环境中金属离子的荧光探测及可修复研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,超分子概念的不断深入再加上纳米材料作为固体载体的应用,制备功能化杂化荧光材料引起了人们的广泛关注。它也在分子识别、材料化学和纳米科技之间建立起一座桥梁。由于纳米网状和三维结构可重复构造,以及仿生化学在杂化材料内的出现,使得在三维网络结构中制备功能性的材料成为研究的热点。近年来,采用高分子化合物作为固体载体也逐渐激起了化学家们的兴趣。本论文主要包括以下几个方面的内容:
     1.水溶液中识别汞离子的荧光探针及环境修复研究:制备高选择性的荧光探针是一项富有挑战性的工作,基于Hg2+对硫原子有强烈的结合能力,一个以蛋氨酸甲酯为离子载体的化学传感器RM被设计合成并予以结构表征。可用于水溶液中高选择性的识别Hg2+,其他碱金属、碱土金属、过渡金属和重金属对其基本都没有影响,可适用的pH值范围为4-9,对环境中ppb(十亿分之一)级的Hg2+也有荧光响应。将RM固定在多孔的功能化分子筛SBA-15上,制成有机-无机杂化的固体材料RMS,它同样也可以用于水溶液中高选择性高灵敏度的识别汞离子。荧光滴定实验证实RMS的荧光强度与汞离子的量具有很好的线性关系,这说明它可用于实时并定量检测Hg2+。通过ICP(电感耦合等离子发射光谱)实验,证实固体探针RMS可吸附水中约70.4%的Hg2+,因此,RMS在环境修复上有潜在的应用价值。
     2.水溶液中识别Fe3+的荧光探针及环境修复研究:目前为止,由于Fe3+的顺磁性、配体水溶性差以及其他金属离子的干扰,制备高选择性、水溶性的Fe3+荧光探针成为一大挑战。两个基于香豆素和氨基葡萄糖的荧光探针CG1、CG2被设计合成出来,并研究了CG1、CG2在水溶液中识别Fe3+的性质以及取代基对于它们荧光性质的影响。我们又设计合成了水溶性探针CO1和CO2,它们在水中对Fe3+也有很好的响应,而且相对于CG1、CG2灵敏度更高。为了实现材料化的目的,我们利用具有良好成膜性和对金属具有很好螯合能力的壳聚糖,将香豆素负载在高分子化合物壳聚糖上,制成了固体探针CC1和CC2。利用ICP(电感耦合等离子发射光谱)实验,证实固体探针CC1可用于吸附水中61.4%的Fe3+,CC1是一个潜在的处理Fe3+的固体吸附剂,可用于环境中处理污水,进而达到修复环境的目的。
Very recently, the combination of nanomaterials used as solid supports and supramolecular concepts has led to the development of hybrid materials with improved functionalities. It can bridge the gaps between molecular chemistry, materials science and nanotechnology, Because of the reversible building of nanometersized networks and 3D architectures as well as biomimetic and gated chemistry in hybrid nanomaterials, the development of advanced functional protocols in three dimensional frameworks has become the hot topic. On the other hand, macromolecular compounds used as solid supports have compelled many investigators to work with it.
     A new rhodamine B based on chemosensor rhodamine-B methionine methyl ester (RM) was synthesized and structural characterized. It can be used for the selective detection of Hg2+in aqueous solution and was not affected by alkali and alkali-earth, transition and heavy metals, RM can detect Hg2+in a large pH range from 4 to 9, excellent sensitivity to Hg2+level lower to ppb(part per billion). Inorganic-organic hybrid fluorescence chemosensor RMS was prepared by immobilizing RM to the mesoporous silica material SBA-15 via triethoxysilane groups, the fluorescent intensity shows well-fitted linearity with the concentration of Hg2+in aqueous solution, according to ion chromatography (ICP),70.4%of Hg2+being extracted by RMS, suggesting the possibility of RMS for potential application in environmental restoration.
     A new glucose-based CG1 and CG2 have been synthesized by glucosamine and coumarin for the recognition of Fe3+. Both CG1 and CG2 result in fluorescent enhancement in the presence of Fe3+in aqueous solution. Chemically modified chitosan CO1 and CO2 were also synthesized by chitosan oligosaccharide and coumarin, they can also be used to recognize Fe3+in aqueous solution. We observed that addition of Fe3+to aqueous solution of CO1 and CO2 increase the fluorescence intensity larger compared with CG1 and CG2. Besides, chitosan can adsorb metal ions and can be used as membrane material, so solid material CC1 and CC2 were prepared to adsorb Fe3+, according to ion chromatography (ICP),61.4%of Fe3+being extracted by CC1. CC1 is a potencially adsorbent for Fe3+and can be used in environmental cleanup.
引文
[1]黄晓峰,张远强,张英起.荧光探针技术[M].人民军医出版社,2004.
    [2]许屏.荧光和免疫荧光染色技术及应用[M].人民卫生出版社,1983.
    [3]Valeur B. Molecular Fluorescence Principles and Applications. Weinheim:Wiley-VCH,2002.
    [4]张华山,王红,赵媛媛.分子探针与检测试剂[M].北京:科学出版社,2002.
    [5]Lehn J M. Perspectives in Supramolecular Chemistry-From Molecular Recognition towards Molecular Information Processing and Self-Organization [J]. Angew. Chem, Int. Ed. Engl,1990,29:1304-1309.
    [6]Lehn J M,沈兴海.超分子化学-概念和展望[M].北京:北京大学出版社,2002.
    [7]Lourdes B D, Reinhoudt D N, Mercedes C C. Design of fluorescent materials for chemical sensing [J].Chem. Soc. Rev,2007,36:993-1017.
    [8]De Silva A P, Gunatatne H Q N, Gunnlauggson T, et al. Signaling Recognition Event with Fluorescent Sensors and Switches [J].Chem. Rev,1997,97:1515-1566.
    [9]刘育,尤长城,张衡益,超分子化学—合成受体的分子识别和组装[M].南开大学出版社,2001.
    [10]吴世康,超分光化学导论—基础与应用[M].北京科学出版社,2005.
    [11]赵德丰,张立军,杨凌宵.1,8-萘酰亚胺类水溶性荧光染料的合成及其性能的研究[J].染料工业1997,34(13):1-6.
    [12]Valeur B, Leray I, Design principles of fluorescent molecular sensors for cation recognition [J]. Coord.Chem. Rev,2000,205:3-40.
    [13]Gunnlaugsson T, Ali H D P, Glynn M. Fluorescent Photoinduced electron transfer (PET) sensors for anions; From design to Potential application [J]. J. Fluorescence, 2005,15(3):287-299.
    [14]Luo H Y, Jiang J H, Zhang X B, et al. synthesis of porphyrin-appended terpyridine as a chemosensor for cadmium based on fluorescent enhancement [J]. Talant,2007, 72(2):575-581.
    [15]Feng L H, Chen Z B. Screening mercury (II) with seleetive fluorescent chemosensor. [J]. Sensors and ActuatorsB-Chemical,2007,122(2):600-604.
    [16]De Silva A P. Fluorescent signaling crown ethers:" switching on, of fluorescence by alkali metal ion recognition and binding insitu [J].Chem. Commun, 1986:1709-1710.
    [17]Eduardo B, Daniel M, Go'mez T, et al. A New Selective Chromogenic and Turn-On Fluorogenic Probe for Copper (II) in Water-Acetonitrile 1:1 Solution [J].Org. Lett, 2009,11:1269-1272.
    [18]Novaira M, Biasutti M A, Silber J J, et al. New insights on the PhotoPhysical behavior of PRODAN in Anionic and cat ionic reverse micelles:From which state or states does it emit [J].J. Phy. Chem. B,2007,11(4):748-759.
    [19]Citterio D, Takeda J, Kosugi M, et al. PH-independent fluorescent chemosensor for highly selective lithium ion sensing. [J]. Anal. Chem,2007,79(3):1237-1242.
    [20]Wang J B, Qian X H, Qian J H, et al. Micelle-induced versatile Performance of amphiphilic intramolecularcharge-transfer fluorescent molecular sensors. [J]. Chemi stry,2007,13(26):7543-7552.
    [21]Peng X J, Du J J, Fan J L, et al. A selective fluorescent sensor for imaging Cd2+ in living cells [J]. J. Am. Chem. Soc,2007,129(6):1500-1501.
    [22]Zhang X L, Xiao Y, Qian X H. A Ratiometric Fluorescent Probe Based on FRET for Imaging Hg2+Ions in Living Cells [J]. Angew. Chem. Int. Ed,2008,.47:8025-8029.
    [23]黄春辉,李富友,黄岩谊,光电功能超薄膜[M].北京大学出版社,2001年.
    [24]Kim J S, Choi M G, Song K C etal. Ratiometric determination of Hg2+ions based on simple molecular motifs of Pyrene and dioxaoctane diamide [J]. Org. Lett,2007, 9(6):1129-1132.
    [25]Machi L, Santacruz H, Sanehez Metal. Bichromophoric naphthalene derivatives of ethylenediaminetetraacetate:Fluorescence from intramolecular excimer protonation and complexation with Zn2+and Cd2+[J]. Supramolecular. chemistry,2006, 15(7):561-569.
    [26]Kameta N, Hiratani K. Synthesis of supramolecular boron complex with anthryl groups exhibiting Specific optical response for chloride ion [J].Tetra. Lett, 2006,47(28):4947-950.
    [27]Bouas-Laurent H, Castellan A, Daney M, et al. Cation-directed photochemistry of an anthraceno-crown ether [J]. J. Am. Chem. Soc1986,108:315-17.
    [28]Laws W R, Brand L. Analysis of two-state excited-state reaction. The fluorescence decay of 2-naphthol [J]. J. Phy. Chem,1979,83:795-802.
    [29]Mordon S, Devoisselle J M, Soulie S. Fluorescence spectroscopy of Ph in vivo using a dual-emission fluorophore (C-SNAFL-1) [J]. J. Photochem. Photobiol.B,1995,28: 19-23.
    [30]Tanaka K, Kumagai T, Aoki H, et al. Application of 2-(3,5,6-Trif luoro-2-hydroxy-4-methoxy-Phenyl) benzaxazole and-benzothiazole to Fluorescent Probes Sensing pH and Metal Cations [J]. J. Org.Chem,2001,66(22):7328-7333.
    [31]Henary M M, Fallmi C J. Exeited State Intramolecular Proton Transfe rand Metal Ion Complexation of 2-(2-Hydroxyphenyl) benzazoles in Aqueous,Solution [J].J. Phys. Chem. A,2002,106:5210-5220.
    [32]Vazquez S R, Rodriguez M C R, Mosquera Metal. Exeited-state intramolecular Proton transfer in 2-(3'-hydroxy-2'-Pyridyl) benzoxazole. Evidence of coupled Proton and charge transfer in the excited state of some o-hydroxyarylbenzazoles[J]. J. Phys. Chem. A,2007,111(10):1814-1826.
    [33]Yushchenko D A, Shvadehak V V, Klymchenko A S, et al.2-Aryl-3-hydroxyquinolones, a new class of dyes with solvent dependent dual emission due to excited state intramolecular proton transfer[J]. New. J. Chem,2006,30(5):774-781.
    [34]Rodembusch F S, Campo L F, Rigacci A, et al. A new ESIPT fluorescent dye-doped Silica aerogel [C]. Maeromolecular Symposium,2005 229:188-193.
    [35]Klymchenko A S, Mely Y, Demchenko A P, et al. Simultaneous Probing of hydration and Polarity of lipid bilayers with3-hydroxyflavone fluorescent dyes [J]. Biochimica Et Biophysica Acta-Biomembranes,2004,1665(1-2):6-19.
    [36]Kim S, Seo J, Jung H K et al. White luminescence from polymer thinf ilms containing excited-state intramolecular Proton-transfer dyes [J]. Adv. Mater,2005,17:2077-2082.
    [37]Ressaian S, Iyer C S P. Absorption and fluorescence spectroscopy of 3-hydroxy-3-Phenyl-o-carboxyphenyltriazene and its copper(II), nickel(II)and zinc(II) complexes:a novel fluorescence sensor [J]. J. Lumin,2005,111(3):121-129.
    [38]Peng X J, Wu Y K, Fan J L et al. Colorimetric and ratiometric fluorescence sensing of fluoride:Tuning seleetivity in proton transfer [J]. J. Org. Chem,2005,70 (25):10524-10531.
    [39]Wu Y K, Peng X J, Fan J L et al. Fluorescence sensing of anions based on inhibition of exeited-state Intramolecular proton transfer [J]. J. Org. Chem,2007,72(1):62-70.
    [40]Yang Y K, Yook K J, Tae J. A Rhodamine-Based Fluorescent and Colorimetric Chemodosimeter for the Rapid Detection of Hg2+Ions in Aqueous Media [J].J. Am. Chem.Soc,2005,127:16760-16761.
    [41]Zheng H, Qian Z H, Xu J G, et al. Switching the Recognition Preference of Rhodamine B Spirolactam by Replacing One Atom:Design of Rhodamine B Thiohydrazide for Recognition of Hg(II)in Aqueous Solution [J]. Org. Lett,2006,8:859-861.
    [42]Lee M H, Wu J S, Kim J S, et al. Highly Sensitive and Selective Chemosensor for Hg2+ Based on the Rhodamine Fluorophore [J]. Org. Lett,2007,9: 2501-2504.
    [43]Hyun S J, Swamy K M K, Yoon J Y, et al. Rhodamine urea derivatives as fluorescent chemsensors for Hg2+[J]. Tetra. Lett,2007,48:5966-5969.
    [44]Wu D Y, Huang W, Duan C Y, et al. Highly Sensitive Fluorescent Probe for Selective Detection of Hg2+ in DMF Aqueous Media [J]. Inorg. Chem,2007,46(5):1538-1540.
    [45]Yang H, Zhou Z, Huang K, et al. Multisignaling Optical-Electrochemical Sensor for Hg2+Based on a Rhodamine Derivative with a Ferrocene Unit [J]. Org.Lett,2007, 9(23):4729-4732.
    [46]Shi W, Ma H. Rhodamine B thiolactone:a simple chemosensor for Hg2+in aqueous media [J]. Chem. Commun,2008,16:1856-1858.
    [47]Zhan X Q, Qian Z H, Xu J G, et al. Rhodamine thiospirolactone. Highly selective and sensitive reversible sensing of Hg(II) [J]. Chem. Commun,2008,16:1859-1861.
    [48]Wu D Y, Duan C Y, Cheng He, et al. Highly Sensitive Multiresponsive Chemosensor for Selective Detection of Hg2+ in Natural Water and Different Monitoring Environments [J]. Inorg.Chem,2008,47(16):7190-7201.
    [49]Huang W, Zhou P, Duan C Y, et al. A bright water-compatible sugar-rhodamine fluorescence sensor for selective detection of Hg2+in natural water and living cells [J]. J. Environ. Monit,2009,11(2):330-335.
    [50]Jana A, Kim J S, Jung H S, et al. A cryptand based chemodosimetric probe for naked-eye detection of mercury(II) ion in aqueous medium and its application in live cell imaging [J]. Chem. Commun,2009,29:4417-4419
    [51]Shi W, Sun S N, Ma H M, et al. Imaging Different Interactions of Mercury and Silver with Live Cells by a Designed Fluorescence Probe Rhodamine B Selenolactone [J]. Inorg. Chem.2010,49(3):1206-1210.
    [52]Suresh M, Mishra S, Das A, et al. Resonance Energy Transfer Approach and a New Ratiometric Probe for Hg2+in Aqueous Media and Living Organism [J]. Org. Lett,2009, 11(13):2740-2743.
    [53]Du J J, Fan J L, Peng X J, et al. A New Fluorescent Chemodosimeter for Hg2+: Selectivity, Sensitivity, and Resistance to Cys and GSH [J].Org.Lett,2010, 12(3):476-479.
    [54]Huang J H, Xu Y F, Qian X H. A Rhodamine-Based Hg2+Sensor with High Selectivity and Sensitivity in Aqueous Solution:A NS2-Containing Receptor [J]. J. Org. Chem. 2009,74:2167-2170.
    [55]Liu A M, Hidajat K, Kawi S, et al. A new class of hybrid mesoporous materials with functionalized organic monolayers for selective adsorption of heavy metal ions [J]. Chem. Commun,2000,13:1145-1146.
    [56]Zhou P, Meng Q T, Duan C Y, et al. Highly sensitive fluorescence probe based on functional SBA-15 for selective detection of Hg2+ in aqueous media [J]. J. Environ. Monit,2009,11 (3):648-653.
    [57]Song C X, Zhang X L, Duan C Y, et al. Highly sensitive and selective fluorescence sensor based on functional SBA-15 for detection of Hg2+in Aqueous Media [J]. Talanta 2010,81 (1-2):643-649.
    [58]Kim H J, Lee S J, Kim J S, et al. Detection of CuⅡ by a Chemodosimeter-Functionalized Monolayer on Mesoporous Silica [J]. Adv. Mater,2008,20(17):3229-3234.
    [59]Lee S J, Lee J E, Jung J H, et al. Optical Sensor Based on Nanomaterial for the Selective Detection of Toxic Metal Ions [J]. Adv. Funct. Mater,2007,17(17): 3441-3443.
    [60]Kim E J, Kim H E, Jung J H, et al. Reversible solid optical sensor based on acyclic-type receptor immobilized SBA-15 for the highly selective detection and separation of Hg(Ⅱ) ion in aqueous media [J]. Chem. Commun,2008,33:3921-3923.
    [61]Lee S J, Lee S S, Jung J H, et al. A Functionalized Inorganic Nanotube for the Selective Detection of Copper(Ⅱ) Ion [J]. Chem. Mater,2006,18:4713-4715.
    [62]E1-Safty S A, Prabhakaran D, Isamail A A, et al. Three-Dimensional Wormhole and Ordered Mesostructures and Their Applicability as Optically Ion-Sensitive Probe [J]. Chem. Mater,2008,20 (8):2644-2654.
    [63]Lin D H, Jiang Y X, Sun S G, et al. Silver Nanoparticles Confined in SBA-15 Mesoporous Silica and the Application as a Sensor for Detecting Hydrogen Peroxide [J]. J.Nanomaterials,2008.
    [64]Yao J N, Dou W, Liu W S, et al. A new coumarin-based chemosensor for Fe3+in water [J]. Inorg. Chem. Commun,2009,12:116-118.
    [65]Singh N, Kaur N, John F, et al. A new fluorescent chemosensor for iron(Ⅲ) based on theβ-aminobisulfonate receptor [J]. Tetrahedron Lett,2009, (50):953-956.
    [66]Xiang Y, Tong A J. A New Rhodamine-Based Chemosensor Exhibiting Selective FeⅢ-Amplified Fluorescence [J]. Org. Lett,8(8):1549-1552.
    [67]Gupta T, Milko E, Boom van der. Monolayer-Based Selective Optical Recognition and Quantification of FeC13 via Electron Transfer [J]. J. Am. Chem. Soc,2007,129: 12296-12303.
    [68]Lin W Y, Yuan L, Feng J B, et al. A Fluorescence-Enhanced Chemodosimeter for Fe3+ Based on Hydrolysis of Bis (coumarinyl) Schiff Base [J]. Eur. J. Org. Chem, 2008,16:2689-2692.
    [69]Lee M H, Giap T V, Kim J S, et al. A novel strategy to selectively detect Fe(Ⅲ) in aqueous media driven by hydrolysisof a rhodamine 6G Schiff base [J]. Chem. Commun, 2010,46 (9):1407-1409.
    [70]Fitzgerald W F, Engstrom D R, Mason R P, et al. The case for atmospheric mercury contamination in remote areas [J].Enviro. Sci. Technol,1998,32(1):1-7.
    [71]Fitzgerald W F, Lamborg C H, Hammerschmidt C R. Marine Biogeochemical Cycling of Mercury [J]. Chem.Rev,2007,107(2):641-662.
    [72]Weiss B, Clarkson T W, Simon W, Silent latency periods in methylmercury poisoning and in neurodegenerative disease [J]. Environ. Health. Perspect,2002,110:851-854.
    [73]Guallar M D, Sanz-Gallardo M I, van't Veer P, et al. Mercury, Fish Oils, and the Risk of Myocardial Infarction [J].N.Engl. J.Med,2002,347(22):1747-1754.
    [74]George G N, Prince R C, Gailer J, et al. Mercury binding to the chelation therapy agents DMSA and DMPS and the rational design of custom chelators for mercury [J]. Chem.Res. Toxicol,2004,17(8):999-1006.
    [75]Mercury Update:Impact on Fish Advisories. EPA Fact Sheet EPA-823-F-01-011,EPA, Office of Water, Washington D C,2001.
    [76]Nolan E M, Lippard S J. A "Turn-On" Fluorescent Sensor for the Selective Detection of Mercuric Ion in Aqueous Media [J]. J. Am. Chem. Soc.2003,125(47): 14270-14271.
    [77]Yang Y K, Yook K J, Tae J S. A Rhodamine-Based Fluorescent and Colorimetric Chemodosimeter for the Rapid Detection of Hg2+ Ions in Aqueous Media [J]. J. Am. Chem.Soc.2005,2007,127(48):16760-16761.
    [78]Nguyen T, Francis M B. A Practical Synthetic Route to Functionalized Rhodamine Dyes [J]. Org. lett,2003,5(18):3245-3248.
    [79]Baldwin J E, Richard T, Lee E, et al. A γ-lactam analogue of the penems possessing antibacterial activity [J].Tetrahedron,1989,45(14):4537-4550.
    [80]Zhao L, Wang S, Jiang S M, et al. Salicylidene Schiff Base Assembled with Mesoporous Silica SBA-15 as Hybrid Materials for Molecular Logic Function [J]. J. Phys.Chem. C,2007,111(49):18387-18391.
    [81]Barra M, Bohne C, Scaiano J C. Effect of Cyclodextrin Complexation on the Photochemistry of Xanthone. Absolute Measurement of the Kinetics for Triplet-State Exit'[J]. J. Am. Chem. Soc,1990,112(22):8075-8079.
    [82]Nolan E M, Racine M E, Lippard S J. Selective Hg(II) Detection in Aqueous Solution with Thiol Derivatized Fluoresceins [J]. Inorg. Chem,2006,45(6):2742-2749.
    [83]Findlay D M, McLean R A N. Removal of Elemental Mercury from Wastewaters using Polysulfides [J].Environ. Sci. Technol,1981,15(11):1388-1390.
    [84]Hernande R B, Franco A P, Merce A L R, et al. Coordination study of chitosan and Fe3+[J]. J. Molecular. Structure,2008,877 (1-3):89-99.
    [85]Ma Y M, Luo W, Hider R C, et al. Design, Synthesis, Physicochemical Properties, and Evaluation of Novel Iron Chelators with Fluorescent Sensors [J]. J. Med. Chem, 2004,47(21):6349 6362.
    [86]张敏刘,任其昌。生物硒制备及其抗癌研究[M]微量元素与健康研究,2005,22:9-10.
    [87]Gao P Y, Feng R L, Zhang H Z, et al. Determination of trace chromium in water by graphite fumace atomic absorption spectrophotometry after preconcentration on a soluble membrane filter [J]. Analyt. Lett,1998,31(6):1095-1106.
    [88]Ueda J, Satoh H, Kagaya S. Determination of chromium(Ⅲ)and chromium(Ⅳ)by graphite-fumace atomic absorption spectrometry after coprecipitation with hafnium hydroxide[J]. Analyt. Science,1997,13(4):613-617.
    [89]Kotas J, Stacicka Z. Chromium occurrence in the environment and methods of its speciation [J]. Enviro. Pollu,2000,107(3):263-283.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700