胶体PbSe量子点掺杂液芯光纤的发光性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胶体量子点材料是近几年来科研工作者们所关注的热点材料。因为与相应的体材料相比,它具有更为优异的电学和光学性质。例如:具有较宽的吸收光谱、较窄的发射光谱、较高的量子产额、较好的光学稳定性等。另外,由于量子限域效应,量子点吸收和发光光谱具有很强的尺寸依赖特性。而在众多的量子点材料中,PbSe量子点由于具有较大的玻尔半径(大约是46nm)、较强的量子限域效应和较宽的辐射范围等优异性质,从而获得越来越多的关注。另外,光纤在光纤通信方面,具有容量大,衰减小,体积小和防干扰性能好等优点;在光纤传感方面具有结构紧凑、灵敏度高等优点,从而受到广泛关注。本论文就将PbSe量子点和光纤结合起来,成功的制作成了PbSe量子点液芯光纤。研究PbSe量子点的荧光在光纤中传导后的输出光谱特性,我们叫做导向的自发辐射(guided spontaneous emission,简称GSE)。包括在光纤参数以及外界温度变化下的光谱特征。理论上建立了模型,在三能级系统近似下,得到了光在光纤中的功率演化方程,利用数值模拟方法得到了与实验数据相一致的结果,这为实验结果提供了一定的理论支持。最后,研究了在外界温度变化情况下的GSE光谱性质。这些研究在光纤通信方面、光纤放大器以及光纤传感器的研制方面具有一定的应用前景。论文主要内容如下:
     一、我们采用胶体化学法合成了不同尺寸的胶体PbSe量子点,并进行了TEM,XRD表征,其荧光量子产额可以达到89%。最后我们测量了不同尺寸的量子点的吸收(absorption,简称A b s)光谱以及发光(photoluminescence,简称PL)光谱,证实了量子点的禁带宽度是尺寸依赖的。
     二、我们将PbSe量子点中光的吸收与辐射过程近似为一个三能级系统,通过三能级系统的速率方程和光在光纤中的传播方程,建立了理论模型。模拟计算了在不同光纤参数影响下的光谱特征,这些参数包括光纤长度、光纤直径、量子点掺杂浓度和泵浦功率。最为重要的是,我们在模拟计算中考虑到了多种因素的影响,例如非辐射的俄歇复合、量子点的发光效率、光纤的模式泄露等。最后将理论结果与法国Hreibi小组的实验结果进行对比,得到了很好的一致,证明了我们理论模型的实用性。
     三、我们开展了对1.55μm通信窗口的量子点液芯光纤的研究。为此我们选用了尺寸为4.5nm的PbSe量子点。将合成好的PbSe量子点溶液灌装到空芯光纤中,封好。设计了实验方法并搭建光路,测试了在不同光纤参数影响下的GSE光谱,这些参数包括光纤长度、量子点掺杂浓度以及泵浦功率。另外,我们还对比了同样的PbSe量子点分别溶于甲苯和四氯乙烯溶剂中,做成的液芯光纤的GSE光谱的不同性质,详细分析了造成这种结果的主要原因。最后利用第四章建立的理论模型进行了理论模拟,与实验符合得很好。
     四、我们研究了两种尺寸的PbSe量子点液芯光纤在外界温度变化情况下的GSE光谱特征。包括光谱的峰值位置和峰值强度对温度的变化情况。最后从理论和实验的角度分析了产生这种现象的原因。这项研究在光纤温度传感器的研制方面具有一定的应用价值。
Colloidal PbSe quantum dot is a hot material of scientific research workers inrecent years just because it has unique electrical and optical properties comparedwith the corresponding bulk materials. For example, they have relatively broadabsorption spectrum, narrow emission spectrum, high photoluminescence quantumyield (PL QY) and well optical stability. What’s more, the absorption andphotoluminescence (PL) of QDs present strong size dependent properties due tothe quantum confinement effect. Among many types of QDs, PbSe QDs have beengaining increased attention because of PbSe’s large Bohr radius (about46nm),strong size confinement effect, and tunable emission range. In addition, in opticalfiber communication, the fiber has many advantages such as large capacity, smallfiber loss, small volume and good anti jamming performance; in the aspect ofoptical fiber sensing, the fiber has advantages of compact structure and highsensitivity. So the fiber attracted much attention. This paper combined PbSe QDsand fiber, and made into PbSe QDs liquid-core fiber successfully. Studied thespectral (we called the GSE spectra (guided spontaneous emission)) properties ofthe PL of PbSe QDs after transmitted through the fiber. Included the spectralproperties when the fiber parameters and the temperature changes. Under the threelevel system approximation, we established the theoretical model and obtained theevolution equation of the optical power in the fiber. The result is consistent withthe experimental data which provides certain theoretical support for the experiment.Finally, the temperature depended GSE properties were studies in detail. Theresearch has a certain application perspective in the aspect of fiber communications,fiber amplifiers and fiber sensors. Our main work is arranged as follows.
     1. a series of PbSe QDs with different size was synthesized using colloidalchemical synthesis method. The PL QY can reach to89%. The absorption (Abs) and photoluminescence (PL) spectra were recorded for different size QDs. Theband gap of PbSe QDs were approved to be size depended.
     2. the absorption and emission in the PbSe QDs can be approximated to be athree level system. The theory model was established through solving the rateequations and the power propagation equations in the fiber. Simulated theproperties of the spectra under the influence of fiber parameters, included the fiberlength, the fiber diameter, the doping concentration and the pump power. Moreimportantly, many influence factors were considered in our simulations. Such asnon-radiative transition (Auger recombination), luminescence efficiency of PbSeQDs and the mode leakage of the fiber and so on. F inally, our theoretical resultswere compared with the experimental data reported by Hreibi, et al. and wereproved to be a good practicability.
     3. PbSe QD-doped liquid-core fiber worked in the1.55μm communicationwindow was studied. The PbSe QD solution with diameter of4.5nm were filledinto hollow core fiber and sealed up seriously. After that, we designed theexperimental method, set up the light path and recorded the GSE spectra underdifferent fiber parameters, including fiber length, doping concentration and pumppower. In addition, we compared the influence of the two solvent to the propertiesof the GSE spectra and explained the reasons for the phenomenon in detail. In thelast, the theory result was obtained using the theory model in chapter4and fittedwell with the experimental data.
     4. the GSE properties of PbSe QD-doped liquid-core fiber under theinfluence of the temperature for the two QD size was studied. We focused on thechange of the peak position and peak intensity of the spectra when the temperatureincreased. Finally, the reasons of the experimental phenomena were analysized bytheory. This study has a certain application value in the fiber temperature sensor.
引文
[1] Woggon U., optical properties of semiconductor quantum dots [M]. New York,Springer,1997,26.
    [2] Wang X., Yandong L., Monodisperse nanocrystals: general synthesis, assembly,and their applications [J]. Chem.Comn.,2007,28:2901-2910.
    [3]徐国财.纳米科技导论[M].北京:高等教育出版社,2005:2-6,43-46.
    [4]王永康,王立.纳米材料科学与技术[M].杭州:浙江大学出版社,2002:7-8.
    [5]郭子政,时东陆.纳米材料和器件导论[M].北京:清华大学出版社,2010:11-12.
    [6]张艳妮.熔融法制备较高密度PbSe量子点玻璃关键技术的研究杭州:浙江工业大学理学院,2012.
    [7] Anikeeva P. O., Halpert J. E., Bawendi M. G. and Bulovic V., Quantum DotLight-Emitting Devices with Electroluminescence Tunable over the EntireVisible Spectrum. Nano Letters,2009,7:2532.
    [8] Brenda C. Rowan, Lindsay R. Wilson and Bryce S. Richards., AdvancedMaterial Concepts for Luminescent Solar Concentrators. IEEE JOURNAL OFSELECTED TOPICS IN QUANTUM ELECTRONICS,2008,14:5.
    [9] Medintzi I. L., Uyeda H. T., Goldman E. R. and Mattoussi H., Quantum DotBioconjugates for Imaging Labelling and Sensing [J], Nature Materials,2005,4:435-446.
    [10] Wise F. W., Lead Salt Quantum Dots: the Limit of Strong QuantumConfinement [J]. Acc. Chem. Res.,2000,33:773-780.
    [11] Pietryga J. M., Schaller R. D., Werder D., Stewart M. H., et al., Pushing theBand Gap Envelope: Mid-Infrared Emitting Colloidal PbSe Quantum Dots [J].J. Am. Chem. Soc.,2004,126:11752-11753.
    [12] Schaller R. D., Petruska M. A., and Klimov V. I., Tunable Near-InfraredOptical Gain and Amplified Spontaneous Emission Using PbSe Nanocrystals.J. Phys. Chem. B.2003,107:13765-13768.
    [13] Du H., Chen C., Krishnan R., Krauss T. D., et al., Optical Properties ofColloidal PbSe Nanocrystals. Nano Lett.2002,2:1321-4.
    [14] Gerion D., Pinaud F., Williams S. C., Parak W. J., et al., Synthesis andproperties of biocompatible water-soluble silicacoated CdSe/ZnSsemiconductor quantum dots [J]. J. Phys. Chem. B.2001,105:8861-8871.
    [15] Chan W. C., Nie S., Quantum dot bioconjugates for ultrasensitive nonisotopicdetection[J]. Science,1998,281(5385):2016-2018.
    [16] Han M. Y., Gao X. H., Su J. Z., et al., Quantum-dot-tagged microbeads formultiplexed optical coding of biomolecules. Nat. Biotechnol.,2001,19:631-635.
    [17] Alivisatos A. P., Semiconductor clusters, nanocrystals, and quantum dots.Science,1996,271:933-937.
    [18]张宇.胶质PbSe半导体纳米晶的光学性质研究.长春:吉林大学电子科学与工程学院,2010.
    [19] Gao X., Yang L., Petros J. A., et al., In vivo molecular and cellular imagingwith quantum dots [J]. Curr. Op. in Biotechnol.,2005,16(1):63-72.
    [20] Pinaud F., Michalet X., Bentolila L. A., Tsay J. M., et al., Advances influorescence imaging with quantum dot bio-probes [J]. Biomaterials,2006,27:1679-1687.
    [21] Peng Z. A., and Peng X., Nearly Monodisperse and Shapecontrolled CdSeNanocrystals via Alternative Routes: Nucleation and Growth [J], J. Am. Chem.Soc.,2002,124:3343-3353.
    [22] Kershaw S. V., Harrison M., Rogach A. L. and Kornowski A., Developmentof IR-emitting colloidal II-VI quantum-dot materials, IEEE J. Sel. Top. Quant.Electr.2000,6:534-43.
    [23] Rogach A. L., Eychmüller A., Hickey S. G. and Kershaw S. V.,Infrared-Emitting Colloidal Nanocrystals: Synthesis, Assembly, Spectroscopy,and Applications. Small.2007,3:536-557.
    [24] Steckel J. S., Coe-Sullivan S., Bulovic V. and Bawendi M. G.,1.3μm to1.55μm Tunable Electroluminescence from PbSe Quantum Dots Embedded withinan Organic Device. Adv. Mater,2003,15:1862-1866.
    [25]张伟刚.光纤光学原理及应用.天津:南开大学出版社,2008:5-6.
    [26] Walrafen G. E. and Stone J., Intensification of Spontaneous Raman Spectra byUse of Liquid Core Optical Fibers. Appl. Spectrosc.,1972,26(6):585-589.
    [27] Gambling W. A., Payne D. N. and Matsumura H., Gigahertz Bandwidths inMultimode, Liquid-Core, Optical Fibre Waveguide. Opt Commun.1972,6(4):317-322.
    [28] Ogilvie G. J., Esdaile R. J. and Kidd G. P., Transmission Loss ofTetrachloroethylene-Filled Liquid-Core-Fibre Light Guide, Electron Lett,1972,8(22):533-534.
    [29] Ippen E. P., Low-Power Quasi-Cw Raman Oscillator, Appl Phys Lett,1970,16(8):303-305.
    [30] Tabib-Azar M., Sutapun B., Srikhirin T., et al., Fiber Optic Electric FieldSensors Using Polymer-Dispersed Liquid Crystal Coatings and EvanescentField Interactions, Sensor Actuat a-Phys,2000,84(1-2):134-139.
    [31] Dasgupta P. K., Genfa Z., Poruthoor S. K., et al., High-Sensitivity GasSensors Based on Gas-Permeable Liquid Core Waveguides and Long-PathAbsorbance Detection, Analytical Chemistry,1998,70(22):4661-4669.
    [32] Dumais P., Callender C. L., Noad J. P., et al., Liquid Core ModalInterferometer Integrated with Silica Waveguides, Ieee Photonic Tech L,2006,18(5-8):746-748.
    [33] Zhang Y., Shi C., Gu C., et al., Liquid Core Photonic Crystal Fiber SensorBased on Surface Enhanced Raman Scattering, Appl Phys Lett,2007,90(19):1-3.
    [34] Dress P., Klein K. F., et al., Liquid Core Waveguide with Fiber OpticCoupling for Remote Pollution Monitoring in the Deep Ultraviolet, Water SciTechnol,1998,37(12):279-284.
    [35] Watanabe K., Tajima K. and Kubota Y., Macrobending Characteristics of aHetero-Core Splice Fiber Optic Sensor for Displacement and Liquid Detection,Ieice T Electron,2000,83(3):309-314.
    [36] Khoo I. C., Chen P. H., Wood M. V., et al., Molecular Photonics of a HighlyNonlinear Organic Fiber Core Liquid for Picosecond-Nanosecond OpticalLimiting Application, Chem Phys,1999, vol.245(1-3), pp.517-531.
    [37] Wolinski T. R., Tefelska M. M., Chychlowski M. S., et al., Multi-ParameterSensing Based on Photonic Liquid Crystal Fibers, Mol Cryst Liq Cryst,2009,502:220-234.
    [38] Wolinski T. R., Progress in Liquid Crystal Optical Fiber Waveguides andDevices for Pressure Sensing, Opt Appl,1999,29(1-2):191-200.
    [39] Suter J. D., White I. M., Zhu H. Y., et al., Thermal Characterization of LiquidCore Optical Ring Resonator Sensors, Appl Optics,2007,46(3):389-396.
    [40] Fuwa K., Lei W., Fujiwara K., Colorimetry with a Total-Reflection LongCapillary Cell, Analytical Chemistry,2002,56(9):1640-1644.
    [41] Fujiwara K., Simeonsson J. B., Smith B. W., et al., Waveguide Capillary FlowCell for Fluorometry [Erratum to Document Cited in Ca108(20):179270m],Analytical Chemistry,2002,60(18):2000-2000.
    [42] Poletti F., Camerlingo A., Petropoulos P., et al., Dispersion Management inHighly Nonlinear, Carbon Disulfide Filled Holey Fibers, Ieee Photonic Tech L,2008,20(17-20):1449-1451.
    [43] Xu Y. H., Chen X. F. and Zhu Y., Modeling of Micro-Diameter-Scale LiquidCore Optical Fiber Filled with Various Liquids, Opt Express,2008,16(12):9205-9212.
    [44] White I. M., Gohring J., Sun Y., et al., Versatile Waveguide-CoupledOptofluidic Devices Based on Liquid Core Optical Ring Resonators, ApplPhys Lett,2007,91(24).
    [45] Zhu Y., Chen X. F., Xu Y. H., et al., Propagation Properties of Single-ModeLiquid-Core Optical Fibers with Subwavelength Diameter, J LightwaveTechnol,2007,25(10):3051-3056.
    [46] He G. S., Yoshida M., Bhawalkar J. D., et al., Two-PhotonResonance-Enhanced Refractive-Index Change and Self-Focusing in aDye-Solution-Filled Hollow Fiber System, Appl Optics,1997,36(6):1155-1163.
    [47]许永豪.亚波长直径氧化硅光纤和液芯光纤理论分析、实验制备和应用研究.上海:上海交通大学物理系,2010.
    [48] Yu W.W., Qu L., Guo W., and Peng X., Experimental Determination of theExtinction Coefficient of CdTe, CdSe, and CdS Nanocrystals [J], Chem.Mater.,2003,15:2854-2860.
    [49] Climente J. I., Planelles J., and Rajadel F., Temperature Dependence of the Spectral Band Shape of CdSe Nanodots and Nanorods [J], Phys. Rev. B,2009,80:205312/1-5.
    [50] Valerini D., CretíA., and Lomascolo M., Temperature Dependence of thePhotoluminescence Properties of Colloidal CdSe/ZnS Core/shell QuantumDots Embedded in a Polystyrene Matrix [J], Phys. Rev. B,2005,71:235409/1-6.
    [51] Chen P. and Whaley K. B., Magneto-Optical Response of CdSeNanostructures [J], Phys. Rev. B,2004,70:045311/1-12.
    [52] Meulenberg R. W., and Strouse G. F., Pressure-Induced Electronic Couplingin CdSe Semiconductor Quantum Dots [J], Phys. Rev. B,2002,66:035317/1-6.
    [53] Mueller A. H., Petruska M. A., Achermann M., Werder D. J., et al., MulticolorLight-Emitting Diodes Based on Semiconductor Nanocrystals Encapsulated inGaN Charge Injection Layers [J], Nano Lett.,2005,5:1039-1044.
    [54] Xu S., Kumar S., and Nann T., Rapid Synthesis of High-Quality InPNanocrystals [J], J. Am. Chem. Soc,2006,128:1054-1055.
    [55] Piepenbrock M. M., Stirner T., Kelly S. M., and O’Ne M., ALow-Temperature Synthesis for Organically Soluble HgTe NanocrystalsExhibiting Near-Infrared Photoluminescence and Quantum Confinement [J], J.Am. Chem. Soc.,2006,128:7087-7090.
    [56] Sargent E. H., Infrared Quantum Dots [J], Adv. Mater.,2005,17:515-522.
    [57] Chen H., Lo B., Wang J. H., Chang G., Chen C., Tasi S., and Wang S. J.,Colloidal ZnSe, ZnSe/ZnS, and ZnSe/ZnSeS Quantum Dots Synthesized fromZnO [J], J. Phys. Chem. B.,2004,108:17119-17123.
    [58] Watekar P. R., Ju S., Lin A., Kim M. J., Lww B. H., Han W-T., Linear andnonlinear optical properties of the PbSe quantum dots doped germano-silicaglass optical fiber. J Non-Cryst. Solids,2010,356:2384-2388.
    [59] Hreibi A., Gerome F., Auguste J., Zhang Y., Yu W. W., Blondy J.,Semiconductor-Doped Liquid-Core Optical Fiber. Opt. Lett.2011,36:1695-1697.
    [60] Cheng C., Zhang H., Characteristics of Bandwidth, Gain and Noise of a PbSeQuantum Dot-Doped Fiber Amplifier. Opt. Commun.2007,277:372-378.
    [61] Hu W., Henderson R., Zhang Y., You G., Wei L., Bai Y., Wang J. and Xu J.,Near-infrared quantum dot light emitting diodes employing electron transportnanocrystals in a layered architecture, Nanotechnology,2012,23:375202.
    [62] Kikuchi E., Kitada S., Ohno A., Aramaki S., and Maenosono S.,Solution-Processed Polymer-Free Photovoltaic Devices Consisting of PbSeColloidal Quantum Dots and Tetrabenzoporphyrins [J], Appl. Phys. Lett.,2008,92:173307/1-3.
    [63] Choi J. J., Lim Y., Santiago-Berrios M. B., Oh M., Hyun B. R., Sun L., et al.,PbSe Nanocrystal Excitonic Solar Cells [J], Nano Lett.,2009,9:3749-3755.
    [64] Jiang X., Schaller R. D., Lee S. B., Pietryga J. M., Klimov V. I. and ZakhidovA. A., PbSe nanocrystal/conducting polymer solar cells with an infraredresponse to2micron, J. Mater. Res.,2007,22:2204-10.
    [65] Law M., Beard M. C., Choi S., Luther J. M., Hanna M. C. and Nozik A. J.,Determining the Internal Quantum Efficiency of PbSe Nanocrystal Solar Cellswith the Aid of an Optical Model, Nano Lett,2008,8:3904-10.
    [66] Abbas Ghasempour Ardakani, Seyed Mohammad Mahdavi, and Ali RezaBahrampour, Time-dependent theory for random lasers in the presence of aninhomogeneous broadened gain medium such as PbSe quantum dots.APPLIED OPTICS,2013,52:1317-1324.
    [67] Harrison M. T., Kershaw S. V., Burt M. G., Rogach A. L., et al., Colloidalnanocrystals for telecommunications. Complete coverage of the low-loss fiberwindows by mercury telluride quantum dots. Pure Appl. Chem.,2000,72:295-307.
    [68] Cheng Cheng, Zhang Hang., A semiconductor nanocrystal PbSe quantum dotfiber amplifier. Chin.Phys.Soc.2006,55:4139-4144.
    [69] Cheng Cheng., A Multiquantum-Dot-Doped Fiber Amplifer WithCharacteristics of Broadband, Flat Gain, and Low Noise. JOURNAL OFLIGHTWAVE TECHNOLOGY,2008,26:1404-1410.
    [70] Pramod R. Watekar, Hoyoung Yang, Seongmin Ju, and Won-Taek Han.,Enhanced current sensitivity in the optical fiber doped with CdSe quantumdots. OPTICS EXPRESS,2009,17:3157-3164.
    [71] Jorge P. A. S., Mayeh M., Benrashid R., Caldas P., Santos J. L. and Farahi F.,Quantum dots as self-referenced optical fibre temperature probes forluminescent chemical sensors. Meas. Sci. Technol.2006,17:1032–1038.
    [72]郭玉彬.光纤通信技术[M].西安:西安电子科技大学出版社,2008.
    [73] Scholes G. D. and Rumbles G., Excitons in Nanoscale Systems [J], NatureMaterials,2006,5:683-696.
    [74] Peng X., An Essay on Synthetic Chemistry of Colloidal Nanocrystals [J],Nano. Res.,2009,2:425-447.
    [75] Pellegrini G., Mattei G., and Mazzoldi P., Finite Depth Square Well Model:Applicability and Limitations [J], J. Appl. Phys.,2005,97:073706-8.
    [76] Nanda K. K., Kruis F. E., and Fissan H., Energy Levels in EmbeddedSemiconductor Nanoparticles and Nanowires [J], Nano Lett.,2001,1:605-611.
    [77] Baskoutas S., and Terzis A. F., Size Dependent Exciton Energy of VariousTechnologically Important Colloidal Quantum Dots [J], Mater. Sci. Eng. B,2008,147:280-289.
    [78] Nanda K. K., Kruis F. E., and Fissan H., Effective Mass Approximation forTwo Extreme Semiconductors: Band Gap of PbS and CuBr Nanoparticles [J],J. Appl. phys.,2004,95:5035-5041.
    [79] Nasu H., Tanaka A., Kamada K., and Hashimoto T., Influence of Matrix onThird Order Optical Nonlinearity for Semiconductor Nanocrystals Embeddedin Glass Thin Films Prepared by Rf-Sputtering, J. Non-Cryst. Solids,2005,351:893-899.
    [80] Schmelz O., Mews A., Basche T., Herrmann A., and Mullen K.,Supramolecular Complexes from CdSe Nanocrystals and OrganicFluorophors [J], Langmuir,2001,17:2861-2865.
    [81] Striolo A., Ward J., Prausnitz J. M., Parak W. J., Zanchet D., et al., MolecularWeight, Osmotic Second Virial Coefficient, and Extinction Coefficient ofColloidal CdSe Nanocrystals [J], J. Phys. Chem. B,2002,106:5500-5505.
    [82] Leatherdale C. A., Woo W. K., Mikule F. V., and Bawendi M. G., On theAbsorption Cross Section of CdSe Nanocrystal Quantum Dots [J], J. Phys.Chem. B,2002,106:7619-7622.
    [83] Rajh T., Micic O. I., and Nozik A., Synthesis and Characterization ofSurface-Modified Colloidal Cadmium Telluride Quantum Dots [J], J. Phys.Chem.,1993,97:11999-12003.
    [84] Vossmeyer T., Katsikas L., Giersig M., Popovic I.G., et al., CdS Nanoclusters:Synthesis, Characterization, Size Dependent Oscillator Strength, TemperatureShift of the Excitonic Transition Energy, and Reversible Absorbance Shift [J],J. Phys. Chem.,1994,98:7665-7673.
    [85] Yu P. R., Beard M. C., Ellingson R. J., Ferrere S., et al., AbsorptionCross-Section and Related Optical Properties of Colloidal InAs QuantumDots [J], J. Phys. Chem. B,2005,109:7084-7087.
    [86] Cademartiri L., Montanari E., Calestani G., Migliori A., et al., Size-DependentExtinction Coefficients of PbS Quantum Dots [J], J. Am. Chem. Soc.,2006,128:10337-10346.
    [87] Senior T. B. A., and Weil H., Electromagnetic Scattering and Absorption byThin Walled Dielectric Cylinders with Application to Ice Crystals [J], AppliedOptics,1977,16:2979-2985.
    [88] Kong J. A., Theory of Electromagnetic Wave [M], John Wiley and Sons,1975,New York:185-195.
    [89] Dobbins R. A., and Megaridis C. M., Absorption and Scattering of Light byPolydisperse Aggregates [J], Applied Optics,1991,30:4747-4754.
    [90] Priou A., Dielectric Properties of Heterogeneous Mixtures [M], Elsevier,1991,New York:101-152.
    [91] Dai Q., Wang Y., Li X., Zhang Y., Pellegrino D. J., Zhao M., Zou B., Seo J.,Wang Y, Yu W. W., Size-Dependent Composition and Molar ExtinctionCoefficient of PbSe Semiconductor Nanocrystals. ACS Nano,2009,3:1518-1524.
    [92]张伟刚.光纤光学原理及应用.北京:清华大学出版社,2012:69-73.
    [93] Murray C. B., Sun S., Gaschler W., Doyle H., Betley T. A., and Kagan C. R.,Colloidal Synthesis of Nanocrystals and Nanocrystal Superlattices [J], IBM. J.Res. Dev.,2001,45:47-56.
    [94] Wehrenberg B. L., Wang C., and Guyot-Sionnest P., Solvation Structure ofBromide Ion in Anion-Exchange Resins [J], J. Phys. Chem. B,2002,106:10634-10640.
    [95] Lifshitz E., Bashouti M., Kloper V., Kigel A., Eisen M. S., and Berger S.,Synthesis and Characterization of PbSe Quantum Wires, Multipods, QuantumRods, and Cubes [J], Nano Lett.,2003,3:857-862.
    [96] Du H., Chen C., Krishnan R., Krauss T. D., Harbold J. M., Wis F. W.e,Thomas G., and Silcox J., Optical Properties of Colloidal PbSe Nanocrystals[J], Nano Lett.,2002,2:1321-1324.
    [97] Klabunde K. J., Nanoseale Materials in Chemistry. John Wiley&Sons, Inc.2001.
    [98] Steigerwald M. L., Alivisatos A. P., Gibson J. M., Harris T. D., et al., Surfacederivatization and isolation of semiconductor cluster molecules. J. Am. Chem.Soc.,1988,110(10):3046-3050.
    [99] Meng L., Ying G., Qifan C. et al., Hydrothermal synthesis of highlyluminescent CdTe quantum dotsby adjusting precursors’ concentration andtheir conjunction with BSA as biological fluorescent probes [J], Talanta,2007,72:89-94.
    [100] Wei Y., Wan L., Hong D. et al., Hydrothermal synthesis for high-qualityCdTe quantum dots cappedby cysteamine [J], Mater. Lett.,2008,62:2564-2566.
    [101] Battaglia, D., Peng, X., Formation of High Quality InP and InAsNanocrystals in a Noncoordinating Solvent [J], Nano Lett.,2002,2:1027-1030.
    [102] Li, J. J., Wang, Y. A., Guo, W., Keay, J. C.; Mishima, et al., Large-ScaleSynthesis of Nearly Monodisperse CdSe/CdS Core/Shell Nanocrystals UsingAir-Stable Reagents via Successive Ion Layer Adsorption and Reaction, J.Am. Chem. Soc.,2003,125:12567-12575.
    [103] Battaglia, D., Li, J. J., Wang, Y., Peng, X., Colloidal Two-DimensionalSystems: CdSe Quantum Shells and Wells [J], Angew. Chem. Int. Ed.,2003,42:5035-5039.
    [104] Yu W. W., and Peng X., Formation of High-Quality CdS and Other II–VISemiconductor Nanocrystals in Noncoordinating Solvents: TunableReactivity of Monomers [J], Angew. Chem. Int. Ed.,2002,41:2368-2371.
    [105] Yu W. W., Falkner J. C., Shih B. S., and Colvin V. L., Preparation andCharacterization of Monodisperse PbSe Nanocrystals in A Non-coordinatingSolvent [J], Chem. Mater.,2004,16:3318-3322.
    [106] Stouwdam J. W., Shan J., and van Veggel F. C. J. M., Photostability ofColloidal PbSe and PbSe/PbS Core/Shell Nanocrystals in Solution and in theSolid State [J], J. Phys. Chem. C,2007,111:1086-1092.
    [107] Leitsmann R., and Bechstedt F., Characteristic Energies and Shifts in OpticalSpectra of Colloidal IV-VI Semiconductor Nanocrystals [J], ACS Nano,2009,3:3505-3512.
    [108] Lifshitz E., Brumer M., Kigel A., Sashchiuk A., et al., Air-Stable PbSe/PbSand PbSe/PbSexS1-x Core-Shell Nanocrystal Quantum Dots and TheirApplications [J], J. Phys. Chem. B,2006,110:25356-25362.
    [109] An J. M., Franceschetti A., and Zunger A., The Excitonic Exchange Splittingand Radiative Lifetime in PbSe Quantum Dots [J], Nano Lett.,2007,7:2129-2135.
    [110] Franceschetti A., Structural and Electronic Properties of PbSe Nanocrystalsfrom First Principles [J], Phys. Rev. B,2008,78:075418/1-6.
    [111] Ramos L. E., Weissker H. C., Furthmuller J., and Bechstedt F., OpticalProperties of Si and Ge Nanocrystals: Parameter-Free Calculations [J], Phys.Status Solid B,2005,15:3053-3059.
    [112] Franceschetti A., and Pantelides S. T., Excited-State Relaxations and FranckCondon Shift in Si Quantum Dots [J], Phys. Rev. B,2003,68:033313/1-4.
    [113] Puzder A., Williamson A. J., Grossman J. C., Galli G., ComputationalStudies of the Optical Emission of Silicon Nanocrystals [J], J. Am. Chem.Soc..2003,125:2786-2791.
    [114] Degoli E., Cantele G., Luppi E., Magri R., Ninno D., Bisi O., and Ossicini S.,Ab Initio Structural and Electronic Properties of Hydrogenated SiliconNanoclusters in the Ground and Excited State [J], Phys. Rev. B,2004,69:155411/1-10.
    [115] Iori F., Degoli E., Magri R., Marri I., Cantele G., Ninno D., Trani F., Pulci O.,and Ossicini S., Engineering Silicon Nanocrystals: Theoretical Study of theEffect of Codoping with Boron and Phosphorus [J], Phys. Rev. B,2007,76:085302/1-14.
    [116] Crosby G. A., and Demas J. N., Measurement of PhotoluminescenceQuantum Yields. Review [J], J. Phys. Chem.,1971,75:991-1024.
    [117] Harbold J. M., Du H., Krauss T. D., Cho K. S., Murray C. B., Wise F. W.,Time-Resolved Intraband Relaxation of Strongly Confined Electrons andHoles in Colloidal PbSe nanocrystals. Phys. Rev. B,2005,72:195312/1-6.
    [118] Shabaev A., Efros AIL, Nozik AJ, Multiexciton Generation by a SinglePhoton in Nanocrystals. Nano Lett.2006,6:2856-2863.
    [119] Liljeroth P., Emmichoven PAZ van, Hickey S. G., et al. Density of StatesMeasured by Scanning-Tunneling Spectroscopy Shed New Light on theOptical Transitions in PbSe Nanocrystal. Phys. Rev. Lett.2005,95:086801/1-4.
    [120] Bahrampour A. R., Rooholamini H., Rahimi L. and Askari A. A., AnInhomogeneous Theoretical Model for Analysis of PbSeQuantum-Dot-Doped FiberAmplifer. Opt Commun.2009,282:4449-4454.
    [121] Klimov V. I., Mechanisms for Photogeneration and Recombination ofMultiexcitons in SemiconductorNanocrystals: Implications for Lasing andSolar Energy Conversion. J. Phys. Chem. B,2006,110:16827-16845.
    [122]Yoichi Kobayashi and Naoto Tamai. Size-Dependent MultiexcitonSpectroscopy and Moderate Temperature Dependence of Biexciton AugerRecombination in Colloidal CdTe Quantum Dots. J. Phys. Chem. C,2010,114:17550–17556.
    [123] Randy J. Ellingson, Matthew C. Beard, Justin C. Johnson, et al., HighlyEfficient Multiple Exciton Generation in Colloidal PbSe and PbS QuantumDots, Nano Lett.2005,5(5):865-871.
    [124] Htoon H., Hollingsworth J. A., Dickerson R., and Klimov V. I., Effect ofZero-to One-Dimensional Transformation on Multiparticle AugerRecombinationin Semiconductor Quantum Rods. Phys. Rev. Lett.,2003,91:227401/1-4.
    [125] Klimov V. I., Mikhailovsky A. A., McBranch D. W., et al., Quantization ofMultiparticle Auger Rates in Semiconductor Quantum Dots. Science.2000,287:1011-1013.
    [126] Wehrenberg B. L., Wang C., Sionnest P. G., Interband and Intraband OpticalStudies of PbSe Colloidal Quantum Dots. J. Phys. Chem. B,2002,106:10634-10640.
    [127] Mc Cumber DE, Theory of Phonon-Terminated Optical Masers. Phys Rev1964,134: A299-306
    [128] Keffer C., Hayes T. M., and Bienenstock A., Debye-Waller Factor and thePbTe Band-Gap Temperature Dependence [J], Phys. Rev. B,1970,2:1966-1976.
    [129] O’Donnell K. P., and Chen X., Temperature Dependence of SemiconductorBand Gaps [J], Appl. Phys. Lett.,1991,58:2924-2926.
    [130] Ravindra N. M., Ganapathy P., and Choi J., Energy Gap-Refractive IndexRelations in Semiconductors-An Overview [J], Infrared Physics&Technology,2007,50:21-29.
    [131] Bardeen J., and Shockley W., Deformation Potentials and Mobilities inNon-Polar Crystals [J]. Phys. Rev.,1950,80:72-80.
    [132] Fan H. Y., Temperature Dependence of the Energy Gap in Semiconductors[J], Phys. Rev.,1951,82:900-905.
    [133] Nomura S., and Kobayashi T., Excition-LA and TA-Phonon Couplings inSpherical Semiconductor Microcrystallites[J], Phys. Rev. B,1992,45:1305-1316.
    [134] Bao H., Habenicht B. F., Prezhdo O. V., and Ruan X., TemperatureDependence of Hot-Carrier Relaxation in PbSe Nanocrystals: An Ab InitioStudy [J], Phys. Rev. B,2009,79:235306/1-7.
    [135] Olkhovets A., Hsu R. C., Lipovskii A., and Wise F. W., Size-DependentTemperature Variation of the Energy Gap in Lead-Salt Quantum Dots [J],Phys. Rev. Lett.,1998,81:3539-3542.
    [136] Liptay T. J., and Ram R. J., Temperature Dependence of the ExcitonTransition in Semiconductor Quantum Dots [J], Appl. Phys. Lett.,2006,89:223132/1-3.
    [137] Sanguinetti S., Poliani E., Bonfanti M., Guzzi M., et al., Electron-PhononInteraction in Individual Strain-Free GaAs/Al0.3Ga0.7As Quantum Dots [J],Phys. Rev. B,2002,73:125342/1-7.
    [138] Liu Y., Zhai W. W., Gu P. F., Zhang T. Q., et al., The exciton and phononcoupling in temperature-dependent photoluminescence of colloidal PbSenanocrystals. Optik.2013,124:3059–3062.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700