不锈钢表面多孔结构的吸收特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用激光加工法制备周期性分布的不锈钢表面大孔与小孔结构,采用阳极氧化方法制备表面无规则孔分布结构。采用金相显微镜、扫描电镜观察多孔材料表面的孔分布状态与孔径大小,轮廓仪、白光干涉仪测试孔深,紫外-可见光光度计与红外傅立叶光谱仪测试多孔材料光吸收率。同时在测试过程中对激光加工多孔结构中产生的偏差与缺陷进行了估计。
     材料表面形态直接影响其吸收特性,表面多孔结构孔洞大小、分布、深度都对表面吸收系数有影响。本文根据光学反射理论推导出不锈钢表面大孔结构吸收模型,根据光学衍射理论推导出不锈钢表面小孔结构吸收模型,根据表面大孔模型与小孔模型结合推导出无规则孔分布结构吸收模型
     根据吸收率测试结果验证表面多孔结构吸收模型,结果表明,表面多孔结构对材料吸收率有明显的增强作用,最多可提高吸收率达两倍以上。表面大孔结构吸收模型能较好的反映表面多孔结构孔距、孔深、孔径的变化与吸收率变化的关系;当只有孔间距变化且越小时,和只有孔径变化且越大时,以及只有孔深变化且越大时,材料吸收率提高系数越大,即材料吸收率增加越多。表面小孔结构吸收模型与实验数据吻合较好,表明孔径接近入射波长尺寸时能强烈吸收入射波;当孔间距越小时,表面孔数量越大,材料吸收率提高系数越大,即材料吸收率增加越大。表面无规则孔分布结构既有大孔又有小孔,在光谱吸收时同时呈现大孔结构吸收与小孔结构吸收的特点;无规则结构孔洞越多,材料吸收提高系数越大,即材料吸收率增加越多;与入射波长尺寸近似的孔洞越多,材料吸收峰越高;吸收曲线趋势与无规则孔分布结构吸收模型吻合。
In this paper, multihole structure with periodic distribution were prepared on the surface of stainless steel by laser machining, and porous structure of random distribution was prepared by AAO. The pore distribution of porous materials and pore size on material surface were analyzed by Metallurgical Microscopy and SEM; pore depth was tested by Contourgraph and White Light Interferometer; the spectral absorption factors of the porous materials were tested by UV-Vis and FTIR. At the same time, errors and defects caused by manufacturing and testing were estimated.
     According to the theory of light reflex, absorption model of big-porous structure on surface of stainless steel was deduced. According to the theory of light diffraction, absorption model of small-porous structure on surface of stainless steel was deduced. To combine the absorption model of big-porous structure and the absorption model of small-porous structure, the absorption model of random-porous structure on surface of stainless steel was deduced.
     Absorption model of porous structure on surface of stainless steel was verified by experiment testing. The results show that the surface of porous structure significantly is the absorption rate of materials increased, sometimes more than twice. Absorption model of big-porous structure can reflect the changes relationship between absorption factor and porous space, depth, diameter. When only porous space is changed and becomes smaller, or only porous depth is changed and becomes bigger, or only porous diameter is changed and becomes bigger, the coefficient of absorption rate increase greater, that is, the absorption factor of materials increases. Absorption model of small-porous structure are in good agreement with the experimental data, and it shows that incident waves are absorbed strongly when the wavelength is similar to the pore diameter. When only pore space is changed and smaller, it means the number of pore increases, and the coefficient of increasing in absorption rate becomes greater, that is, the absorption factor of materials is greater. The random-porous structure on surface of stainless steel includes both big-pores and small-pores, so it has both characteristics of their. The number of random-pore becomes more, the coefficient of increasing in absorption rate will greater, that is, the absorption factor of materials is greater. The number of random-pore which is similar to the porous diameter being more, absorption peaks will be higher ; the experimental data are fit very well with the rules of the absorption model of random-porous structure on surface.
引文
1刘春田,崔建忠.金属基复合材料.国防工业出版社, 2002, 1-10
    2牛琳霞.我国不锈钢生产和技术发展方向.钢铁研究. 2007, 12(6):45-49
    3 L. J. Gibson, M. F. Ashby著.多孔固体结构与性能,第二版.刘培生译.清华大学出版社, 2003:73-82
    4 R. F. Boehm, C. L. Tien. Small Spacing Analysis of Radiate Transfer Between Parallel Metallic Surface. ASME Journal of Heat Transfer. 1970.405-411
    5韩鸿硕.国外航天器防热系统和材料的应用研究现状.宇航材料工艺, 1994, (6):1-12
    6 A . Sentenac, J. J. Greffet. Design of Surface Microrelief with Selective Radiative Propertyes. Int.. Heat Mass Transter, 1994. vol,37:553-558
    7 J. P. Longtin, C. L. Tien. Mircroscale Radiation Phenomena in Microscale Energy Transport. Eds. 1998:112-148
    8刘欣,薛向欣,段培宁.多孔结构对材料吸波性能的影响.材料与冶金学报, 2007, 12(4):306-310
    9 G. Zhang, L. J. Guo, I. Z. Liu. Application of Diamond-Like Carbon Film as Protection and Antireflection Coatings of ZnS Elements. Optical Engineering, 1994; 33 (4):1330-1333
    10范恩荣.微孔材料多孔结构的测定.浙江化工, 1994(4):40-42
    11李福欣,李青,贺晓东.激光加工技术的应用.农业装备与车辆工程. 2008,8:46-50
    12 D. W. Cohn,Tang J, R. O. Buckius. Comparison of Theory and Experiments for Reflection from Microcontoured Surfaces. Int.. Heat Mass Transfer, 1997.vol.40: 3223-3235
    13王玲,李续东,朱璐.隐身技术发展综述.飞机设计参考资料. 2003,(2):11
    14刘世良.红外隐身技术发展综述.中国航天. 1994,(7):41-44
    15付伟.飞机光电隐身技术.航空兵器. 2001,(4):9-12
    16阿列克谢耶夫,陈开来,什塔盖尔.隐身技术的物理学基础.兵器工业出版社, 2002:125-127
    17匡兴华,钟华.隐身技术与隐身对抗.国防科技参考,1996,17(1):31-48
    18刑丽英,蒋诗才,李斌太.隐身材料.化学工业出版社,2004:3-20
    19高技术新材料编辑委员会编.高技术新材料概览.中国科学技术出版社, 1993:23-27
    20袁文麟.多波段伪装材料.红外与激光技术, 1994(2):18-22
    21琼斯.J.隐身技术—黑色魔力的艺术.洪旗,魏海滨编译.航空工业出版社, 1991:5-15
    22张光寅,戴松涛,张存洲.多孔材料红外反射光谱的下塌现象.红外与毫米波学报. 1995,8:283-287
    23车晓光.国外微波吸收材料.国防科技大学出版社,1993:127-135
    24 D. L. Jaggard. N. Enghel. Chirosorbas an Invisible Mediam. Electronics Letters, 1989,25(3):173-174
    25江家京,王春芳,孟海乐.吸波建筑材料的研究及应用进展.科技情报开发与经济, 2005,15(1):132-133
    26史蒂文●维●索克莱.太阳能与建筑.中国建筑工业出版社,1980:685-690
    27吴升,沈晓冬,袁林生.电磁屏蔽和吸波材料的研究进展.电子元件与材料, 2005,24(1):57-61
    28赵玉峰,肖瑞,赵东平.电磁辐射的抑制技术.中国铁道出版社, 1989:82-85
    29喜文华主编,魏一康,张兰英副主编,太阳能实用工程技术.兰州:兰州大学出版社,2001:212-215
    30葛新石,龚保,陆维德,王义方.太阳能工程一原理和应用.北京:学术期刊出版社, 1998:50-57
    31李忠.一种高效平板太阳能集热器试验研究.太阳能学报, 2001,22(2):26-31
    32 B. Window, G. L. Harding. Water-in-Glass Manifolds for Heat Extraction from Evaluate Solar Collector Tubes. Solar Energy,1984,32(2):223-230
    33欧阳德来.表面多孔化材料的光一热转换性能研究.昆明理工大学硕士学位论文. 2005:16-27
    34 W. B. Bienert. D. A. Wolf. Heat Pipes Applied to Flat Plat Solar Eolleetors. NSF Report. AER 1974,74-94
    35黄丽清.高度有序多孔氧化铝膜的制备和研究.西安交通大学学报, 2003 , 137(10) : 1094
    36越俊亮三,长谷川修.日本机械学会论文集(第二部). 36卷283号(45-3): 430-437
    37 J.P.霍尔.传热学.马庆芳,马重芳,王兴国译.人民教育出版社, 1979:325-327
    38越俊亮三.日本机械学会论文集(B篇)57卷533号, 1991:309-316
    39卞伯绘.辐射传热的分析与计算.清华大学出版社, 1988:55-62
    40邢桂菊,唐铁驯,李文忠.辐射多孔体传热特性的研究.冶金能源. 2001, 19(1):23-26
    41 F.P.因克普拉.传热基础.陆大有等译.宇航出版社, 1987:37-39
    42马同泽.热管.科学出版社, 1983:2-9
    43谭华玉.多孔表面的制造方法及其强化沸腾传热效果的比较.流体机械, 2006(1): 80-85
    44刘阿龙.复合粉末多孔表面管的沸腾传热.化工学报, 2006(4):726-729
    45李隆梅.表面多涂层强化传热技术研究.福州大学学报, 1997, 25(6):102-107
    46李洪亮.强化传热技术及其应用.化工设备育防腐蚀, 2002,(4):111-113
    47廖丽华.铝多孔表面换热管强化沸腾换热的研究及其工业应用.化工装备技术, 2003, 24(1):27-30
    48 J. Minitubes. Cobalt-Chromium Implant Grade Tubing. Printed Matter Distributed in Medtech Shenzhen, 2005-09-13
    49 World’s First Completely Biodegradable Stent Posted Apr. 15, 2004.
    50 H. Zhao. Materials Aspects of Coronary Stents. [Doctoral Thesis]. Catholic University of Leuven, Belgium, July 2005
    51 Europe PCR04 Endovascular Angioplasty Material’s Catalog. 2004-08-25
    52高技术新材料编辑委员会编.高技术新材料概览.中国科学技术出版社, 1993:51-55
    53 M. C. Morice, P. W. Serry, J. E. Sousa. A Randomized Comparison of a Sirolimus-Eluting Stent with A Standard Stent for Coronary Revasculatization. N Engl J med. 2002, (346):1773
    54 E. Regar, G. Sianos, P. W. Serruys. Stent Development and Local Drug Delivery. British Medical Bulletin 59(2001): 227
    55 W. Schuler. A New Rapamycin Derivative: Pharmacological Properties in Vitro and in Vivo. Transplantation, 1997, (64):36
    56杨贤荣编.辐射换热角系数手册.国防工业出版社, 1979:16-27
    57葛绍岩.热辐射性质及其测量.科学出版社, 1979:52-58
    58杨世铭,陶文铨.传热学.高等教育出版社, 2005:351-373
    59斯帕罗E. M.,赛斯R. D.辐射传热.顾传保,张学学译.高等教育出版社, 1982:127-129
    60 F. P. Incropera, D. P. DeWitt. Introduction to Heat Transfer.3rd ed. New York: John Wiley & Sons,1996:593-648
    61 J. P. Holman. Heat Transfer.8th ed, New York: McGraw-Hill Company,1997:394-488
    62 A. Sentenac, J. J. Greffet. Design of Surface Microrelief with Selective Radiative Properties. Int.. Heat Mass Transfer, 1994.37 vol.:533-558
    63 D. W. Cohn, Tang J, and R. O. Buckius. Comparison of Theory and Experiments for Reflection from Microcontoured Surfaces. Int.. Heat Mass Transfer,1997 vol.40:3223-3235
    64姚启钧.光学教程.高等教育出版社, 2008:252-257
    65 Borg-Warner Corporation, Boiling Heat Transfer Surface and Method.USP:4, 018, 264, 1975-4-28
    66华南理工大学.强化液膜传热传质的表面花纹管.中国专利:CN2047001U, 1989-11-1
    67黄瑞青,党建印.纳米多孔的制备技术及应用.纳来材料与结构. 2005(5):25-27
    68张恒华.材料表面处理新技术.热处理. 2008,23(2):65
    69 C. F. Gottzmann. High Efficiency Heat Exchangers. Chemical Eng. Progress, 1973, 69(7):69-75
    70李福欣,李青,贺晓东.激光加工技术的应用.农业装备与车辆工程. 2008,8:46-50
    71刘静编著.微米/纳米尺度传热学.科学出版社, 2001:281-290
    72 D. J. Griffiths.量子力学概论.机械工业出版社, 2006:77-79
    73 G. Milburn.神奇的量子世界.新华出版社,2002:16-22
    74刘景生.红外物理.兵器工业出版社, 1992:189-192
    75卢言利,张拴勤,谢卫,吕绪良.多孔结构材料有效吸收系数分析.兵工学报. 2009.1: 19-23
    76姚启钧.光学教程.高等教育出版社, 2008:267-271

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700