诱发和促进Tau蛋白形成纤维的因素及其分子机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阿尔茨海默病的重要病理特征之一就是主要由微管结合蛋白Tau所形成的神经纤维缠结。由于Tau蛋白和硫酸乙酰肝素在神经细胞中是共定位的,因此为了模拟体内硫酸乙酰肝素介导的Tau蛋白错误折叠,我们在体外实验中加入了一种多聚阴离子-肝素-来诱导Tau蛋白形成纤维,定量研究了人Tau蛋白微管结合核心区片段Tau244-372与肝素的相互作用。研究结果表明,在生理还原环境中,肝素与Tau244-372形成紧密结合的1:1复合物,而在病理氧化环境中,肝素与Tau244-372形成中等强度结合的1:1复合物。对人Tau蛋白错误折叠过程的动力学分析表明,当肝素浓度与Tau蛋白浓度相等时,Tau蛋白纤维的生长速率最快,而在肝素浓度超过Tau蛋白浓度的条件下,Tau蛋白纤维的生长速率随着肝素浓度的增加而逐渐降低。实验结果表明,一方面,肝素与Tau蛋白单体形成1:1复合物,诱导Tau蛋白发生构象变化,进而促进Tau蛋白的错误折叠;另一方面,过量的肝素通过提高介质的离子强度来抑制Tau蛋白的错误折叠。该研究结果将有助于阐释肝素诱发Tau蛋白错误折叠的分子机制以及阿尔茨海默病的发病机制。
     铅离子对人、特别是对发育中的儿童而言具有强烈毒性,在阿尔茨海默病患者脑中就发现了高浓度的铅离子。然而,铅离子对神经纤维缠结形成的作用机制以及对阿尔茨海默病发病的影响还不清楚。因此我们研究了铅离子对人Tau蛋白微管结合核心区片段Tau244-372纤维化的影响。实验结果表明,在检测时间范围内5-40μM铅离子的加入不仅显著促进了疏水结构的暴露和纤维的形成,而且使Tau蛋白形成的纤维β-折叠结构含量增多。与野生型Tau蛋白不同的是,铅离子的加入对Tau蛋白组氨酸残基单突变体H362A以及双突H330A/H362A纤维形成没有明显的促进作用,也不能增加形成的纤维结构中β-折叠结构的含量。等温滴定量热实验的结果则显示,一个铅离子可以与一个Tau244-372分子以较高强度结合(Kd,0.217μM)其中330位和362位组氨酸残基是核心位点,His330和His362在铅离子促进Tau蛋白聚集的过程中起着重要的作用。我们第一次报道了铅离子通过与Tau蛋白330位和362位组氨酸残基的相互作用来促进Tau蛋白纤维的形成。该研究结果为了解铅离子对阿尔茨海默病的病理学影响提供了依据,而且有益于阐释铅离子的毒性机理。
     大部分蛋白质错误折叠的体外研究都在稀溶液中进行,而胞内蛋白质错误折叠则是在生理拥挤环境中发生。我们研究了生理拥挤环境中人Tau蛋白微管结合核心区片段Tau244-372及其突变体的纤维生长动力学。实验结果表明,50-150g/lFicoll70和dextran70的加入都能不同程度地促进Tau蛋白的纤维形成,且促进程度随着大分子拥挤试剂浓度的升高而提高。我们发现大分子拥挤促进Tau蛋白纤维形成的机理之一是大分子拥挤促进了Tau蛋白分子间二硫键的形成。大分子拥挤的这种促进作用对Tau蛋白的病理突变体同样适用。因此,生理拥挤环境可能通过促进Tau蛋白分子间二硫键的形成来促进和调控Tau蛋白纤维的形成,在阿尔茨海默病的病理学进程中发挥着重要的作用。
Neurofibrillary tangles, principally composed of bundles of filaments formed by microtubule associate protein Tau, is a hallmark in a group of neurodegenerative diseases such as Alzheimer's disease. Polyanionic cofactors such as heparin could induce Tau filament formation. Here we quantitatively characterize the interaction between recombinant human Tau fragment Tau244-372and heparin (average MW=7kDa) as well as heparin-induced fibril formation by using static light scattering, isothermal titration calorimetry, turbidity assays and transmission electron microscopy. Our data clearly show that at physiological pH, heparin and human Tau244-372form a tight1:1complex with an equilibrium association constant exceeding106M"1under reducing conditions, triggering Tau fibrillization. Heparin shows a moderate binding affinity (105M'1) to Tau244-372in the absence of dithiolthreitol, triggering Tau fibrillization too. Further fibrillization kinetics analyses show that the lag time appears to be approximately invariant up to a molar ratio of2:1, and then gets longer at larger ratios of heparin/Tau. The maximum slope representing the apparent rate constant for fibril growth increases sharply with substoichiometric ratios of heparin/Tau, and then decreases to some extent with ratios>1:1. The retarding effect of heparin in excess is due to the large increase in ionic strength of the medium arising from free heparin. Together, these results suggest that the formation of1:1complex of Tau and heparin plays an important role in the inducer-mediated Tau filament formation, providing clues to understanding the pathogenesis of neurodegenerative diseases.
     Lead is a potent neurotoxin for human being especially for the developing children, and Pb2+at high concentrations is found in the brains of patients with Alzheimer disease. However, it has not been reported so far whether Pb2+plays a role in the pathology of Alzheimer disease through interaction with human Tau protein and thereby mediates Tau filament formation. In this study, we have investigated the effect of Pb2+on fibril formation of recombinant human Tau fragment Tau244-372and its mutants at physiological pH. As revealed by thioflavin T and8-anilino-1-naphthalene sulfonic acid fluorescence, the addition of5-40μM Pb2+significantly accelerates the exposure of hydrophobic region and filament formation of wild-type Tau244-372on the investigated time scale. As evidenced by circular dichroism and Fourier transform infrared spectroscopy, fibrils formed by wild-type Tau244-372in the presence of5-40μM Pb2+contain more β-sheet structure than those formed by the protein in the absence of Pb2+. However, unlike wild-type Tau244-372, the presence of5-40μM Pb2+has no obvious effects on fibrillization kinetics of single mutants H330A and H362A and double mutant H330A/H362A, and fibrils formed by such mutants in the absence and in the presence of Pb2+contain similar amounts of β-sheet structure. The results from isothermal titration calorimetry show that one Pb+binds to one Tau monomer via interaction with His-330and His-362, with sub-micromolar affinity. We demonstrate for the first time that the fibrillization of human Tau protein is accelerated by exposure to lead via interaction with His-330and His-362. Our results suggest the possible involvement of Pb+in the pathogenesis of Alzheimer disease and provide critical insights into the mechanism of lead toxicity.
     The role of crowded intracellular environments on Tau protein misfolding is not clearly understood. The addition of Ficoll70and dextran70at50-150g/1significantly accelerates filament formation of Tau244-372on the investigated time scale, and the enhancing effects increase with the increase of concentrations of crowding agents. Our data demonstrate that macromolecular crowding enhances the formation of inter-molecular disulfide bond between C291and C322of Tau244-372.Such an enhancing effect is also observed for pathological Tau mutants. Our data demonstrate that a crowded physiological environment could play an important role in the pathogenesis of Alzheimer disease by enhancing the formation of inter-molecular disulfide bond of Tau protein.
引文
常之勋环境中有害因素与人体健康(2004)北京:化学工业出版社第二版
    赵南明周海梦生物物理学(2000)北京:高等教育出版社第一版
    梁毅结构生物学(2010)北京:科学出版社第二版
    Alonso Adel, C., Li, B., Grundke-Iqbal, I. and Iqbal, K. (2006) Polymerization of hyperphosphorylated Tau into filaments eliminates its inhibitory activity. Proc Natl Acad Sci USA,103,8864-8869.
    Alonso Adel, C., Mederlyova, A., Novak, M., Grundke-Iqbal, I. and Iqbal, K. (2004) Promotion of hyperphosphorylation by frontotemporal dementia Tau mutations. J Biol Chem,279,34873-34881.
    Aoyagi, H., Hasegawa, M. and Tamaoka, A. (2007) Fibrillogenic nuclei composed of P301L mutant Tau induce elongation of P301L Tau but not wild-type Tau. J Biol Chem, 282,20309-20318.
    Appelt, D. M. and Balin, B. J. (1997) The association of tissue transglutaminase with human recombinant Tau results in the formation of insoluble filamentous structures. Brain research,745,21-31.
    Attri, A. K. and Minton, A. P. (2005) Composition gradient static light scattering:a new technique for rapid detection and quantitative characterization of reversible macromolecular hetero-associations in solution. Analytical biochemistry,346,132-138.
    Barghorn, S., Biernat, J. and Mandelkow, E. (2005) Purification of recombinant Tau protein and preparation of Alzheimer-paired helical filaments in vitro. Med Mol bio,299, 35-51.
    Barghorn, S. and Mandelkow, E. (2002) Toward a unified scheme for the aggregation of Tau into Alzheimer paired helical filaments. Biochemistry,41,14885-14896.
    Basha M. R., Wei W., Bakheet S. A., Benitez N., Siddiqi H. K., Ge Y. W., Lahiri D. K. and Zawia N. H. (2005a) The fetal basis of amyloidogenesis:exposure to lead and latent overexpression of amyloid precursor protein and beta-amyloid in the aging brain. J Neurosci 25,823-829.
    Basha M. R., Murali M., Siddiqi H. K., Ghosal K., Siddiqi O. K., Lashuel H. A., Ge Y. W., Lahiri D. K. and Zawia N. H. (2005b) Lead (Pb) exposure and its effect on APP proteolysis and Abeta aggregation. Faseb J 19,2083-2084.
    Bolin, C. M., Basha, R., Cox, D., Zawia, N. H., Maloney, B., Lahiri, D. K. and Cardozo-Pelaez, F. (2006) Exposure to lead and the developmental origin of oxidative DNA damage in the aging brain. Faseb J,20,788-790.
    Bossy-Wetzel, E., Schwarzenbacher, R. and Lipton, S. A. (2004) Molecular pathways to neurodegeneration. Nat Med,10 Suppl, S2-9.
    Braak, H. and Braak, E. (1997) Frequency of stages of Alzheimer-related lesions in different age categories. Nat Age,18,351-357.
    Brandt, R., Leger, J. and Lee, G (1995) Interaction of Tau with the neural plasma membrane mediated by Tau's amino-terminal projection domain. J Cell Biol,131, 1327-1340.
    Carlson, S. W., Branden, M, Voss, K., Sun, Q., Rankin, C. A. and Gamblin, T. C. (2007) A complex mechanism for inducer mediated Tau polymerization. Biochemistry,46, 8838-8849.
    Chirita, C. N., Congdon, E. E., Yin, H. and Kuret, J. (2005) Triggers of full-length Tau aggregation:a role for partially folded intermediates. Biochemistry,44,5862-5872.
    Chirita, C. N. and Kuret, J. (2004) Evidence for an intermediate in Tau filament formation. Biochemistry,43,1704-1714.
    Cohlberg, J. A., Li, J., Uversky, V. N. and Fink, A. L. (2002) Heparin and other glycosaminoglycans stimulate the formation of amyloid fibrils from alpha-synuclein in vitro. Biochemistry,41,1502-1511.
    Congdon, E. E., Kim, S., Bonchak, J., Songrug, T., Matzavinos, A. and Kuret, J. (2008) Nucleation-dependent Tau filament formation:the importance of dimerization and an estimation of elementary rate constants. J Biol Chem,283,13806-13816.
    Dayanandan, R., Van Slegtenhorst, M., Mack, T. G et al. (1999) Mutations in Tau reduce its microtubule binding properties in intact cells and affect its phosphorylation. FEBS letters,446,228-232.
    Dill, K. A. and Chan, H. S. (1997) From Levinthal to pathways to funnels. Nature structural biology,4,10-19.
    DiResta G. R., Lee J. B. and Arbit E. (1991) Measurement of brain tissue specific gravity using pycnometry. Journal of neuroscience methods 39,245-251.
    Dobson, C. M. (2003) Protein folding and misfolding. Nature,426,884-890.
    Du F., Zhou Z., Mo Z. Y., Shi J. Z., Chen J., Liang Y. (2006) Mixed macromolecular crowding accelerates the refolding of rabbit muscle creatine kinase:Implications for protein folding in physiological environments. JMol Biol 364,469-482.
    Duyckaerts, C., Potier, M. C. and Delatour, B. (2008) Alzheimer disease models and human neuropathology:similarities and differences. Acta neuropathologica,115,5-38.
    Ebneth, A., Godemann, R., Stamer, K., Illenberger, S., Trinczek, B. and Mandelkow, E. (1998) Overexpression of Tau protein inhibits kinesin-dependent trafficking of vesicles, mitochondria, and endoplasmic reticulum:implications for Alzheimer's disease. J Cell Biol,143,777-794.
    Ellis R. J. (2001) Macromolecular crowding:an important but neglected aspect of the intracellular environment. Curr Opin Struct Biol 11,114-119.
    Engel R., Westphal A. H., Huberts D. H., Nabuurs S. M., Lindhoud S., Visser A. J. and van Mierlo C. P. (2008) Macromolecular crowding compacts unfolded apoflavodoxin and causes severe aggregation of the off-pathway intermediate during apoflavodoxin folding. JBiol Chem 283,27383-27394.
    Fersht, A. R. and Daggett, V. (2002) Protein folding and unfolding at atomic resolution. Cell,108,573-582.
    Friedhoff, P., Schneider, A., Mandelkow, E. M. and Mandelkow, E. (1998a) Rapid assembly of Alzheimer-like paired helical filaments from microtubule-associated protein Tau monitored by fluorescence in solution. Biochemistry,37,10223-10230.
    Friedhoff, P., von Bergen, M., Mandelkow, E. M., Davies, P. and Mandelkow, E. (1998b) A nucleated assembly mechanism of Alzheimer paired helical filaments. Proc Natl Acad Sci USA,95,15712-15717.
    Forster M. and Mulloy B. (2006) Computational approaches to the identification of heparin-binding sites on the surfaces of proteins. Biochem Soc Trans,34,431-434.
    Gamblin, T. C., King, M. E., Dawson, H., Vitek, M. P., Kuret, J., Berry, R. W. and Binder, L. I. (2000) In vitro polymerization of Tau protein monitored by laser light scattering: method and application to the study of FTDP-17 mutants. Biochemistry,39,6136-6144.
    Goedert, M. (1993) Tau protein and the neurofibrillary pathology of Alzheimer's disease. Trends Neurosci,16,460-465.
    Goedert, M. (2005) Tau gene mutations and their effects. Mov Disord,20 Suppl 12, S45-52.
    Gisbert C., Ros R., De Haro A., Walker D. J., Pilar Bernal M., Serrano R. and Navarro-Avino J. (2003) A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochem Biophys Res Commun 303,440-445.
    Goedert, M. and Jakes, R. (1990) Expression of separate isoforms of human Tau protein: correlation with the Tau pattern in brain and effects on tubulin polymerization. EMBO J, 9,4225-4230.
    Goedert, M., Jakes, R., Spillantini, M. G., Hasegawa, M., Smith, M. J. and Crowther, R. A. (1996) Assembly of microtubule-associated protein Tau into Alzheimer-like filaments induced by sulphated glycosaminoglycans. Nature,383,550-553.
    Goedert, M., Spillantini, M. G., Crowther, R. A. et al. (1999) Tau gene mutation in familial progressive subcortical gliosis. Nat Med,5,454-457.
    Goedert, M., Spillantini, M. G., Jakes, R., Rutherford, D. and Crowther, R. A. (1989) Multiple isoforms of human microtubule-associated protein Tau:sequences and localization in neurofibrillary tangles of Alzheimer's disease. Neuron,3,519-526.
    Gomez-Isla, T., Hollister, R., West, H., Mui, S., Growdon, J. H., Petersen, R. C., Parisi, J. E. and Hyman, B. T. (1997) Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer's disease. Ann Neurol,41,17-24.
    Goux, W. J., Kopplin, L., Nguyen, A. D., Leak, K., Rutkofsky, M., Shanmuganandam, V. D., Sharma, D., Inouye, H. and Kirschner, D. A. (2004) The formation of straight and twisted filaments from short Tau peptides. J Biol Chem,279,26868-26875.
    Haraguchi, T., Ishizu, H., Takehisa, Y. et al. (2001) Lead content of brain tissue in diffuse neurofibrillary tangles with calcification (DNTC):the possibility of lead neurotoxicity. Neuroreport,12,3887-3890.
    Hart, G. W., Kreppel, L. K., Comer, F. I. et al. (1996) O-GlcNAcylation of key nuclear and cytoskeletal proteins:reciprocity with O-phosphorylation and putative roles in protein multimerization. Glycobiology,6,711-716.
    Hasegawa, M., Crowther, R. A., Jakes, R. and Goedert, M. (1997) Alzheimer-like changes in microtubule-associated protein Tau induced by sulfated glycosaminoglycans. Inhibition of microtubule binding, stimulation of phosphorylation, and filament assembly depend on the degree of sulfation. JBiol Chem,272,33118-33124.
    Hess D. J., Henry-Stanley M. J., Erlandsen S. L. and Wells C. L. (2006) Heparan sulfate proteoglycans mediate Staphylococcus aureus interactions with intestinal epithelium. Me d Microbiol Immunol 195,133-141.
    Hess K. and Straub P. W. (1974) [Chronic lead poisoning (author's transl)]. J Cell Biol,63, 177-183.
    Hicke, L. (2001) Protein regulation by monoubiquitin. Nat Rev Mol Cell Biol,2,195-201. Hirokawa, N., Shiomura, Y. and Okabe, S. (1988) Tau proteins:the molecular structure and mode of binding on microtubules. J Cell Biol,107,1449-1459.
    Horiguchi, T., Uryu, K., Giasson, B. I., Ischiropoulos, H., LightFoot, R., Bellmann, C., Richter-Landsberg, C., Lee, V. M. and Trojanowski, J. Q. (2003) Nitration of Tau protein is linked to neurodegeneration in Tauopathies.Am J Pathol,163,1021-1031.
    Huang H, Bihaqi SW, Cui L, Zawia NH (2011) In vitro Pb exposure disturbs the balance between Aβ production and elimination:the role of APP and neprilysin. NeuroToxicology 32:300-306.
    Iqbal, K., Alonso Adel, C., El-Akkad, E. et al. (2002) Significance and mechanism of Alzheimer neurofibrillary degeneration and therapeutic targets to inhibit this lesion. J Mol Neurosci,19,95-99.
    Jiang L. F., Yao T. M., Zhu Z. L., Wang C. and Ji L. N. (2007) Impacts of Cd(II) on the conformation and self-aggregation of Alzheimer's tau fragment corresponding to the third repeat of microtubule-binding domain. Biochim Biophy Acta1774,1414-1421.
    Jeganathan, S., von Bergen, M., Mandelkow, E. M. and Mandelkow, E. (2008) The natively unfolded character of Tau and its aggregation to Alzheimer-like paired helical filaments. Biochemistry,47,10526-10539.
    Jenkins, S. M. and Johnson, G. V. (1998) Tau complexes with phospholipase C-gamma in situ. Neuroreport,9,67-71.
    Kaganovich D., Kopito R. and Frydman J. (2008) Misfolded proteins partition between two distinct quality control compartments. Nature 454,1088-1095.
    Kamel, F., Umbach, D. M., Munsat, T. L., Shefner, J. M., Hu, H. and Sandler, D. P. (2002)
    Lead exposure and amyotrophic lateral sclerosis. Epidemiology (Cambridge, Mass,13, 311-319.
    Kamemura, K. and Hart, G. W. (2003) Dynamic interplay between O-glycosylation and O-phosphorylation of nucleocytoplasmic proteins:a new paradigm for metabolic control of signal transduction and transcription. Progress in nucleic acid research and molecular biology,73,107-136.
    Kameyama, K. and Minton, A. P. (2006) Rapid quantitative characterization of protein interactions by composition gradient static light scattering. Biophysical journal,90, 2164-2169.
    Kampers, T., Friedhoff, P., Biernat, J., Mandelkow, E. M. and Mandelkow, E. (1996) RNA stimulates aggregation of microtubule-associated protein Tau into Alzheimer-like paired helical filaments. FEBS letters,399,344-349.
    Kardos, J., Yamamoto, K., Hasegawa, K., Naiki, H. and Goto, Y. (2004) Direct measurement of the thermodynamic parameters of amyloid formation by isothermal titration calorimetry. J Biol Chem,279,55308-55314.
    Khatoon S., Grundke-Iqbal I. and Iqbal K. (1992) Brain levels of microtubule-associated protein tau are elevated in Alzheimer's disease:a radioimmuno-slot-blot assay for nanograms of the protein. JNeurochem 59,750-753.
    Keller, J. N., Hanni, K. B. and Markesbery, W. R. (2000) Impaired proteasome function in Alzheimer's disease. J Neurochem,75,436-439.
    Kitazawa, M., Cheng, D. and Laferla, F. M. (2009) Chronic copper exposure exacerbates both amyloid and Tau pathology and selectively dysregulates cdk5 in a mouse model of AD. J Neurochem,108,1550-1560.
    Korir A. K. and Larive C. K. (2009) Advances in the separation, sensitive detection, and characterization of heparin and heparan sulfate. Analytical and bioanalytical chemistry 393,155-169.
    Kosik, K. S., Joachim, C. L. and Selkoe, D. J. (1986) Microtubule-associated protein Tau (Tau) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc Natl Acad Sci U S A,83,4044-4048.
    Kuret, J., Chirita, C. N., Congdon, E. E., Kannanayakal, T., Li, G., Necula, M., Yin, H. and Zhong, Q. (2005) Pathways of Tau fibrillization. Biochem Biophys Acta,1739, 167-178.
    Lee, C. and Yu, M. H. (2005) Protein folding and diseases.J Biochem Mol Bio,38, 275-280.
    Lee, V. M., Goedert, M. and Trojanowski, J. Q. (2001) Neurodegenerative Tauopathies. Annu Rev Neurosci,24,1121-1159.
    Lefebvre, T., Caillet-Boudin, M. L., Buee, L., Delacourte, A. and Michalski, J. C. (2003) O-GlcNAc glycosylation and neurological disorders.Adv Expri Med Bio,535,189-202.
    Li, C., Xing, T., Tang, M. et al. (2008) Involvement of cyclin D1/CDK4 and pRb mediated by PI3K/AKT pathway activation in Pb2+ -induced neuronal death in cultured hippocampal neurons. Toxicol Appl Pharmacol,229,351-361.
    Li, X., De Sarno, P., Song, L., Beckman, J. S. and Jope, R. S. (1998) Peroxynitrite modulates tyrosine phosphorylation and phosphoinositide signalling in human neuroblastoma SH-SY5Y cells:attenuated effects in human 1321N1 astrocytoma cells. Biochem J,331 (Pt 2),599-606.
    Liang, Y. (2008) Applications of isothermal titration calorimetry in protein science. Acta Biochim Biophys Sin,40,565-576.
    Liang Y, Du F., Sanglier S., Zhou B. R., Xia Y, Van Dorsselaer A., Maechling C., Kilhoffer M. C. and Haiech J. (2003) Unfolding of rabbit muscle creatine kinase induced by acid. A study using electrospray ionization mass spectrometry, isothermal titration calorimetry, and fluorescence spectroscopy. JBiol Chem 278,30098-30105.
    Lomas, D. A. and Carrell, R. W. (2002) Serpinopathies and the conformational dementias. Nat Rev Genet,3,759-768.
    Lone M. I., He Z. L., Stoffella P. J. and Yang X. E. (2008) Phytoremediation of heavy metal polluted soils and water:progresses and perspectives. J Zhejiang Univ Sci,9, 210-220.
    Loring, J. F., Wen, X., Lee, J. M., Seilhamer, J. and Somogyi, R. (2001) A gene expression profile of Alzheimer's disease. DNA and cell biology,20,683-695.
    Lu, M. and Kosik, K. S. (2001) Competition for microtubule-binding with dual expression of Tau missense and splice isoforms. Mol Biol Cell,12,171-184.
    Mandelkow, E., Song, Y. H., Schweers, O., Marx, A. and Mandelkow, E. M. (1995) On the structure of microtubules, Tau, and paired helical filaments. Nat Age,16,347-354.
    Madden E. F. and Fowler B. A. (2000) Mechanisms of nephrotoxicity from metal combinations:a review. Drug Chem Toxicol 23,1-12.
    Mahaffey K. R. and Fowler B. A. (1977) Effects of concurrent administration of lead, cadmium, and arsenic in the rat. Environ Health Perapec,19,165-171.
    Mahaffey K. R., Capar S. G., Gladen B. C. and Fowler B. A. (1981) Concurrent exposure to lead, cadmium, and arsenic. Effects on toxicity and tissue metal concentrations in the rat. J Lab Clin Med 98,463-481.
    Minton, A. P. (2000) Implications of macromolecular crowding for protein assembly. Curr Opin Struct Biol,10,34-39.
    Minton, A. P. (2001) The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media. J Biol Chem,276, 10577-10580.
    Mo, Z. Y., Zhu, Y. Z., Zhu, H. L., Fan, J. B., Chen, J. and Liang, Y. (2009) Low micromolar zinc accelerates the fibrillizalion of human Tau via bridging of Cys-291 and Cys-322. J Biol Chem,284,34648-34657.
    Moelleken K. and Hegemann J. H. (2008) The Chlamydia outer membrane protein OmcB is required for adhesion and exhibits biovar-specific differences in glycosaminoglycan binding. Mol Microbiol,67,403-419.
    Mukrasch M. D., Bibow S., Korukottu J., Jeganathan S., Biernat J., Griesinger C., Mandelkow E. and Zweckstetter M. (2009) Structural polymorphism of 441-residue tau at single residue resolution. PLoS biology 7, e34.
    Munishkina, L. A., Cooper, E. M., Uversky, V. N. and Fink, A. L. (2004) The effect of macromolecular crowding on protein aggregation and amyloid fibril formation. J Mol Recognit,17,456-464.
    Nagiec, E. W., Sampson, K. E. and Abraham, I. (2001) Mutated Tau binds less avidly to microtubules than wildtype Tau in living cells. JNeurosci Res,63,268-275.
    Needleman H. L., Schell A., Bellinger D., Leviton A. and Allred E. N. (1990) The long-term effects of exposure to low doses of lead in childhood. An 11-year follow-up report. New Engl J Med 322,83-88.
    Niklowitz W. J. (1975) Neurofibrillary changes after acute experimental lead poisoning. Neurology 25,927-934.
    Niklowitz W. J. and Mandybur T. I. (1975) Neurofibrillary changes following childhood lead encephalopathy. J Neuropathol Exp Neurol 34,445-455.
    Novak, M. (1994) Truncated Tau protein as a new marker for Alzheimer's disease. Acta Tirol,38,173-189.
    Paudel, H. K. and Li, W. (1999) Heparin-induced conformational change in microtubule-associated protein Tau as detected by chemical cross-linking and phosphopeptide mapping. JBiol Chem,274,8029-8038.
    Pavlov, G., Finet, S., Tatarenko, K., Korneeva, E. and Ebel, C. (2003) Conformation of heparin studied with macromolecular hydrodynamic methods and X-ray scattering. Eur Biophys J,32,437-449.
    Perez, M., Arrasate, M., Montejo De Garcini, E., Munoz, V. and Avila, J. (2001) In vitro assembly of Tau protein:mapping the regions involved in filament formation. Biochemistry,40,5983-5991.
    Pichery C, Bellanger M, Zmirou DN, Glorennec P, Hartemann P, et al. (2011) Childhood lead exposure in France:benefit estimation and partial cost-benefit analysis of lead hazard control. Environ Health 10:44.
    Prusiner, S. B., Scott, M. R., DeArmond, S. J. and Cohen, F. E. (1998) Prion protein biology. Cell,93,337-348.
    Reynolds, M. R., Reyes, J. F., Fu, Y., Bigio, E. H., Guillozet-Bongaarts, A. L., Berry, R. W. and Binder, L. I. (2006) Tau nitration occurs at tyrosine 29 in the fibrillar lesions of Alzheimer's disease and other Tauopathies. JNeurosci,26,10636-10645.
    Rosenberg, K. J., Ross, J. L., Feinstein, H. E., Feinstein, S. C. and Israelachvili, J. (2008) Complementary dimerization of microtubule-associated Tau protein:Implications for microtubule bundling and Tau-mediated pathogenesis. Proc Natl Acad Sci U S A,105, 7445-7450.
    Sasaki, N., Fukatsu, R., Tsuzuki, K. et al. (1998) Advanced glycation end products in Alzheimer's disease and other neurodegenerative diseases.Am J Pathol,153,1149-1155.
    Schweers, O., Mandelkow, E. M., Biernat, J. and Mandelkow, E. (1995) Oxidation of cysteine-322 in the repeat domain of microtubule-associated protein Tau controls the in vitro assembly of paired helical filaments. Proc Natl Acad Sci USA,92,8463-8467.
    Selkoe, D. J. (2003) Folding proteins in fatal ways. Nature,426,900-904.
    Sergeant, N., Delacourte, A. and Buee, L. (2005) Tau protein as a differential biomarker of Tauopaihies. Biochem Biophys Acta,1739,179-197.
    Sibille, N., Sillen, A., Leroy, A., Wieruszeski, J. M., Mulloy, B., Landrieu, I. and Lippens, G. (2006) Structural impact of heparin binding to full-length Tau as studied by NMR spectroscopy. Biochemistry,45,12560-12572.
    Skovronsky, D. M., Lee, V. M. and Trojanowski, J. Q. (2006) Neurodegenerative diseases: new concepts of pathogenesis and their therapeutic implications. Annu Rev Psychol,1, 151-170.
    Schwartz J. (1994) Low-level lead exposure and children's IQ:a meta-analysis and search for a threshold. Environ Resea 65,42-55.
    Shin R. W., Lee V. M. and Trojanowski J. Q. (1994) Aluminum modifies the properties of Alzheimer's disease PHF tau proteins in vivo and in vitro. J Neurosci 14,7221-7233.
    Soragni A., Zambelli B., Mukrasch M. D., Biernat J., Jeganathan S., Griesinger C, Ciurli S., Mandelkow E. and Zweckstetter M. (2008) Structural characterization of binding of Cu(Ⅱ) to tau protein. Biochemistry 47,10841-10851.
    Smith, C. D., Carney, J. M., Starke-Reed, P. E., Oliver, C. N., Stadtman, E. R., Floyd, R. A. and Markesbery, W. R. (1991) Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease. Proc Natl Acad Sci USA,88,10540-10543.
    Soto, C. (2003) Unfolding the role of protein misfolding in neurodegenerative diseases. Nat Rev,4,49-60.
    Spillantini, M. G. and Goedert, M. (1998) Tau protein pathology in neurodegenerative diseases. Trends Neurosci,21,428-433.
    Stefani, M. (2004) Protein misfolding and aggregation:new examples in medicine and biology of the dark side of the protein world. Biochem Biophys Acta,1739,5-25.
    Stewart, W. F., Schwartz, B. S. Davatzikos, C. et al. (2006) Past adult lead exposure is linked to neurodegeneration measured by brain MRI. Neurology,66,1476-1484.
    Tucholski, J., Kuret, J. and Johnson, G. V. (1999) Tau is modified by tissue transglutaminase in situ:possible functional and metabolic effects of polyamination. J Neurochem,73,1871-1880.
    Vazquez, A. and Pena de Ortiz, S. (2004) Lead (Pb(+2)) impairs long-term memory and blocks learning-induced increases in hippocampal protein kinase C activity. Toxicol Appl Pharmacol,200,27-39.
    Verina T., Rohde C. A. and Guilarte T. R. (2007) Environmental lead exposure during early life alters granule cell neurogenesis and morphology in the hippocampus of young adult rats. Neuroscience 145,1037-1047.
    Vlodavsky I., Ilan N., Nadir Y., Brenner B., Katz B. Z., Naggi A., Torri G., Casu B. and Sasisekharan R. (2007) Heparanase, heparin and the coagulation system in cancer progression. Thrombosis research 120 Suppl 2, S112-120.
    von Bergen, M., Barghorn, S., Muller, S. A., Pickhardt, M., Biernat, J., Mandelkow, E. M., Davies, P., Aebi, U. and Mandelkow, E. (2006) The core of Tau-paired helical filaments studied by scanning transmission electron microscopy and limited proteolysis. Biochemistry,45,6446-6457.
    Wang, J. Z., Grundke-Iqbal, I. and Iqbal, K. (1996) Glycosylation of microtubule-associated protein Tau:an abnormal posttranslational modification in Alzheimer's disease. Nat Med,2,871-875.
    Wille, H., Drewes, G., Biernat, J., Mandelkow, E. M. and Mandelkow, E. (1992) Alzheimer-like paired helical filaments and antiparallel dimers formed from microtubule-associated protein Tau in vitro. J Cell Biol,118,573-584.
    Wilson, D. M. and Binder, L. I. (1997) Free fatty acids stimulate the polymerization of Tau and amyloid beta peptides. In vitro evidence for a common effector of pathogenesis in Alzheimer's disease.Am JPathol,150,2181-2195.
    Wasserman G. A., Factor-Litvak P., Liu X., Todd A. C., Kline J. K., Slavkovich V., Popovac D. and Graziano J. H. (2003) The relationship between blood lead, bone lead and child intelligence. Child Neuropsychol 9,22-34.
    Wickner S., Maurizi M. R. and Gottesman S. (1999) Posttranslational quality control: folding, refolding, and degrading proteins. Science 286,1888-1893. Winklhofer K. F., Tatzelt J. and Haass C. (2008) The two faces of protein misfolding: gain-and loss-of-function in neurodegenerative diseases. EMBOJ21,336-349.
    Wu J., Basha M. R. and Zawia N. H. (2008a) The environment, epigenetics and amyloidogenesis. JMol Neurosci 34,1-7.
    Wu J., Basha M. R., Brock B., Cox D. P., Cardozo-Pelaez F., McPherson C. A., Harry J., Rice D. C., Maloney B., Chen D., Lahiri D. K. and Zawia N. H. (2008b) Alzheimer's disease (AD)-like pathology in aged monkeys after infantile exposure to environmental metal lead (Pb):evidence for a developmental origin and environmental link for AD. J Neurosci 28,3-9.
    Xu H., Liang Y., Zhang P., Du F., Zhou B. R., Wu J., Liu J. H., Liu Z. G. and Ji L. N. (2005) Biophysical studies of a ruthenium(Ⅱ) polypyridyl complex binding to DNA and RNA prove that nucleic acid structure has significant effects on binding behaviors. J Biol Inorg Chem 10,529-538.
    Yamamoto A., Shin R. W., Hasegawa K., Naiki H., Sato H., Yoshimasu F. and Kitamoto T. (2002) Iron (Ⅲ) induces aggregation of hyperphosphorylated tau and its reduction to iron (Ⅱ) reverses the aggregation:implications in the formation of neurofibrillary tangles of Alzheimer's disease. JNeurochem 82,1137-1147.
    Yang F., Jr., Zhang M., Zhou B. R., Chen J. and Liang Y. (2006) Oleic acid inhibits amyloid formation of the intermediate of alpha-lactalbumin at moderately acidic pH. J Med Bio 362,821-834.
    Yang L. S. and Ksiezak-Reding H. (1999) Ca2+ and Mg2+ selectively induce aggregates of PHF-tau but not normal human tau. J Neurosci Res 55,36-43.
    Yan, S. D., Yan, S. F., Chen, X. et al. (1995) Non-enzymatically glycated Tau in Alzheimer's disease induces neuronal oxidant stress resulting in cytokine gene expression and release of amyloid beta-peptide. Nat Med,1,693-699.
    Zhang, Y. J., Xu, Y. F., Chen, X. Q., Wang, X. C. and Wang, J. Z. (2005) Nitration and oligomerization of Tau induced by peroxynitrite inhibit its microtubule-binding activity. FEBS letters,579,2421-2427.
    Zhou B. R., Liang Y., Du F., Zhou Z. and Chen J. (2004) Mixed macromolecular crowding accelerates the oxidative refolding of reduced, denatured lysozyme: implications for protein folding in intracellular environments. J Biol Chem 279, 55109-55116.
    Zhou Z., Fan J. B., Zhu H. L., Shewmaker F., Yan X., Chen X., Chen J., Xiao G. F., Guo L. and Liang Y. (2009) Crowded cell-like environment accelerates the nucleation step of amyloidogenic protein misfolding. J Biol Chem 284,30148-30158.
    Zhu H. L., Fernandez C., Fan J. B., Shewmaker F., Chen J., Minton A. P. and Liang Y. Quantitative characterization of heparin binding to Tau protein:implication for inducer-mediated Tau filament formation. J Biol Chem 285,3592-3599.
    Zimmerman S. B. and Trach S. O. (1991) Estimation of macromolecule concentrations and excluded volume effects for the cytoplasm of Escherichia coli. J Med Bio 222, 599-620.
    Zimmerman S. B. and Minton A. P. (1993) Macromolecular crowding:biochemical, biophysical, and physiological consequences. Annu Rev Biophys Biomol Struct22,27-65. Seaward MRD, Richardson DHS (1990) Atmospheric sources of metal pollution and effects on vegetation. In:Shaw AJ (Ed), Heavy metal tolerance in plants:evolutionary aspects. CRC Press, Florida, pp.75-92.
    Zukowska J, Biziuk M (2008) Methodological evaluation of method for dietary heavy metal intake. J Food Sci 73:R21-R29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700