998,109:36.
    [100]C. Meier, V. Engel. Interference structure in the photoelectron spectra obtained from multiphoton ionization of Na2 with a strong femtosecond laser pulse[J]. Phys. Rev. Lett.,1994,73:3207.
    [101]Q. Meng, G. Yang, H. Sun, K. Han, N. Lou. Theoretical study of the femtosecond-resolved photoelectron spectrum of the NO molecule[J]. Phys. Rev. A,2003,67:063202.
    [102]R. de Vivie-Ricdlc, K. Kobe, J. Manz, W. Meyer, B. Reischl, S. Rutz, E. Schreiber, L. Woste. Femtosecond study of multiphoton ionization processes in K2:From pump-probe to control[J]. J. Phys. Chem.,1996,100:7789.
    [103]E. E. Nikitin, S. Y. Umanskii. Theory of slow atomic collisions[M]. New York: Springer,1984.
    [104]M. S. Child. Semiclassical mechanics with molecular applications[M]. Oxford: Clarendon,1991.
    [105]R. E. Wyatt, J. Z. H. Zhang. Dynamics of molecules and chemical reac-tions[M]. New York:Marcel Dekkcr,1996.
    [106]H.2Nakamura. What are the basic mechanisms of electronie transitions in molecular dynamic processes?[J]. Int. Rev. Phys. Chem.,1991,10:123.
    [107]T. Chu, K. Han. Effect of Coriolis coupling in chemical reaction dynamics[J]. Phys. Chcm. Chem. Phys.,2008,10:2431.
    [108]W. R. Lambert, P. M. Fclker, A. H. Zcwail. Quantum beats and dephasing in isolated large molecules cooled by supersonic jet expansion and excited by picosecond pulses:Anthracene[J]. J. Chcm. Phys.,1981,75:5958.
    [109]P. M. Fclkcr, A. H. Zcwail. Direct observation of nonchaotic multilevel vibra-tional energy flow in isolated polyatomic molecules[J]. Phys. Rev. Lett.,1984, 53:501.
    [110]W. A. Jasper, C. Zhu, S. Nangia, D. G. Truhlar. Introductory lecture:Nona-diabatic effects in chemical dynamics[J]. Faraday Discuss.,2004,127:1.
    [111]J. C. Tully. Concluding remarks non-adiabatic effects in chemical dynamics[J]. Faraday Discuss.,2004,127:463.
    [112]A. H. Zewail. Femtochemistry-ultrafast dynamics of The chemical bond[M]. Singapore:World Scientific,1994.
    [113]M. Chcrgui, Femtochemistry[M]. Singapore:World Scientific,1995.
    [114]J. Manz and L. Wostc. Femtosecond chemistry[M]. Wcinhcim:Wiley-VCH, 1995.
    [115]M. R. Hoffmann, G. C. Schatz. Theoretical studies of intersystem crossing effects in the O+H2 reaction[J]. J. Chem. Phys.,2000,113:9456.
    [116]M. Bacr. The electronic non-adiabatic coupling term in molecular systems:A theoretical approach[J]. Adv. Chcm. Phys.,2002,124:39.
    [117]A. Kuppcrmann, R. Abrol. Quantum reaction dynamics for multiple electronic states[J]. Adv. Chem. Phys.,2002,124:283.
    [118]B. Maiti, G. C. Schatz. Theoretical studies of intersystem crossing effects in the O(3P,1D)+H2 reaction[J]. J. Chem. Phys.,2003,119:12360.
    [119]T. S. Rose, M. J. Rosker, A. H. Zewail. Femtosecond real-time observation of wave packet oscillations (resonance) in dissociation reactions[J]. J. Chcm. Phys.,1988,88:6672.
    [120]M. J. Roskcr, T. S. Rose, A. H. Zewail. Femtosecond real-time dynamics of photofragment-trapping resonances on dissociative potential energy sur-faces[J]. Chem. Phys. Lett.,1988,146:175.
    [121]T. S. Rose, M. J. Rosker, A. H. Zewail. Femtosecond real-time probing of reactions. IV. The reactions of alkali halides[J]. J. Chem. Phys.,1989,91: 7415.
    [122]C. Jouvet, S. Martrenchard, D. Solgadi, C. Dedonder-Lardcux. Experimental femtosecond photoionization of NaI[J]. J. Phys. Chem. A,1997,101:2555.
    [123]P. Cong, G. Roberts, J. L. Herck, A. Mohktari, A. H. Zewail. Femtosecond real-time probing of reactions.18. Experimental and theoretical mapping of trajectories and potentials in the Nal dissociation reaction[J]. J. Phys. Chem., 1996,100:7832.
    [124]G. Gregoire, M. Mons, I. Dimicoli, F. Piuzzi, E. Charron, C. Dedondcr-Lardcux, C. Jouvet, S. Martrcnchard, D. Solgadi, A. Suzor-Wcincr. Photoion-ization of Nal:Inward-outward asymmetry in the wave packet detection[J]. Eur. Phys. J. D,1998,1:187.
    [125]V. Engcl, H. Mctiu. The study of Nal predissociation with pump-probe fem-tosecond laser pulses:The use of an ionizing probe pulse to obtain more de-tailed dynamic information[J]. Chem. Phys. Lett.,1989,155:77.
    [126]P. Marquctand, A. Matcrny, V. Engcl. Molecular orientation via a dynam-ically induced pulse-train:Wave packet dynamics of Nal in a static electric field[J]. J. Chcm. Phys.,2004,120:5871.
    [127]X. Miao, L. Wang, H. Song. Theoretical study of the femtosecond photoion-ization of the Nal molecule[J]. Phys. Rev. A,2007,75:042512.
    [128]S. Grafe, V. Engle. Indirect versus direct photoionization with ultrashort pulses:Interferences and time-resolved bond-length changes[J]. Chcm. Phys. Lett.,2004,385:60.
    [129]P. Marquctand, C. Meier, V. Engcl. Local control of molecular fragmentation: The role of orientation[J]. J. Chem. Phys.,2005,123:204320.
    [130]P. Marquctand, V. Engel. Predissociation and dissociation dynamics in quan-tum control fields[J]. Chem. Phys. Lett.,2005,407:471.
    [131]V. Engel, H. Metiu. A quantum mechanical study of predissociation dynamics of Nal excited by a femtosecond laser pulse[J]. J. Chem. Phys.,1989,90:6116.
    [132]Y. Han, K. Yuan, W. Hu, S. Cong. Control of photodissociation and photoion-ization of the Nal molecule by dynamic Stark effect[J]. J. Chem. Phys.,2009, 130:044308.
    [133]V. Engel, H. Mctiu, R. Almeida, R. A. Marcus and A. H. Zewail. Molecular state evolution after excitation with an ultar-short laser pulse:A quantum analysis of Nal and NaBr dissociation[J]. Chcm. Phys. Lett.,1988,152:1.
    [134]T. Baumcrt, V. Engcl, C. Meier, G. Gerbcr High laser field effects in mul-tiphoton ionization of Na2. Experiment and quantum calculations[J]. Chcm. Phys. Lett.,1992,200:488.
    [135]C. Meier, V. Engcl Electron kinetic energy distributions from multiphoton ionization of Na2 with femtosecond laser pulses[J]. Chem. Phys. Lett.,1993, 212:691.
    [136]C. Nicole, M. A. Bouchene, C. Meier, S. Magnier, E. Schreiber, B. Girard. Competition of different ionization pathways in K2 studied by ultrafast pump-probe spectroscopy:A comparison between theory and experiment[J]. J. Chcm. Phys.,1999,111:7857.
    [137]C. Zhu, Y. Tcranishi, H. Nakamura. Nonadiabatic transitions due to curve crossings:Complete solutions of the landau-zener-stueckelberg problems and their applications[J]. Adv. Chem. Phys.,2001,117:127.
    [138]A. H. Zcwail. Laser femtochemistry[J]. Science,1988,242:1645.
    [139]K. C. Kulander, F. H. Mies, K. J. Schafer. Model for studies of laser-induced nonlinear processes in molecules[J]. Phys. Rev. A,1996,53:2562.
    [140]E. Constant, H. Stapclfcldt, P. B. Corkum. Observation of enhanced ionization of molecular ions in intense laser fields[J]. Phys. Rev. Lett.,1996,76:4140.
    [141]S.W. Allendorf, A. Szoke. High-intensity multiphoton ionization of H2[J]. Phys. Rev. A,1991,44:518.
    [142]E. E. Aubanel, A.D. Bandrauk. Rapid vibrational inversion via time gating of laser-induced avoided crossings in high-intensity photodissociation[J]. J. Phys. Chem.,1993,97:12620.
    [143]L. J. Frasinski, J. H. Posthumus, J. Plumridgc, K. Codling, P. F. Taday, A. J. Langlcy. Manipulation of bond hardening in H2+ by Chirping of Intense Femtosecond Laser Pulses[J]. Phys. Rev. Lett.,1999,83:3625.
    [144]A. Giusti-Suzor, X. He, O. Atabek, F. H. Mies. Above-threshold dissociation of H2+ in intense laser fields[J]. Phys. Rev. Lett.,1990,64:515.
    [145]A. Zavriyev, P. H. Bucksbaum, J. Squier, F. Saline. Light-induced vibrational structure in H2+ and D2+ in intense Laser[J]. Phys. Rev. Lett.,1993,70:1077.
    [146]G. Granucci, S. Magnicr, M. Pcrsico. Rabi oscillations in the dissociative continuum:Rotation and alignment effects[J]. J. Chem. Phys.,2002,116: 1022.
    [147]C. Wunderlich, E. Kobler, H. Figger, T. W. Hansch. Light-induced molecular potentials[J]. Phys. Rev. Lett.,1997,78:2333.
    [148]I. R. Sola, B Y. Chang, J. Santamaria, V. S. Malinovsky, J. L. krausc. Selective excitation of vibrational states by shaping of light-induced potentials[J]. Phys. Rev. Lett.,2000,85:4241.
    [149]T. Rickes, L. P. Yatscnko, S. Stcuerwald, T. Halfmann, B. W. Shore, N. V. Vitanov, K. Bcrgmanne. Efficient adiabatic population transfer by two-photon excitation assisted by a laser-induced Stark shift[J]. J. Chcm. Phys.,2000, 113:534.
    [150]J. G. Underwood, M. Spanner, M. Y. Ivanov, J. Mottcrshcad, B. J. Suss-man, A. Stolow. Switched wave packets:A route to nonperturbative quantum control[J]. Phys. Rev. Lett.,2003,90:223001.
    [151]S. H. Autlcr, C. H. Townes. Stark effect in rapidly varying fields[J]. Phys. Rev.,1955,100:703.
    [152]F.Y. Wu, R. E. Grove, S. Ezekicl. Investigation of the spectrum of resonance fluorescence induced by a monochromatic field[J]. Phys. Rev. Lett.,1975,35: 1426.
    [153]M. Wollcnhaupt, A. Assion, O. Bazhan, C. Horn, D. Liese, C. Sarpe-Tudoran, M. Winter, T. Baumert. Control of interferences in an Autler-Townes doublet: Symmetry of control parameters[J]. Phys. Rev. A,2003,68:015401.
    [154]M. Wollenhaupt, D. Licsc, A. Prakclt, C. Sarpc-Tudoran, T. Baumert. Quan-tum control by ultrafast dressed states tailoring[J]. Chem.Phys. Lett.,2006, 419:184.
    [155]O. Astaficv, A. M. Zagoskin, A. A. Abdumalikov, Jr., Y. A. Pashkin, T. Yamamoto, K. Inomata, Y. Nakamura, J. S. Tsai. Electromagnetically induced transparency on a single artificial atom[J]. Science,2010,327:840.
    [156]A. A. Abdumalikov, Jr., O. Astafiev, A. M. Zagoskin, Yu. A. Pashkin, Y. Nakamura, J. S. Tsai. Electromagnetically induced transparency on a single artificial atom[J]. Phys. Rev. Lett.,2010,104:193601.
    [157]G. Wrigge, I. Gerhardt, J. Hwang, G. Zumofcn, V. Sandoghdar. Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence[J]. Nature Phys.,2008,4:60.
    [158]I. Gcrhardt, G. Wrigge, P. Bushev, G. Zumofcn, M. Agio, R. Pfab, V. San-doghdar. Strong extinction of a laser beam by a single molecule[J]. Phys. Rev. Lett.,2007,98:033601.
    [159]X. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham. Coherent optical spectroscopy of a strongly driven quantum dot[J]. Science,2007,317:929.
    [160]A. Mullcr, E. B. Flagg, P. Bianucci, X. Y. Wang, D. G. Deppe, W. Ma, J. Zhang, G. J. Salamo, M. Xiao, C. K. Shih. Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity[J]. Phys. Rev. Lett., 2007,99:187402.
    [161]A. N. Vamivakas, Y. Zhao, C. Lu, M. Atatiirc. Spin-resolved quantum-dot resonance fluorescence[J]. Nature Phys.,2009,5:198.
    [162]Y. Peng, Y. Zheng. Coherent optical spectroscopy of a single quantum dot using photon counting statistics[J]. Phys. Rev. A,2009,80:043831.
    [163]S. Xu, G. Sha, B. Jiang, W. Sun, X. Chen, C. Zhang. Two-color study of Autler-Townes doublet splitting and ac Stark shift in multiphoton ionization spectra of CO[J]. J. Chem. Phys.,1994,100:6122.
    [164]J. Qi, G. Lazarov, X. Wang, L. Li, L. M. Narducci, A. M. Lyyra, F. C. Spano. Autler-Townes splitting in molecular lithium:Prospects for all-optical alignment of nonpolar molecules[J]. Phys. Rev. Lett.,1999,83:288.
    [165]J. Qi, F. C. Spano, T. Kirova, A. Lazoudis, J. Magncs, L. Li, L. M. Nar-ducci, R. W. Field, A. M. Lyyra. Measurement of transition dipole moments in lithium dimers using electromagnetically induced transparency[J]. Phys. Rev. Lett.,2002,88:173003.
    [166]H. Schwoerer, R. Pausch, M. Heid, V. Engel, W. Kiefer. Femtosecond time-resolved two-photon ionization spectroscopy of K2[J]. J. Chem. Phys.,1997, 107:9749.
    [167]S. Magnier, M. Aubert-Frccon, A. R. Allouche. Theoretical determination of highly excited states of K2 correlated adiabatically above K(4p)+K(4p)[J]. J. Chcm. Phys.,2004,121:1771.
    [168]A. Jraij, A. R. Allouche, S. Magnier, M. Aubert-Frecon. Theoretical investi-gation of theΩSi states of K2 dissociating adiabatically up to K(4p Pa/2)+ K(4p2p3/2)[3]. J. Chem. Phys.,2009,130:244307.
    [169]A. Jraij, A. R. Allouche, S. Magnicr, M. Aubert-Frecon. Theoretical spin-orbit structure of the alkali dimer cation K2+[J]. Can. J. Phys.,2008,86:1409.
    [170]G. Jong, L. Li, T.-J. Whang, W. C. Stwallcy, J. A. Coxon, M. Li, A. M. Lyyra. CW all-optical triple-resonance spectroscopy of K2:Deperturbation analysis of the A1+iy< 12) and 63IIU(13< v< 24) states [J]. J. Mol. Spcctrosc, 1992,155:115.
    [171]P. Kowalczyck, S. Kasahara, M. H. Kabir, H. Kato. The E(4)1IIU state in K2 and its perturbations[J]. J. Mol. Spcctrosc,2003,220:162.
    [172]S. Magnicr, Ph. Millie. Potential curves for the ground and numerous highly excited electronic states of K2 and NaK[3]. Phys. Rev. A,1996,54:204.
    [173]L. Allen, J. H. Eberly. Optical coherence and quantum optics[M]. New York: Dover,1987.
    [174]A. Paloviita, K.-A. Suominen. Molecule excitation by large-area ultrashort pulses[J]. Phys. Rev. A,1997,55:3007.
    [175]W. T. Hill, C. H. Lee. Light-matter interaction[M]. New York:Wiley,2007.
    [176]M. A. Quesada, A. M. F. Lau, D. H. Parker, D. W. Chandler. Observation of Autler-Townes splittting in the multiphoton ionization of H2:Measurement of vibronic transiton moments between excited electronic states[J]. Phys. Rev. A,1987,36:4107.
    [177]D. Goswami. Optical pulse shaping approaches to coherent control[J]. Phys. Rep.,2003,374:385.
    [178]S. A. Rice, M. Zhao. Optical control of molecular dynamics[M]. New York: Wilcy-Intcrscicnce,2000.
    [179]M. Shapiro, P. Brumcr. Principles of the quantum control of molecular pro-cesses[M]. Hoboken:Wilcy-Intcrsciencc,2003.
    [180]M. Wollcnhaupt, V. Engcl, T. Baumcrt. Laser-induced population transfer by adiabatic passage techniques guiding the time-evolution of a molecule:Optical control by computer[J]. Annu. Rev. Phys. Chem.,2005,56:25.
    [181]G. A. Worth, C. S. Sanz. Guiding the time-evolution of a molecule:optical control by computer[J]. Phys. Chem. Chem. Phys.,2010,12:15570.
    [182]T. J. Penfold, G. A.Worth, C. Meier. Local control of multidimensional dy-namics[J]. Phys. Chem. Chem. Phys.,2010,12:15616.
    [183]A. Ishizaki, T. R. Calhoun, G. S. Schlau-Cohen, G. R. Fleming. Quantum coherence and its interplay with protein environments in photosynthetic elec-tronic energy transfer[J]. Phys. Chem. Chem. Phys.,2010,12:7319.
    [184]T. Schmicrcr, S. Laimgruber, K. Haiser, K. Kicwisch, J. Neugebaucr, P. Gilch. Femtosecond spectroscopy on the photochemistry of ortho-nitrotoluene[J]. Phys. Chem. Chcm. Phys.,2010,12:15653.
    [185]S. Schiemann, A. Kuhn, S. Stcucrwald, K. Bergmann. Efficient coherent popu-lation transfer in NO molecules using pulsed lasers[J]. Phys. Rev. Lett.,1993, 71:3637.
    [186]S. Gucrin, L. P. Yatscnko, H. R. Jauslin. Dynamical resonances and the topol-ogy of the multiphoton adiabatic passage[J]. Phys. Rev. A,2001,63:031403.
    [187]L. P. Yatscnko, B. W. Shore, T. Halfmann, K. Bcrgmann, A. Vardi. Source of metastable H(2s) atoms using the Stark chirped rapid-adiabatic-passage technique[J]. Phys. Rev. A,1999,60:4237.
    [188]A. A. Rangclov, N. V. Vitanov, L. P. Yatscnko, B. W. Shore, T. Halfmann, K. Bcrgmann. Stark-shift-chirped rapid-adiabatic-passage technique among three states[J]. Phys. Rev. A,2005,72:053403.
    [189]C. Wundcrlich, E. Kobler, H. Figgcr, T. W. Hansch. Light-induced molecular potentials[J]. Phys. Rev. Lett.,1997,78:2333.
    [190]B. M. Garraway, K.-A. Suominen. Adiabatic passage by light-induced poten-tials in molecules[J]. Phys. Rev. Lett.,1998,80:932.
    [191]R. S. Judson, H. Rabitz. Teaching lasers to control molecules[J]. Phys. Rev. Lett.,1992,68:1500.
    [192]A. Assion, T. Baumcrt, M. Bcrgt, T. Brixncr, B. Kicfer, V. Seyfried, M. Strchlc, G. Gcrbcr. Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses[J]. Science,1998,282:919.
    [193]R. J. Levis, G. M. Mccnkir, H. Rabitz. Selective bond dissociation and rear-rangement with optimally tailored, strong-field laser pulses[J]. Science,2001, 292:709.
    [194]F. Renzoni, W. Maichen, L. Windholz, E. Arimondo. Coherent population trapping with losses observed on the Hanle effect of the D1 sodium line[J]. Phys. Rev. A,1997,55:3710.
    [195]J. Vanier, A. Godone, F. Levi. Coherent population trapping in cesium:Dark lines and coherent microwave emission[J]. Phys. Rev. A,1998,58:2345.
    [196]M. D. Lukin, A. Imamoglu. Controlling photons using electromagnetically in-duced transparency[J]. Nature,2001,413:273.
    [197]M. D. Eisaman, A. Andre, F. Massou, M. Flcischhauer, A. S. Zibrov, M. D. Lukin. Electromagnetically induced transparency with tunable single-photon pulses[J]. Nature,2005,438:837.
    [198]W. T. Hill, C. H. Lee. Light-matter interaction[M]. New York:Wiley,2007.
    [199]M. Wollcnhaupt, A.Prakclt, C. Sarpe-Tudoran, D. Liese, T. Baumcrt. Strong field quantum control by selective population of dressed states[J]. J. Opt. B, 2005,7:270.
    [200]M. Wollcnhaupt, A. Prakelt, C. Sarpe-Tudoran, D. Licsc, T. Baumcrt. Quan-tum control by selective population of dressed states using intense chiped fem-tosecond laser pulses[J]. Appl. Phys. B,2006,82:183.
    [201]M. Wollcnhaupt, A. Prakclt, C. Sarpc-Tudoran, D. Liese, T. Baumcrt. Quan-tum control and quantum control landscapes using intense shaped femtosecond pulses[J]. J. Mod. Opt.,2005,52:2187.
    [202]M. Broycr, J. Chcvalcyrc, G. Delacretaz, S. Martin, L. Wostc. K2 rydberg state analysis by two-and three-photon ionization[J]. Chcm. Phys. Lett.,1983, 99:206.
    [203]谭维翰.量子光学导论[M].北京:科学出版社,2009.
    [204]R. W. Boyd. Nonlinear optics[M]. New York:Academic Press,1992.
    [205]C.Cohcn-Tannoudji,B.Diu,F.Laloe.Quantum mechanics[M].New York: Wilcy.1996.
    [206]N.V.Vitanov,T.Halfmann,BruccWSorc,K.Bcrgmann.Laser-induced pop-ulation transfer by adiabatic passage techniques[J].Annu.Rev.Phys.Chem., 2001,52:763.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700