基于投影寻踪的多(高)光谱影像分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
遥感对地观测技术是关系到一个国家未来可持续发展的重要技术。目前遥感对地观测技术出现了以下三“高”的发展趋势:高空间分辨率、高时间分辨率和高光谱分辨率。光谱遥感技术逐渐成为人们准确获取地球表面信息的一种主要的手段之一,并发挥着越来越广泛的社会效益,高光谱分辨率传感器是未来空间遥感发展的核心内容。在实际多、高光谱影像处理和分析工作中,光谱影像丰富的光谱信息为地物的边界和地物目标的检测识别创造了良好的条件,随着高光谱影像空间分辨率的提高以及地理信息系统技术的发展,对多、高光谱遥感影像的处理和分析也提出了更高的要求。近年来,对多、高光谱遥感影像处理和分析方法的研究成为遥感领域的前沿之一。将一些新的理论和方法应用于多、高光谱影像处理和分析对于提高遥感信息的提取水平具有十分重要的意义。
     投影寻踪是处理和分析高维数据集的一类新兴技术。投影寻踪方法是根据特定的应用意义设计相应的投影指标,把高维数据集投影到低维数据空间后进行分析,揭示高维数据集内部的结构和特征。在多、高光谱遥感影像处理和分析领域中有一个重要的学术思想倾向就是希望在减少光谱数据的维数和数据量,但又期望尽可能保留原始光谱数据的所有信息。这一学术思想倾向与投影寻踪在保留感兴趣信息的前提下,把高维数据集投影到低维数据空间来分析的核心思想不谋而合。本文从投影寻踪降低高维数据集维数的角度出发,将投影寻踪应用于多、高光谱遥感影像分析,主要开展了如下几方面的研究工作:
     1、投影寻踪是通过寻找有意义的低维投影以揭示高维数据内部结构特征。本文在分析投影寻踪的数学思想和求解方法基础上,把投影寻踪方法与光谱影像处理分析中降低数据维数的分析方法进行有机的结合。发展了基于全局优化算法(遗传算法、动力演化算法)的投影寻踪方法在多、高光谱影像数据分析中的应用。
     2、分析了多、高光谱影像处理和分析时波段选择的必要性和可能性。通过分析多、高光谱影像数据本身具有波段间相关性高的特点,把多、高光谱影像的波段选择看作通用多元数据分析中的变量选择(特征集的选择),采用基于自适应子空间分解的波段选择方法来实现波段选取。并通过波段选取后的多、高光谱影像分类试验来验证基于自适应子空间分解的波段选择方法的优点和有效性。
     3、主成分分析方法在多、高光谱影像处理和分析中得到了广泛的应用,本文在分析主成分分析投影寻踪思想的基础上,通过比较投影寻踪方法与一般解析方法求解样本数据主成分的试验,验证两种求解方法在本质上的一致性。在寻找最佳投影方向上,发展了标准遗传算法,提出基于动力演化的优化算法。选择信息散度作为投影指标,并通过模拟数据和多光谱影像数据试验表明了该方法在提取高维数据集非正态性结构特征方面的优势。
     4、在分析线性光谱混合模型应用于遥感影像混合像元分离的基础上,把多、高光谱影像当作观测信号,看作由各个独立信号源混合而成。根据观测混合信号比各个独立信号更接
The earth observation technology is critical for national future sustainable development. With the tendencies of "3-High" (high spatial resolution, high frequency resolution and high spectral resolution), Spectral remote sensing has become one major technique to achieve earth surface information and has become more and more important for our lives and social. In processing and analyzing multi-spectral (Hyper-spectral) images the sufficient spectral information of images provide beneficial conditions to detect and recognize objects. But they also present more requests on processing and analyzing multi-spectral (Hyper-spectral) remote sensing images. Nowadays the researches of Hyper-spectral remote sensing images are active and have achieved considerable successes. The application of new theories and methods on processing and analyzing multi-spectral (Hyper-spectral) remote sensing images should have significant meanings.Projection pursuit is a new technology to process and analysis high dimensional data. By designing projection index it projects high dimensional data set to low dimensional space to reveal the internal structures and characters of high dimensional dataset. In processing multi-spectral (Hyper-spectral) remote sensing images, an important idea is to reduce data dimension and data amount and at the same time to retain as more information as possible which contained in the original data sources. This just coincides with the heart spirit of Projection Pursuit. This paper applies Projection Pursuit to the analysis of multi-spectral (Hyper-spectral) remote sensing images. The research work is represented as follows.1. Projection Pursuit is applied to explore the potential structures and characters of the multi-dimension data through projecting the high dimensional data set into a low dimensional data space while retaining the information of interest. While in processing and analyzing spectral images a common used method is to reduce the data dimension. Combined the two methods reasonably this paper developed the Projection Pursuit method based on global optimize algorithm used to the analysis of multi-spectral (Hyper-spectral) images.2. Analyzed the significance and possibility of band selection in processing multi-spectral (Hyper-spectral) remote sensing images. Because of the character of strong correlations among spectral bands, the bands selection of spectral images can be seemed as variable selection of general multivariate data analysis. This paper
    developed the band selection method based on self-adaptive subspace decomposition. The advantages and effectiveness of this algorithm are verified by the experiments on classification of multi-spectral (Hyper-spectral) remote sensing images.3. Principal Component Analysis (PCA) is used widely in multi-spectral (Hyper-spectral) remote sensing image processing and analyzing. There are two methods to compute PCA. One is Projection Pursuit which based on genetic algorithm to compute PCA. The other uses the general analytical method to compute PCA. After analyzed the general meaning of Projection Pursuit and compared the two methods this paper developed the standard genetic algorithm and proposed optimize algorithm based on dynamical evolution to finding the optimal projection index. Let the information divergence as projection index, the advantages of this method on extraction high dimensional non-normal distribution data set are proved by the experiments on analog data and multi-spectral images data.4. Linear spectral mixture model is a most used method on mixture pixel separation. This paper assumed the multi-spectral (Hyper-spectral) remote sensing image as observed signals and was generated by mixture of various independent signals. Because the mixture signals are more close to normal distribution than each independent signal this paper proposed mixture pixel non-supervised classification based on Independent Component Analysis (ICA). And negative entropy is used as estimation standard of dependent. The method is successfully used on analog data separation and multi-spectral images non-supervised classification.5. Based on the band selection results, the projection index function of high order statistics is selected and designed through Projection Pursuit based on genetic algorithm (dynamical evolution algorithm). This paper developed the zero threshold detection method to detect the abnormity objects in hyper-spectral images. At last the computation advantages of Projection Pursuit based on dynamical evolution algorithm is validated by experiments.Projection Pursuit technology combined the Projection Pursuit method with the field of processing and analyzing multi-spectral (Hyper-spectral) remote sensing images. There are a lot of theme should be researched in the future, including spectral matching, mixture spectral separation, spectral classification, spectral data compression and spectral object recognition etc.
引文
[1] 王之卓,摄影测量原理,北京:测绘出版社,1979
    [2] 王之卓,摄影测量原理续编,北京:测绘出版社,1986
    [3] 李德仁,周月琴,金为铣,摄影测量与遥感概论,北京:测绘出版社,1999
    [4] 孙家炳,舒宁,关泽群,遥感原理、方法和应用,北京:测绘出版社,1997
    [5] 陈述彭等,遥感信息机理研究,北京:科学出版社,1998,pp.139-145
    [6] 浦瑞良,宫鹏,高光谱遥感及其应用,北京:高等教育出版社,2000
    [7] 周成虎等,遥感影像地学理解与分析,北京:科学出版社,2001
    [8] 宁津生,陈军,晁定波,数字地球与测绘,北京:清华大学出版社,2001
    [9] 梅安新等,遥感导论,北京:高等教育出版社,2001
    [10] 张祖勋等,数字摄影测量学[M],武汉测绘科技大学出版社,1996
    [11] 常迥,信息理论基础,北京:清华大学出版社,1993
    [12] 张尧庭,方开泰,多元统计分析引论,北京:科学出版社,1999
    [13] 方开泰,实用多元统计分析,上海:华东师范大学出版社,1986
    [14] 周光亚,多元统计分析方法,北京:地质出版社,1982
    [15] 胡国定,张润楚,多元数据分析方法,天津:南开大学出版社,1989
    [16] 安希忠,林秀梅,实用多元统计分析方法,长春:吉林科学技术出版社,1992
    [17] 童庆禧,遥感信息传输及其成像机理研究,中国科学院(院刊),(2),2002
    [18] 舒宁,成像光谱仪影像的几种处理方法,武汉测绘科技大学学报,22(4),1997
    [19] 舒宁,国内外有关成像光谱数据影像分析方法研究,国土资源遥感,(1):pp.16~19,1998
    [20] 朱述龙,张占睦,遥感图象获取与分析,北京:科学出版社,2000
    [21] 张永生,遥感图象信息系统,北京:科学出版社,2000
    [22] 郭祖军,张友炎,李永铁,世界航天遥感技术现状、发展趋势及油气遥感应用方向,国土资源遥感,(2):PP.1~4,2000
    [23] 舒宁,应加强多光谱图像理解理论与方法的研究,国土资源遥感,(3):pp.28~30,1999
    [24] 吴培中,星载高光谱成像光谱仪的特性与应用,国土资源遥感,(3):pp.31-33,1999
    [25] 李爽,丁圣彦,许叔明,遥感影像分类方法比较研究,河南大学学报(自然科学版),32(2):pp.69~73,2002
    [26] 王先华,王乐意,乔延利,遥感中的高光谱技术及应用,光电子技术与信息,14(6):pp.7~10,2001
    [27] 陈秋晓,骆剑承,周成虎,基于多特征的遥感影像分析——一个新的视角,国土资源遥感,(1):pp.5~7,2003
    [28] 马毅,张杰,张汉德,刘宇中,中国海洋航空高光谱遥感应用研究进展,海洋科学进展,24(2):pp.94~97,2002
    [29] 孙家炳,遥感原理与应用,武汉大学出版社,2003
    [30] 成平,李国英,投影寻踪——类新兴的统计方法,应用概率统计,2(3):pp.8-12,1986
    [31] 陈忠琏,多元数据分析的PP方法,数理统计与应用,1(1):pp.103~124,1986
    [32] 李祚泳,投影寻踪的理论与应用进展,大自然探索,1998,17 (63):pp.47~50
    [33] 李国英,什么是投影寻踪,数理统计与管理,5(4):pp.21~23,1986
    [34] 成平,投影寻踪经验分布的极限分布,应用概率统计,3(1):pp.8~21,1987
    [35] 田铮,肖华勇,声呐目标信号特征量的投影寻踪压缩与目标分类,西北工业大学学报,15 (2):pp.319~321,1997
    [36] 王顺久,张欣莉,丁晶,侯玉,投影寻踪聚类模型及其应用,长江科学院院报,19(6):pp.53~55,2002
    [37] 王顺久,张欣莉,侯玉,丁晶,投影寻踪聚类分析在环境质量综合评价中的应用,重庆环境科学,24(3):pp.74~76,2002
    [38] 张学上,统计学习理论的本质,北京:清华大学出版社,2000
    [39] 边肇祺,张学工,模式识别,北京:清华大学出版社,1999
    [40] 邓新民,李祚泳,投影寻踪回归技术在环境污染预测中的应用,中国环境科学,17(4):pp.353~356,1997
    [41] 于扬,投影寻踪回归模型及其在降水预测中的应用,成都气象学院学报,15(3):pp.213~217,2000
    [42] 高玲,王淑英,林雪飞,投影寻踪回归模型在水文预报中的应用,黑龙江水专学报,27(2):pp.16~17,2000
    [43] 田铮,刘亚莉,肖华勇,投影寻踪学习网络分类及其应用,西北工业大学学报,17(4):pp.572~577,1999
    [44] 骆晨钟,张志强,邵惠鹤,投影寻踪学习网络及其在控制系统中的应用展望,上海交通大学学报,33 (5):pp.631~634,1999
    [45] 李祚泳,投影寻踪技术及其应用进展,自然杂志,19(4):pp.224~226,1997
    [46] 崔恒建,陈广雷,带有误差变量的偏度和峰度正态性检验,北京师范大学学报(自然科学版),vol.36,no.1,pp.9~13,2000
    [47] 张文修,粱怡,遗传算法的数学基础,西安:西安交通大学出版社,1999
    [48] 张欣莉,丁晶,金菊良,基于遗传算法的投影寻踪回归及其在洪水预报中的应用,水利学报,(6):pp.46~48,2000
    [49] 吴青萍,一种新的优化方法—遗传算法原理及其应用,常州信息职业技术学院学报,1 (2):pp.53~55,2002
    [50] 唐世浩,朱启疆,闫广建,周晓东,遗传算法及其在遥感线性、非线性模型反演中的应用效果分析,北京师范大学学报(自然科学版),38(2):pp.266~272,2002
    [51] 黄洪钟,赵正佳,姚新胜,冯春,遗传算法原理、实现及其在机械工程中的应用研究与展望,机械设计,(3):pp.1~4,2003
    [52] 熊兴华,钱曾波,王任享,遗传算法与最小二乘法相结合的遥感图像子像素匹配,测绘学报,30(1):pp.54~59,2001
    [53] 张欣莉,投影寻踪及其在水文水资源中的应用,[学位论文],四川:四川大学,2000
    [54] 王春峰,李汶华,商业银行信用风险评估:投影寻踪判别分析模型,管理工程学报,14(2):pp.43~46,2000
    [55] 林丹,李敏强,寇纪凇,基于实数编码的遗传算法的收敛性研究,计算机研究与发展,37 (11):PP.1321~1327,2000
    [56] 周育人,李元香,王勇,一种有效的实数编码遗传算法,武汉大学学报(理学版),49(1):pp.39~43,2003
    [57] 叶正华,谢勇,郑金华,一种改进的基于实数编码的遗传算法,湘潭大学自然科学学报,24(3):pp.32~35,2002
    [58] 叶晨洲,杨杰,黄欣,陈念贻,实数编码遗传算法的缺陷分析及其改进,计算机集成制造系统,7(5):pp.28~41,2001
    [59] 雷德明,多维实数编码遗传算法,控制与决策,15(5):pp.239~241,2000
    [60] 李建明,谌黔鸣,n维空间中可连续变化的标准正交基的构造与投影追踪,贵州工学 院学报,25 (6):pp.24~28,1996
    [61] 孙立新,高文,基于粗糙集和遗传算法超光谱波段集合整体缩减,武汉测绘科技大学学报,24(4),pp.307~310,1999
    [62] 陈国良,王煦法,庄镇泉,王东生,遗传算法及其应用,北京:人民邮电出版社,1996
    [63] 易尧华,梅天灿,秦前清,龚健雅,高光谱影像中人工目标非监督提取的投影寻踪方法,测绘通报,(2):pp.7~8,2004
    [64] 刘次华,万建平,概率论与数理统计,北京:高等教育出版社,1999
    [65] 姜小光,唐伶俐,王长耀,王成,高光谱数据的光谱信息特点及面向对象的特征参数选择——以北京顺义区为例,遥感技术与应用,17(2):pp.59-64,2002
    [66] 刘建平,赵英时,孙淑玲,高光谱遥感数据最佳波段选择方法试验研究,遥感信息,(1):pp.7~11,2001
    [67] 程乘旗,马廷,王立明,用于植被冠层分析的高光谱波段的组合方法研究,地理学与国土研究,18(2):pp.23~25,2002
    [68] 罗音,舒宁,基于信息量确定遥感图像主要波段的方法,城市勘测,(4):pp.28~32,2002
    [69] 刘建平,赵英时,高光谱遥感数据解译的最佳波段选择方法研究,中国科学院研究生院学报,16(2):pp.155~158,1999
    [70] 姜小光,王长耀,成像光谱数据的光谱信息特点及最佳波段选择——以北京顺义区为例,干旱区地理,23(3):pp.214~220,2000
    [71] 常红,王序铨,森林资源遥感图像分类过程中的波段选择与参数测算,西北师范大学学报(自然科学版),34(4):pp.85~89,1998
    [72] 王国明,孙立新,高光谱遥感影像优化分类波段选择,东北测绘,vol.22,no.4,1999
    [73] 沈润平,王人潮,赵小敏,最佳特征影像组合综合选择指数的研究,华南农业大学学报(自然科学版)23(2):pp.18~21,2002
    [74] 谷延峰,张晔,基于自动子空间划分的高光谱数据特征提取,遥感技术与应用,18(6):pp.384~387,2003
    [75] 刘卓,易东云,投影寻踪方法与高光谱遥感图像数据特征提取的研究,数学理论与应用,23 (1):pp.85~89,2003
    [76] 熊桢,高光谱遥感图象分类技术研究,[学位论文],北京:中国科学院遥感所,2000
    [77] 张崇甫,陈述云,成分数据土成分分析及其应用,数理统计与管理,15(3):pp.12~14,1996
    [78] 李本纲,陶澍,林健枝,程寿全,地理信息系统与主成分分析在多年气象观测数据处理中 的应用,地球科学进展,15(5):pp.509~515,2000
    [79] 王松,夏绍玮,一种鲁棒主成分分析(PCA)算法,系统工程理论与实践,(1):pp.9~13,1998
    [80] 彭复员,周鑫杰,胡颖嵩,基于K-L变换的红外图像弱小目标检测与分析,红外与毫米波学报,20(3):pp.238~240,2001
    [81] 顾洋,王庆林,徐立新,基于Wiener滤波、K-L变换和BP网络的数字识别,北京理工大学学报,22(1):pp.113~116,2001
    [82] 延昊,王长耀,牛铮,姜小光,王汶,遥感植被指数对多时相AVHRR数据主成分分析的影响,遥感学报,6(1):pp.30~34,2002
    [83] 孙即祥等,现代模式识别,长沙:国防科技大学出版社,1999
    [84] 刘志刚,支撑向量机在光谱遥感影像分类中的若干问题研究,武汉大学[博士学位论文],2004
    [85] 郭一平,用Kohonen神经网络对高光谱分辨率图像进行无监督分类的研究,红外与毫米波学报,13 (6):pp.409~413,1994
    [86] 刘建贵,张兵,郑兰芬,童庆禧,成像光谱数据在城市遥感中的应用研究,遥感学报,4(3):pp.224~227,2000
    [87] 王晋年,张兵,刘建贵,童庆禧,郑兰芬,以地物识别和分类为目标的高光谱数据挖掘,中国图象图形学报,4 (11):pp.957~963,1999
    [88] 申广荣,王人潮,植被高光谱遥感的应用研究综述,上海交通大学学报(农业科学版),19 (4):pp.315~320,2001
    [89] 张钧萍,张晔,周廷显,成像光谱技术超谱图像分类研究现状与分析,中国空间科学技术,2001(1)
    [90] 刘政凯,岑曙炜,成象光谱遥感图象的有限光谱混合分析[J],环境遥感,11(1):pp.32~37,1996
    [91] 吴小培,冯焕清,周荷琴,王涛,基于独立分量分析的图象分离技术及应用,中国图象图形学报,6(2):pp.133~137,2001
    [92] 杨福生,洪波,唐庆玉,独立分量分析及其在生物医学工程中的应用,国外医学生物医学工程分册,23(3):pp.129~134,2000
    [93] 吴小培,冯焕消,周荷琴,王涛,独立分量分析及其在脑电信号预处理中的应用,北京生物医学工程,20(1):pp.35~37,2001
    [94] 丁佩律,梅剑锋,张立明,康学雷,基于独立分量分析的人脸自动识别方法研究,红外与毫米波学报,20(5):pp.361~364,2001
    [95] 彭煊,刘金福,王炳锡,基于独立分量分析的语音增强,信号处理,18(5):pp.477~479,2002
    [96] 蔡择林,样本均值与样本方差相互独立的充要条件,湖北师范学院学报(自然科学版),21(1):pp.85~87,2001
    [97] 王雷,冯学智,都金康,遥感影像分类与地学知识发现的集成研究,地理研究,20(5):pp.637~643,2001
    [98] 孙立新,罗高平,张怡梅,遥感影像分类的归纳学习方法,测绘工程,7 (3):pp.39~43, 1998
    [99] 贾永红,人工神经网络在多源遥感影像分类中的应用,测绘通报,(7):pp.7~8,2000
    [100] 陈玉敏,基于神经网络的遥感影像分类研究,测绘信息与工程,27(3):pp.6~8,2002
    [101] 刘政凯,林峰,顾军捷,遥感图象中波谱混迭象元分离方法的研究,中国科学技术大学学报,31 (2):PP.189~195,2001,
    [102] 许珺,李策,黄绚,应用光谱混合分析法从SPOT影像提取槟榔树专题信息,遥感技术与应用,15(1):pp.55~58,2000
    [103] 李智勇,郁文贤,匡纲要,吴昊,基于高维几何特性的高光谱异常检测算法研究,遥感技术与应用,18 (6):pp.55~58,2003
    [104] 潘建刚,赵文吉,宫辉力,遥感图像分类方法的研究,首都师范大学学报(自然科学版),25 (3):pp.86~91,2004
    [105] James M. Lattin, J. Douglas Carroll, Paul E. Green, Analyzing Multivariate Data, BeiJing: China Machine Press, 2003
    [106] L. Bruce, C. Koger, J. Li, Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction, IEEE Transactions on Geoscience and Remote Sensing, vol. 40, no. 10, pp. 2331~2338, October. 2002
    [107] Shao-Shan Chiang, Automatic Target Detection and Classification for Hyperspectral Imagery, Doctor thesis, University of Maryland, 2001
    [108] C-I Chang, H. Ren, An experiment-based quantitative and comparative analysis of hyperspectral target detection and image classification algorithms, IEEE Trans. Geosci. Remote Sensing vol. 38, pp. 1044~1063, March. 2000
    [109] C-I Chang, H. Ren, S. SChiang, Real-time processing algorithms for target detection and classification in hyperspectral imagery, IEEE Trans. Geosci. Remote Sensing vol. 39, no. 4, April. 2000
    [110] Shao-Shan Chiang, Chein-I Chang, Target subpixel detection for hyperspectral imagery using projection pursuit, EOS/SPIE Symposium on Remote Sensing, Conference on Image and Signal Processing for Remote Sensing V, Florence, Italy, September. 1999
    [111] H. Hanna Tran Haskett, Spectral-Spatial Automatic Target Detection of Small Targets Using Hyperspectral Imagery, Doctor thesis, University of Colorado, 2000
    [112] Shao-Shan Chiang, Chein-I Chang, Irving W. Ginsberg, Unsupervised Target Detection in Hyperspectral Images Using Projection Pursuit, IEEE Transactions on Geoscience and Remote Sensing, Vol. 39, No. 7, 2001
    [113] P. Comon, Independent component analysis, A new concept?, Signal Processing, Vol. 36, pp. 287~314, 1994
    [114] J. H. Friedman, J. W. Turkey, A projection pursuit algorithm for exploratory data analysis, IEEE Transaction on Computer, vol. 23, pp. 881~889, 1974
    [115] J. C Harsanyi, Detection and Classification of Subpixel Spectral Signatures in Hyperspectral Image Sequences, Doctor thesis, University of Maryland, 1993
    [116] Chein-I Chang, Shao-Shan Chiang, Irving W. Ginsberg, Anomaly Detection in Hyperspectral Imagery, Geo-Spatial Image and Data Exploitation Ⅱ, Proceedings of SPIE Vol.4383, pp.43—50, 2001
    [117] Christian Posse, Projection pursuit exploratory data analysis, Computational Statistics & Data Analysis, 20 (1):pp.669-687, 1995
    [118] J.H.Friedman, Exploratory projection pursuit, J.Amer.Statist.Assoc, Vol.82, pp.249~266, 1987
    [119] Guy Philip Nason, Design and choice of projection indices, Doctor thesis, University of Bath, 1992
    [120] Yaohua Yi, ChanghuiYu, QianqingQin, Jianya Gong, Projection Pursuit and Its Applications in Hyperspectral Imagery Analysis, The 3rd International Symposium on MIPPR, Proceeding of SPIE, vol.5286, pp. 704~708, 2003
    [121] Yaohua Yi, Jianya Gong, Guoliang Wang, Hue Adjustment Method of Large-scale Image Database, ISPRS conference on Integrated Systems for Spatial Data Production、 Custodian and Decision Support, pp.565~568, Xi'an, August.2002
    [122] P.J.Huber, Projection pursuit, Ann.Statist , Vol.13, No.2, pp.435~475 , 1985
    [123] J.CHarsanyi, Chein-I Chang, Hyperspectral image Classification and dimensionality reduction: an orthogonal subspace projection, IEEE Trans.Geosci. Remote Sensing vol.32, pp.779~785, 1994
    [124] Mehmet M. Dundar , David Landgrebe, Toward An Optimal Analysis of Hyperspectral Data, PhD Thesis and School of Electrical & Computer Engineering Technical Report TR-ECE 03-07 May 2003
    [125] Qiong Zhang Jackson , David Landgrebe, Design Of An Adaptive Classification Procedure For The Analysis Of High-Dimensional Data With Limited Training Samples, PhD Thesis and School of Electrical & Computer Engineering Technical Report TR-ECE 01-5, December 2001
    [126] Clark Brumbley, Chein-I Chang, An unsupervised vector quantization-based subspace projection approach to mixed pixel detection and classification in unknown background for remotely sensed imagery, Pattern Recognition, vol.32, pp.1161~1174, 1999
    [127] C.-I Chang, Hyperspectral Imaging: Subpixel Detection and Classification, Kluwer Academic Publishers,2002
    [128] C.-I Chang, Q. Du, Interference and noise-adjusted principal components analysis, IEEE Trans. Geo sci Remote Sensing, vol. 37, p. 2387, Sept. 1999
    [129] A. Ifarraguerri, C.-I Chang, Projection pursuit analysis of hyperspectral scenes, Proc. SPIE, vol.3372, pp. 51~59, 1998
    [130] Bachmann C.M, Donato T.F, An information theoretic comparison of projection pursuit and principal component features for classification of Landsat TM imagery of central Colorado, International Journal of Remote Sensing, vol.21 no.15, pp.2927~2935, October.2000
    [131] Jimenez, Classification of Hyper-dimensional data based on feature and decision fusion approaches using projection pursuit, Majority and Neural networks, IEEE Trans.Geosci. Remote Sensing vol.37, no.3, pp.1360~1366, 1999
    [132] Hsuan Ren, Chein-I Chang, A generalized orthogonal subspace projection approach to multispectral image classification, EUROPTO Conference on Image and Signal Processing for Remote Sensing, Barcelona, Spain, September. 1998
    [133] E.A. Ashton, A.Schaum, Algorithms for detection of sub-pixel target in Multispectral imagery, Photongrammetric Engineering and Remote Sensing, pp.723~731, July. 1998
    [134] M.C.Jones, Robin Sibson, What is Projection Pursuit, J.R Statist Soc, pp.1~36, 1987
    [135] C-I Chang, Q.Du, T.S Sun, M.L.G.Althouse, A joint band prioritization and band decorrelation approach to band selection for hyperspectral image classification, IEEE Trans.Geosci. Remote Sensing vol.37, pp.2631~-2641, June.1999
    [136] Jimenez , Landgrebe, Projection Pursuit in High Dimensional Data Reduction: Initial Conditions, Feature Selection and the Assumption of Normality, 1995.
    [137] Li YuanXiang, Zou XiuFen, Kang Lishan and Zbigniew Michalewicz. A New Dynamical Evolutionary Algorithm Based on Statistical Mechanics, J.Comput. Sci & Technol, vol.18 pp.361-368 May.2003
    [138] C-I Chang, D.Heinz, Subpixel spectral detection for remotely sensed images, IEEE Trans.Geosci. Remote Sensing vol.38, pp.1144~-1159, May.2000
    [139] A.Ifarragaerri, C.-I.Chang, Multispectral and hyperspectral image Analysis with projection pursuit, IEEE Trans.Geosci. Remote Sensing vol.38, pp.2529~2538, Nov.2000
    [140] C.-I Chang, S.-S. Chiang, Anomaly detection and classification for hyperspectral imagery, IEEE Trans. on Geoscience and Remote Sensing, vol.40, No. 6, pp. 1314~1325, June. 2002
    [141] C.-I Chang, Hyperspectral Imaging: Techniques for Spectral Detection and Classification, NewYork, Kluwer, 2001
    [142] Richards J.A, Remote Sensing Digital Image Analysis、 An Introduction, 3rd Edition, NewYork: Springer 1999.
    [143] L.O.Jimenez, D.A.Landgrebe, Hyperspectral data Analysis and supervised feature reduction via projection pursuit, IEEE Trans, Geosci. Remote Sensing, vol.37, pp.2653~2667, Nov.1999
    [144] D.E.Golderg, Genetic Algorithms in Search Optimization and Machine Learning, Reading, MA:Addison-WesIey, 1989
    [145] Shao-S Chiang, Chein-I Chang, Ginsberg, Unsupervised Hyperspectral Image Analysis Using Independent Component Analysis. Geoscience and Remote Sensing Symposium, 2000. Proceedings. vol.(7):pp.3136~3138
    [146] Daniel C.Heinz, Chein-I Chang, Fully constrained least squares linear spectral mixture analysis method for material quantification in Hyperspectral Imagery. Geoscience and Remote Sensing, IEEE Transactions 2001 Vol(39): pp. 529~545
    [147] C-I. Chang, An information theoretic-based approach to spectral variability, similarity and discriminability for hyperspectral image analysis, IEEE Trans. Inform. Theory, vol. 46, pp. 1927-1932, Auguest. 2000.
    [148] M.E.Bullock, T.J.Patterson, S.R.Fairchild, Design of optimal transformation for multispectral change detection using projection pursuit, Proc.SPIE, vol.2231, pp.91~102, 1994
    [149] S- S. Chiang, C-I.. Chang, I-W. Ginsberg, Unsupervised hyperspectral image analysis using independent components analysis, IEEE 2000 Int. Geoscience and Remote Sensing Symp, Honolulu, July. 2000.
    [150] Daniel C. Heinz , Constrained Least Squares Linear Mixture Analysis for Detection, Classification and Quantification, Doctor thesis, University of Maryland, 2001
    [151] Cover T.M, Thomas J.A, Elements of Information Theory, New York: Wiley, 1991
    [152] Jimenez, Landgrebe, Supervised classification in high dimensional space: Geometrical、Statistical、 and Asymptotical properties of multivariate data, IEEE Transactions on Systems, vol.28, no.1, pp.39~53, 1998
    [153] D. Heinz and C.-I Chang, C.-I Chang, Unsupervised fully constrained least squares linear mixture analysis for multispectral imagery, IEEE 2000 International Geoscience and Remote Sensing Symp, Hawaii, USA, July . 2000
    [154] C.-I Chang, D. Heinz, Constrained subpixel target detection for hyperspectral imagery, SPIE Conf. on Signal and Data Processing of Small Targets 2000, Orlando, FL, pp. 35~45, April .2000
    [155] D.Dasgupta, Z.Michalewicz, Evolutionary Algorithmsin Engineering Applications, Berlin, Germany:Springer-Verlag, 1997
    [156] C.-I Chang, T.-L. E. Sun, M. L. G. Althouse, An unsupervised interference rejection approach to target detection and classification for hyperspectral imagery, Opt. Eng, vol. 37, no. 3, pp. 735-743, 1998
    [157] A.A. Green, M.Berman, P.Switzer, M.D.Craig, A transformation for ordering multispectral data in terms of image quality with implications for noise removal , IEEE Trans. Geosci. Remote Sensing, vol.26, pp. 65-74, 1988
    [158] C.-I Chang, Hyperspectral and Multispectral Imaging:Subpixel Detection and Mixed Pixel Clasiification, http://www.ubc.edu/rssipl/subpixel.htm
    [159] X.Zhao, Subspace Projection Approaches to Multispectral/Hyperspectral Image Classification Using Linear Spectral Mixture Modeling, Master thesis, University of Maryland Baltimore County, May. 1996
    [160] Dennis B.Trizna, Projection pursuit classification of Multiband Polarimetric SAR land Images, IEEE Trans. Geosci. Remote Sensing, vol. 26, pp. 2380~2386, Nov.2001
    [161] Thawonmas .R, Cao.J, Robust Independent Component Analysis Algorithms for Projection Pursuit, pp.917~921, 1999
    [162] Dimitris Manolaks, Hyperspectral Subpixel Target Detection Using the Linear Mixing Model, IEEE Trans. Geosci. Remote Sensing, vol.39, no.7, pp. 1392~1409, July.2001
    [163] C.-I Chang, C. Brumbley, An orthogonalization target signature space projection approach to image classification in unknown background, 31 st Conference on Information Sciences and Systems , The Johns Hopkins University, March, pp. 174-178, 1997
    [164] C. Brumbley, C.-I Chang, A Kalman filtering approach to hyperspectral image classification and signature abundance estimation, 31st Conference on Information Sciences and Systems , The Johns Hopkins University, March, pp. 179-184, 1997
    [165] Hsuan Ren, Chein-Ichang, A generalized Orthogonal Subspace Projection Approach to Unsupervised Multispectral Image Classification, IEEE Trans. Geosci. Remote Sensing, vol. 38. pp. 2515~2528, Nov.2001
    [166] Luis O.Jimenez, David A.Landgrebe, Hyperspectral Data Analysis and Supervised Feature Reduction Via Projection Pursuit, IEEE Trans. Geosci. Remote Sensing, vol.37, pp. 2653~2667, Nov.1999
    [167] E. Oja, The nonlinear PCA learning rule in independent component analysis, Neurocomputing, vol.17, no.1, 1997
    [168] C.-I Chang, Further results on relationship between spectral unmixing and subspace projection, IEEE Trans on Geoscience and Remote Sensing, vol.36, pp. 1030~1032, May. 1998
    [169] Rickard L, HYDICE: An Airborne System for Hyper-spectral image[J], SPIE Vol.1937, 1993
    [170] Qiong Zhang, Jackson, David Landgrebe, Design Of An Adaptive Classification Procedure For The Analysis Of High-Dimensional Data With Limited Training Samples[D]. PhD Thesis and School of Electrical & Computer Engineering Technical Report TR-ECE, December 2001
    [171] G. Eslava, F.H.C, Marriott, Projection indices and multimodality for mixtures of normal distributions, Statistics & Probability Letters . 43(2): pp.289~297, 1999
    [172] T.M. Tu, C.-H. Chen, J-L. Wu, C.-I Chang, A fast two-stage classification method for high dimensional remote sensing data, IEEE Trans on Geoscience and Remote Sensing, vol. 36, pp. 182~191, 1998
    [173] Bachmann C.M, T.F.Donato, Mixtures of Projection Pursuit Models: An Automated Approach to Land-cover Classification in Landsat Thematic Mapper Imagery, Processings of International Geoscience and Remote Sensing Symposium, Hamburg Germany, pp.339~341, June.1999
    [174] MacDonald, D.etal, Kernel Exploratory Projection Pursuit, Fourth International Conference on knowledge-Based Intelligent Engineering Systems& Allied Technologies, pp.193~196, 2000
    [175] Agustin Ifarraguerri, Chein-I Chang, Unsupervised hyperspectral image analysis with projection pursuit, IEEE Transactions on Geoscience and Remote Sensing, vol.38: 2529~2538, 2000
    [176] Hongtao Du, Hairong Qi, XiaolingWang, Rajeev Ramanath, Band Selection Using Independent Component Analysis for Hyperspectral Image Processing[A] , Applied Imagery Pattern Recognition Workshop, Proceedings[C], pp.93~ 98,2003
    [177] Hall P, Li K, On Almost linearity of low dimensional projection from high dimensional data, The Annals Of Statistics, 21 (2), 1993
    [178] MehmetM, Dundar, David Landgrebe, Toward An Optimal Analysis of Hyperspectral Data[D], PhD Thesis and School of Electrical & Computer Engineering Technical Report TR-ECE, May 2003
    [179] Hyvarinen A , Independent component analysis: A tutorial http://www.cis.hut.i/proiects/ica/IJCNN99/tutorial2.html

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700