部分典型有机污染物在环境界面的光化学行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光解是有机污染物在环境中的重要转化过程。由于持久性有机污染物(POP)在环境中难以被生物降解,因此研究POP的光化学行为对于POP的环境行为评价有重要的意义。前人对于POP的光化学行为研究主要集中于水相和大气相中,本研究则主要研究POP在环境界面上的光化学行为。
     本研究首次通过将云杉(Picea abies(L.)Karst.)针叶暴露在燃烧炉中燃烧聚氯乙烯(PVC)、木材、高密度聚乙烯(HDPE)和苯乙烯产生含多氯代二苯并二噁(口英)(PCDD)和多氯代二苯并呋喃(PCDF)及多环芳烃(PAH)的废气中,经过一段时间,云杉针叶表面富集了一定浓度的燃烧所产生的PCDD/F和PAH,然后研究了太阳光和模拟太阳光照射下,吸附到云杉针叶表面的PCDD/F和PAH的光化学行为。
     太阳光照射下,吸附到云杉针叶表面的70个不同PCDD/F分子和18个不同PAH分子的光解符合一级动力学方程,PCDD/F的光解半衰期约为20~50h;PAH的光解半衰期约为15.8~75.3 h;实验结果表明,在野外环境条件下,光解对于吸附到云杉针叶表面的PCDD/F和PAH的归宿起着重要的作用。
     燃烧实验结果表明,云杉针叶表面富集的PCDF的浓度约为PCDD浓度的5倍;三年生长的云杉针叶吸附的PCDD/F的浓度略高于一年生长和二年生长的云杉针叶。太阳光的照射下,在具有相同氯代原子数目的条件下,PCDF的光解速率高于PCDD的光解速率,高氯代PCDD/F的光解半衰期大于低氯代PCDD/F的光解半衰期。PCDD/F分子中C-Cl的断裂可产生芳基自由基,这种自由基能从云杉针叶表面的质子供体如饱和链烃快速吸收氢原子,光还原脱氯可能是云杉针叶表面的PCDD/F的重要降解途径。云杉针叶表面可能产生过氧化基(O2-)、羟基(-OH)、过氧化氢(H_2O_2)或纯态氧(~1O_2)等活性氧基团或分子,通过这些物质进攻PAH分子可能是PAH的一种重要的降解途径。
     在模拟太阳光中的UV-B部分的照射下,吸附到云杉针叶表面的75个不同的PCDD/F分子在光照第一阶段(0~48 h)和光照第二阶段(48~528 h)的光解分别符合一级动力学方程,第一阶段的光解速率远大于第二阶段的光解速率;云杉针叶的生长时间对于PCDD/F的光解有影响,随着生长时间的增加,光解速率略有提高,
    
     大连理工大学博士学位论文
    三年生长的云杉针叶表面的 PCDD/F的光解速率略高于一年生长和二年生长的云杉
    针叶表面上PCDD/F的光解速率。
     燃烧过程中产生的烟灰中含有一定浓度的PCDD/F,在模拟太阳光中的UV-B部
    分的照射下,烟灰表面的PCDD/F的光解符合一级动力学方程,而烟灰内部的PCDD/F
    比较稳定,难以光解;沉积到云杉针叶表面上的烟灰能使PCDD/F在云杉针叶表面
    的光解速率减小。研究表明,在野外环境条件下,太阳光中的UV-B部分对于吸附到
    云杉针叶表面的PCDD/F的归宿起着主要的作用。
     在含UVE部分的模拟太阳光和不含UV卫部分的模拟太阳光的照射下,吸附到
    当年生的云杉针叶表面的PAH分于的光解符合一级动力学方程,含UVE部分的模
    拟太阳光照射下PAH的光解速率大于不含UVI部分的模拟太阳光照射下PAH的光
    解速率。
     燃烧过程中产生的烟灰中含有一定浓度的PAH,在模拟太阳光中的UV*部分
    的照射下,烟灰表面的PAH的光解符合一级动力学方程,而烟灰内部的PAH比较稳
    定,难以光解。沉积到云杉针叶表面上的烟灰表面的PAH的光化学降解速率与云杉
    针叶表面卜PAH的光解速率差别不大,PAH在云杉针叶表面与烟灰表面的迁移对云
    杉针叶表面PA H的光解速率影响不大,而PA H在烟灰内部和表面之间的迁移速率对
    PAH的光解有较大的影响。
     从辽河新民段采集了 14种具有不同含量的 FeZOs的天然沉积物,为了探讨沉积
    物中 Fe。O。和其它具有光诱导和光催化能力的物质如 TIO。和有机质成分对沉积物表
    面上的林丹O-HCH)的光解的影响,研究了Y-HCH在这些沉积物表面上的光解动力
    学。研究发现,Y爿CH在辽河新民段沉积物表面上的光化学降解符合准一级动力学。
    采用逐步口归分析、因子分析和偏最小二乘oLS)算法建立了沉积物组成与Y-HCH光
    解速率常数之间的定量关系模型,得到的模型表明,沉积物中有机碳和无机碳含量
    的增多抑制Y-HCH的光解,而 Fe。O。和 TIO。等金属氧化物含量的增多对Y-HCH的光
    解有促进作用。应用所得的模型可以预测Y-HCH在不同沉积物表面上的光解速率常
    数。光解实验中,检测到了有光解中间产物a-HCH的生成,这可能是出于沉积物中
    的Y-HCH在紫外光的照射下,发生了异构化现象。
     通过对另一种典型有机氯污染物六氯苯(HCB)在高岭土和不同Fe。O。含量的沉积
     二I
    
     摘要
    物中的光解也证实了随着样品中Fe。Os含量的增大,HCB的光解半衰期减少。因此,
    本项研究结果为强化有机氯农药污染沉积物或土壤的自然光化学修复过程提供了理
    论依据。
Persistent organic pollutants (POP) are highly lipophilic and chemically stable. Photodegradation may be one of the dominant abiotic transformations of the chemicals. Therefore, it is of great importance to investigate the photolytic behavior of POP in the environment. Previous studies focus on the photodegradation of POP in aqueous phase and in atmosphere. The photolytic behavior of POP at the interfacial environment is investigated in this study.
    Spruce (Picea abies (L.) Karst.) needles were exposed exhaust gas containing polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) and polycyclic aromatic hydrocarbons (PAH) generated by combustion of polyvinyl chloride (PVC), wood, high-density polyethylene (HOPE), and styrene. Photodegradation of PCDD/F and PAH adsorbed on spruce needles under sunlight irradiation was studied. The factors of sunlight irradiation on the surfaces of spruce needles were taken into consideration when investigating the kinetic parameters.
    The photodegradation of the 70 PCDD/F and the 18 PAH follows pseudo-first-order reaction kinetics. The photodegradation half-lives range between 20 h and 50 h for PCDD/F and between 15.8 h and 75.3 h for PAH. Thus in the field conditions, photodegradation plays a major role on the fate of PCDD/F and PAH adsorbed on spruce needle surfaces.
    The photodegradation rates of PCDF congeners are faster than PCDD congeners with the same chlorinated substitutions. Higher chlorinated PCDD/F tend to photolyze slowly. The wax components in spruce needles may act as proton donors and accelerate the photodegradation rate. C-C1 cleavage through the addition of protons to PCDD/F molecules may be an important route for PCDD/F photodegradation. Photooxidation mediated by reactive oxygen species may be an important photodegradation mechanism for PAH on spruce needle surfaces.
    With the radiation of UV-B part of simulated sunlight, the photodegradation of the 75 PCDD/F absorbed to spruce needle follows pseudo-first-order reaction kinetics for the initial phase (0-48 h) and the second phase (48-528 h), respectively. The photodegradation rate constants for the initial phase are far greater than for the second
    IV
    
    
    
    phase. The degradation rates increase with the age of spruce needles. The photodegradation rate constants of PCDD/F absorbed to 3-year-old spruce needles are greater than that of PCDD/F absorbed to 1 -year-old spruce needles and 2-year-old spruce needles.
    The photodegradation of PCDD/F on fly ash surfaces follows pseudo first-order kinetics under the irradiation of simulated sunlight with UV-B, whereas inner PCDD/F of fly ash is photostable. The fly ash deposited on spruce needle surfaces can decrease the degradation rates of PCDD/F on spruce needle surfaces. In the field conditions, UV-B radiation plays a major role on the fate of PCDD/F and PAH adsorbed on spruce needle surfaces.
    The photodegradation of the 16 PAH absorbed to one-year-old spruce needle follows pseudo-first-order reaction kinetics with or without the radiation of UV-B part of simulated sunlight. The photodegradation rates for the PAH with the radiation of UV-B part are greater than for the PAH without the radiation of UV-B part of simulated sunlight.
    The photodegradation of PAH on fly ash surfaces follows pseudo first-order kinetics under the irradiation of simulated sunlight with UV-B, whereas inner PAH of fly ash is photostable. The transfer of PAH between fly ash surfaces and needle surfaces has little effect on the decrease of PAH on spruce needle surfaces, whereas the transfer of PAH from the exterior to the interior of fly ash can decrease the degradation rates of PAH on spruce needle surfaces.
    Fourteen sediment samples with different content of Fe2C>3 were collected from lower reach of the Liao River in China. The photodegradation of y-hexachlorocyclohexane (y-HCH) on the sediment surfaces was investigated to observe the effects of Fe2Os and other photoinducable substances, such as TiO2 and organic substances, on photodegradation of y-HCH. The stepwise analysis, fac
引文
[1] Gabos S., Ikonomou, M.G., Schopflocher, D., Fowler, B.R., White, J., Prepas, E., Prince, D., Chen, W. Characteristics of PAHs, PCDD/Fs and PCBs in sediment following forest fires in northern Alberta, Chemosphere, 2001, 43: 709-719.
    [2] Fattore, E., Benfenati, E., Mariani, G., Fanelli, R.. Patterns and sources of polychlorinated dibenzo-p-dioxins and dibenzofurans in sediments from the Venice Lagoon, Italy. Environ. Sci. Technol.., 1997, 31: 1777-1784.
    [3] Crosby, D.G., Moilanen, K.W., Wong, A.S.. Environmental generation and degradation of dibenzodioxins and dibenzofurans. Environ. Health Perspect, 1973b, 5: 259-266.
    [4] Czuczwa, J.M., Hites, R.A. Airborne dioxins and dibenzofurans: sources and fates. Environ. Sci. Technol., 1986, 20: 195-200.
    [5] Chang, M.B., Huang, T.F. The effects of temperature and oxygen content on the PCDD/PCDFs formation in MSW fly ash. Chemosphere, 2000, 40: 159-164.
    [6] Tuppurainen, K., Halonen, I., Ruokojrvi, P., Tarhanen, J., Ruuskanen, J. Formation of PCDDs and PCDFs in municipal waste incineration and its inhibition mechanisms: a review. Chemosphere, 1998, 36: 1493-1511.
    [7] Liberti, A., Goretti, G., Russo, M.V. Formation of polychlorodibenzofurans in urban wastes incineration. Gazz. Chim. Ital., 1983, 113: 641-644.
    [8] Olive, K., Vermenulen, P., Hutzinger, O. Chlorodibenzo-p-dioxins and chlorodibenzofurans are trace compounds of fly ash and flue gas of some of municipal incinerators in Netherland. Chemosphere, 1977, 6: 455-459.
    [9] Zheng, M.H., Bao, Z.Z., Wang K.O., Xu, X.B. Levels of PCDDs and PCDFs in the bleached pulp from Chinese pulp and paper industry. Bull. Environ. Contain. Toxicol., 1997, 59: 90-93.
    [10] Eduljee, G.H., Dyke, P. An updated inventory of potential PCDD and PCDF emission sources in the UK. Sci.Total Environ., 1996, 177: 303-321.
    [11] Zheng, M.H., Bao, Z.Z., Xu, X.B., Wang, K.O. Formation of PCDD/Fs from the pyrolysis of HCH in the presence of iron oxide. Chemosphere, 1996, 32: 595-602.
    [12] Anderson, D.R., Fisher, R. Sources of dioxins in the United Kingdom: the steel industry and other sources. Chemosphere, 2002, 46: 371-381.
    [13] Hamly M., Stephens, R., Mclaughlin, C., Marcotte, J., Petreas, M., Goldman, L. Polychlorinated dibenzo-p-dioxins and dibenzofuran contamination metal recovery facilities, open burn sites, and a railroad car incineration facility. Environ. Sci. Technol., 1995, 29: 677-684.
    [14] Silk, P.J., Lonergan, G.C., Arsenault, T.L., Boyle C.D. Evidence of natural organochlorine formation in peat bogs. Chemosphere, 1997, 35: 2865-2880.
    [15] Svenson, A., Kjeller, L.O., Rappe, C. Enzyme-mediated formation of 2,3,7,8- tetrachlorinated dibenzodioxins and dibenzofurans. Environ. Sci. Technol., 1989, 23: 900-905.
    [16] Rappe, C. Dioxin, Pattems and Source identification. Fresenius J. And. Chem., 1994, 348: 63-75.
    
    
    [17] Lamparski, L.L., Stehl, R.J., Johnson, R.L. Photolysis of pentachlorophenol-treated wood. Chlorinated dibenzo-p-dioxin formation. Environ. Sci. Technol., 1980, 14:196-199.
    [18] Covaci, A., Ryan, J.J., Schepens, P. Patterns of PCBs and PCDD/PCDFs in chicken and pork fat following a Belgian food contamination incident. Chemosphere, 2002, 47: 207-217.
    [19] Domingo, J.L., Granero, S., Schuhmacher, M. Congener profiles of PCDD/Fs in soil and vegetation samples collected near to a municipal waste incinerator. Chemosphere, 2001, 43: 517-524.
    [20] Kaupp, H., McLachlan, M.S. Distribution of polychlorinated dibenzo-P-dioxins and dibenzofurans (PCDD/Fs) and polycyclic aromatic hydrocarbons (PAHs) within the full size range of atmospheric particles. Atmos. Environ., 2000, 34: 73-83.
    [21] Buser, H.-R. Preparation of qualitative standard mixtures of polychlorinated dibenzo-p-dioxins and dibenzofurans by ultraviolet and γ-irradition of the octachloro compounds. J. Chromatogr., 1976, 129: 303-307.
    [22] Lorenzen, A., Okey, A.B. Binding of 2,3,7,8-tetrachlorinated dibenzo-p-dioxin (TCDD) to cytosolic Ah Receptor (AhR) in human Tonsils. Chemosphere, 1990, 20: 1215-1220.
    [23] Kao, C.M., Chen, S.C., Liu, J.K., Wu, M.J. Evaluation of TCDD biodegradability under different redox conditions, Chemosphere, 2001, 44: 1447-1454.
    [24] Orazio, C.E., Kopilla, S., Puri, P.K. Persistence of chlorinated dioxins and furans in the soil environment. Chemosphere, 1992, 25: 1469-1474.
    [25] Borgitzky, H., Schramm, K.-W. Reduction of dioxin concentrations on contaminated surfaces. Chemosphere, 1991, 22: 485-493.
    [26] Choudhry, G.G., Barrie Webster, G.R. Quantum yields for photodegradation polychlorinated dibenzo-p-dioxin (PCDDs) in water-acetonitrile solution. Chemosphere, 1985, 14: 893-896.
    [27] Choudhry, G.G., Barrie Webster, G.R. Photochemical quantum yields and sunlight half-lives of polychlorinated dibenzo-p-dioxins in aquatic systems. Chemosphere, 1986, 15: 1935-1940.
    [28] Choudhry, G.G., Barrie Webster, G.R. Environmental photochemistry of polychlorinated dibenzofurans (PCDFs) and polychlorinated dibenzo-p-dioxins (PCDDs): a review. Toxicol. Environ. Chem., 1987, 14: 43-61.
    [29] Choudhry, G.G., Barrie Webster, G.R. Quantum yields of polychlorodibenzo-p-dioxins in water-acetonitrile mixtures and their environmental phototransformation rates. In: Zika, R. G., Cooper, W. J.(Eds.), Photochemistry of Environmental Aquatic Systems. America Chemical Society, Washington, DC, 1987.61-74.
    [30] Baker, J.R., Mihelcic, J.R., Shea, E. Estimating Koc for persistent organic pollutants: limitations of correlations with Kow. Chemosphere, 2000, 41: 813-817.
    [31] Eitzer, B.D., Hites, R.A. Vapor pressures of chlorinated dioxins and dibenzofurans. Environ. Sci. Technol., 1988, 22: 1362-1364.
    [32] Hamer, T., Green, N.J.L., Jones, K.C. Measurements of octanol-air partition coefficients for PCDD/Fs: A tool in assessing air-soil equilibrium status. Environ. Sci. Technol., 2000, 34: 3109-3114.
    
    
    [33] Paasivirta, J., Sinkkonen, S., Mikkelson, P., Rantio, T., Wania, F. Estimation of vapor pressures, solubilities and henry's law constants of selected persistent organic pollutants as functions of temperature. Chemosphere, 1999, 39: 81-86.
    [34] Walters, R.W., Ostazeski, S.A., Guiseppi-Elie, A. Sorption of 2,3,7,8-tetrachlorodibenzo-p- dioxin from water by surface soils. Environ. Sci. Technol., 1989, 23: 480-482.
    [35] Fox, M.A., Dulay, M.T. Heterogeneous photocatalysis, Chem. Rev., 1993, 93: 341-357.
    [36] Pelizzetti, E., Borgarello, M., Minero, C., Paramauro, E., Borgarello, E., Serpone, N. Photocatalytic degradation of polychlorinated dioxins and polychlorinated bihenyls in aqueous suspensions of semiconductors irradiated with simulated solar light. Chemosphere, 1988, 17: 499-510.
    [37] Marple, L., Brunck, R., Throop, L. Water solubility of 2,3,7,8-tetrachlorodibenzo-p-dioxin. Environ. Sci. Technol., 1986, 20: 180-182.
    [38] Kim, M., O'Keefe, P.W. Photodegradation of polychlorinated dibenzo-p-dioxins and dibenzofurans in aqueous solutions and in organic solvents. Chemosphere, 2000, 41: 793-800.
    [39] Dulin, D., Drossman, H., Mill, T. Products and quantum yields for photolysis of chloroaromatics in water. Environ. Sci. Technol., 1986, 20: 72-77.
    [40] Podoll, R.T., Jaber, H.M., Mill, T. Tetrachlorodibenzodioxin: rates of volatilization and photolysis in the environment. Environ. Sci. Technol., 1986, 20: 490-492.
    [41] Zheng, M.H., Bao, Z.C., Xu, X.B., Wang, K.O. Mechanism of photodegradation of polychlorinated dibenzo-p-dioxins in carbon tetrachloride. Chemosphere, 1996, 32: 603-607.
    [42] Yan, Q., Kappila, S., Sivils, L.D., Elseewi, A.A. Effect of sensitizers and inhibitors on phototransformation of polychlorinated dibenzo-p-dioxins (PCDDs). Chemosphere, 1995, 31: 3627-3634.
    [43] Desideri, A., Di Domenico, A., Vanzati, R., Tancioni, P., Di Muccio, A. Photolysis of 2,3,7,8- tetrachlorodibenzo-p-dioxin (TCDD) in iso-octane, hexane and cyclohexane. Boll. Chim. Farm, 1979, 118: 274-281.
    [44] Choudhry, G.G., Barrie Webster, G.R. Environmental photochemistry of PCDDs. 2. Quantum yields of the direct phototransformation of 1,2,3,7-Trtra-, 1,3,6,8-Tetra-, 1,2,3,4,6,7,8-Hepta-, and 1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin in aqueous acetonitrile and their sunlight half- lives. J. Agric. Food Chem., 1989, 37: 254-261.
    [45] Choudhry, G.G., Barrie Webster, G.R. Environmental photochemistry of PCDDs. Part Ⅰ. Kinetics and quantum yields of the photodegradation of 1,2,3,4,7-penta- and 1,2,3,4,7,8-hexachlorodibenzo -p-dioxin in aqueous acetonitrile. Chemosphere, 1985, 14: 9-26.
    [46] Friesen, K.J., Muir, D.C.G., Webster, G.R.B. Evidence of sensitized photolysis of polychlorinated dibenzo-p-dioxins in nature water under sunlight conditions. Environ. Sci. Technol., 1990, 24: 1739-1744.
    [47] Dobbs, A.J., Grant, C. Photolysis of highly chlorinated dibenzo-p-dioxins by sunlight. Nature, 1979,278: 163-165.
    [48] Dung, M.H., O'Keefe, P.W. Comparative rates of photolysis of polychlorinated dibenzofurans in organic solvents and in aqueous solutions. Environ. Sci. Technol., 1994, 28: 549-554.
    
    
    [49] Friesen, K.J., Foga, M.M., Loewen, M.D. Aquatic photodegradation of polychlorinated dibenzofurans: rates and photoproduct analysis. Environ. Sci. Technol., 1996, 30:2504-2510.
    [50] Crosby, D.G., Wong, A.S., Plimmer, J.R., Woolson, E.A. Photodecomposition of chlorinated Dibenzo-p-dioxins. Science, 1971, 173: 748-749.
    [51] 包志成,郑明辉,王克欧.PCDDs在氯仿溶液中的紫外光解.环境化学,1995,14:190-195.
    [52] Dulin, D., Mill, T. Development and evaluation of sunlight actinometers. Environ. Sci. Technol., 1982, 16: 815-820.
    [53] Hosoya, K., Kimata, K., Fukunishi, K., Tanaka, N., Patterson, Jr. D.G., Alexander, L.R., Barnhart, E.R., Barr, J. Photodecomposition of 1,2,3,4- and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in water-alcohol media on a soil support. Chemosphere, 1995, 31: 3687-3698.
    [54] Stehl, R.H., Papenfuss, R.R., Bredeweg, R.A., Roberts, R.W. The stability of pentachlorophenol and chlorinated dioxins to sunlight, heat, and combustion. Adv. Chem. Ser, 1973, 120: 119-122.
    [55] Hung, L.-S., Ingram, Jr.L.L. Effect of solvents on the photodegradation rates of octachlorodibenzo -p-dioxin. Bull. Environ. Contam. Toxicol., 1990, 44: 380-386.
    [56] Choudhry, G.G., Hutzinger, O. Photochemical formation and degradation of polychlorinated dibenzofurans and dibenzo-p-dioxins. Residue Rev., 1982, 84:113-161.
    [57] Crosby, D.G., Moilanen, K.W. Photodecomposition of chlorinated biphenyls and dibenzofurans. Bull. Environ. Contam. Toxicol., 1973, 10: 372-377.
    [58] Yan, Q., Sivils L.D., Palepu, S.D., Kapila, S., Yanders, A.F., Elseewi, A.A. Effects of co-contaminants on photodegradation of octachloro-p-dibenzodixin. Chemosphere, 1994, 29: 2183-2192.
    [59] Mill, T., Mabey, W. Photochemical transformation. In: Neely, W.B., Blau, G.E. (Eds.), Environmental exposure from chemicals, Vol. 1. CRC Press, Boca Raton, FL. 1985.
    [60] Schwarzenbach, R.P., Gschwend, P.M., Imboden, D.M. Environmental Organic Chemistry, Wiley, New York., 1993.
    [61] Rayne, S., Wan, P., Ikonomou, M.G., Konstantinov, A.D. Photochemical mass balance of 2,3,7,8-TeCDD in aqueous solution under UV light shows formation of chlorinated dihydroxybiphenyls, phenoxyphenols, and dechlorination Products. Environ. Sci. Technol., 2002, 36: 1995-2002.
    [62] Vollmuth, S., Niessner, R. Degradation of PCDD, PCDF, PAH, PCB and chlorinated phenol during the destruction-treatment of landfill sewage water in laboratory model reactor (UV, Ozone, and UV/ozone). Chemosphere, 1995, 30: 2317-2331.
    [63] 张志军,包志成,王克欧,郑明辉.二氧化钛催化下的氯代二苯并-对-二恶英光解反应.环境化学,1996,15:47-51.
    [64] Gohre, K., Miller G.C. Singlet oxygen generation on soil surfaces. J.Agric. Food. Chem., 1983, 31: 1104-1108.
    [65] Herbert, V.R., Miller, G.C. Depth dependence of direct and indirect photolysis on soil surfaces. J. Agric. Food Chem., 1990, 38: 913-918.
    [66] Miller, G.C., Hebert, V.R. Photolysis of octachlorodibenzo-p-dioxin on soil: production of 2,3,7,8-TCDD. Chemosphere, 1989, 18: 1265-1274.
    
    
    [67] Dougherty, E.J., Mcpeters, A.L., Overcash, M.R. Kinetics of photodegradation of 2,3,7,8-tetrachlorodibenzo-p-dioxin: theoretical maximum rate of soil decontamination. Chemosphere, 1991, 23: 589-600.
    [68] Kieatiwong, S., Nguyen, L.V., Herbert, V.R., Hackett, M., Miller, G.C., Mille, M.J., Mitzel, R. Photolysis of chlorinated dioxins in organic solvents and on soils. Environ. Sci. Technoi., 1990, 24: 1575-1580.
    [69] Zhong, Y., Overcash, M.R., McPeters, A.L. Near sunlight zone model for photodegradation of TCDD in soils containing organic solvents. Chemosphere, 1993, 26: 1263-1272.
    [70] Mcpeters, A.L., Overcash, M.R. Demonstration of photodegradation by sunlight of 2,3,7,8-tetrachlorodibenzo-p-dioxin in 6cm soil columns. Environ. Sci. Technol., 1993, 27: 1221-1234.
    [71] Trimbacher, C., Weiss, P. Needle surface characteristics and element contents of Norway spruce in relation to the distance of emission sources. Environ. Pollut., 1999, 105:111-119.
    [72] Tuomisto, H. Use of Picea abies needles as indicators of air pollution: epicuticular wax morphology. Ann. Bot. Fennici, 1988, 25:351-364.
    [73] Schuler, F., Schmid, P., Schlatter, C.H. Photodegradation of polychlorinated dibenzo-p-dioxins and dibenzofuzans in cuticular waxes of laurel cherry (Prunus laurocerasus). Chemosphere, 1998, 36: 21-34.
    [74] Isosaari, P., Tuhkanen, T., Vartiainen, T. Use of Olive Oil for soil extraction and ultraviolet degradation of polychlorinated dibenzo-p-dioxins and dibenzofurans. Environ. Sci. Technol., 2001, 35: 1259-1265.
    [75] Crosby, D.G., Wong, A.S. Environmental degradation of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Science, 1977, 195: 1337-1338.
    [76] McCrady, J.K., Maggard, S.P. Uptake and photodegradation of 2,3,7,8-tetrachlorodibenzo-p-dioxin sorbed to grass foliage. Environ. Sci. Technol., 1993, 27: 343-350.
    [77] Brubaker, W.W., Hites, R.A. Polychlorinated dibenzo-p-dioxins and dibenzofurans: Gas-phase hydroxyl radical reactions and related atmospheric removal, Environ. Sci. Technol., 1997, 31: 1805-1810.
    [78] Scientific Assessment of Stratospheric Ozone, World Meteorological Organization, Global Ozone Research and Monitoring Project No. 20, vol. Ⅱ. Appendix, AFEAS Report, United Nations Environment Program. United Nations, New York. 1989.
    [79] Prinn, R.G., Weiss, R.F., Miller, B.R., Huang, J., Alyea, F.N., Cunnold, D.M., Fraser, P.J., Hartley, D.E., Simmonds, P.G. Atmospheric trends and lifetime of CH_3CCl_3 and global OH concentrations. Science, 1995,269:187-192.
    [80] Altshuller, A.P. Lifetimes of organic molecules in the troposphere and lower stratosphere, In: Pitts, J. N., Metcalf, L., Grosjean, D. (Eds.), Advances in Environmental Science and Technology, Wiley, New York, 1980, 10: 181-219.
    [81] Klpffer, W. Photodegradation of pesticides and other chemicals in the environment: a critical assessment of the state the art. Sci. Total Environ., 1992, 123/124: 145-149.
    [82] Brubaker, W.W., Hites, R.A. Oil reaction kinetics of polycyclic aromatic hydrocarbons and polychlorinated dibenzo-p-dioxins and dibenzofurans. J. Phys. Chem. A, 1998, 102: 915-921.
    
    
    [83] Anderson, P.N., Hites, R.A. System to measure relative rate constants of semivolatile organic compounds with hydroxyl radicals. Environ. Sci. Technol., 1996, 30: 301-306.
    [84] Anderson, P.N., Hites, R.A. OH radical reaction: the major removal pathway for polychlorinated biphenyls from the atmosphere. Environ. Sci. Technol., 1996, 30: 1756-1763.
    [85] Choi, W., Hong, S.J., Chang, Y.-S., Cho, Y. Photocatalytic degradation of polychlorinated dibenzo-p-dioxins on TiO_2 film under UV or solar light irradiation, Environ. Sci. Technol., 2000, 34: 4810-4815.
    [86] Whitefield, P.D., Hagen, D.E., Kapila, S., Sivils, L.D., Tilio, R. Transport and phototransformation of polychlorinated dibenzo-p-dioxins (PCDD's) on carbonaceous aerosol, J. Aerosol Sci. (suppl.), 1995, 26, s201.
    [87] Koester, C.J., Hites, R.A. Photodegradation of polychlorinated dioxins and dibenzofurans absorbed to fly ash. Environ. Sci. Technol., 1992, 26: 502-507.
    [88] Tysklind, M., Rappe, C. Photolytic transformation of polychlorinated dioxins and dibenzofurans in fly ash. Chemosphere, 1991, 23: 1365-1375.
    [89] Sommer, S., Kamps, R., Kleinermanns, K. Photooxidation of exhaust pollutants: V photooxidation and photoreduction of polychlofinated dibenzo-p-dioxins and dibenzofurans. Chemosphere, 1996, 33: 2221-2227.
    [90] Pohland, A.E., Yang, G.C. Preparation and characterization of chlorinated dibenzo-p-dioxins. J. Agr. Food Chem., 1972, 20: 1093-1099.
    [91] Sinkkonen, S., Paasivirta, J. Degradation half-life times of PCDDs, PCDFs and PCBs for environmental fate modelling. Chemosphere, 2000, 40: 943-949.
    [92] Buser, H.-R. Formation and identification of tetra- and pentachlorodibenzo-p-dioxins from photolysis of two isometric hexachlorodibenzo-p-dioxins. Chemosphere, 1979, 8:251-257.
    [93] 张志军,包志成,郑明辉,王克欧.多氯代二恶英在土壤表面的紫外光解研究.环境化学,1996,15:541-545.
    [94] 陈景文.有机污染物定量结构-性质关系与定量结构-活性关系.大连:大连理工大学出版社,1999.5-26.
    [95] Chen, J.W., Quan, X., Peijnenburg, W.J.G.M., Yang, F.L. Quantitative structure-property relationships (QSPRs) on direct photolysis quantum yields of PCDDs. Chemoshpere, 2001, 43: 235-241.
    [96] Chen, J.W., Quan, X., Yang, F.L., Peijnenburg, W.J.G.M. Quantitative structure-property relationships on photodegradation of PCDD/Fs in cuticular waxes of laurel cherry (Prunus laurocerasus). Sci. Total Environ., 2001, 269: 163-170.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700