磷光过渡金属配合物的光物理性质调控与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷光金属配合物具有高的发光效率、大的Stokes位移以及发光颜色易调节等优异的光物理性质。尤其是发光性能最好的磷光铱配合物引起人们广泛的研究兴趣,并已在有机发光二极管(OLEDs)、发光电化学池(LECs)、磷光传感、生物标记和成像等领域获得了广泛的应用。然而目前的磷光金属配合物的光物理性质调控方法还主要基于对配体的化学修饰,或合成新的配体骨架,而这往往需要复杂的化学反应。随着研究的不断深入,目前所使用的构建磷光配合物的方法已经限制了其进一步发展。因此有必要提出全新的高性能磷光配合物的构建方法和光物理性能调控新策略,并以此为契机进一步拓展磷光配合物在光电子器件和生物医学领域的应用空间。这也正是本论文的主要研究内容。具体如下:
     1、利用抗衡离子调控铱配合物光物理性质的新策略
     通过选取含有氢键给体单元的N^N配体构建了一类新型的阳离子磷光铱配合物。这类配合物的特殊之处在于无论是在固态还是溶液状态下,其抗衡离子除了和阳离子中心具有静电相互作用外还和配体具有氢键相互作用,因而使通过抗衡离子调节配合物的光物理性能成为可能。我们选取了六种具有不同离子半径的阴离子作为抗衡离子,通过单晶衍射和1H NMR实验分别证明了在固态和溶液状态下这种氢键形式的存在。通过对含有不同抗衡离子的铱配合物的光物理性质的研究,我们发现通过改变抗衡离子可以有效的对配合物的发光颜色进行调节。以配合物[(ppy)2IrNH]+A为例,我们通过改变抗衡离子的类型可以对配合物的发光颜色在橙光到绿光之间进行连续性调节。最后,我们通过研究含有不同抗衡离子的铱配合物的1HNMR图谱的变化并结合理论计算结果提出了这种光物理性质调节的机理,即由于不同的抗衡离子所形成的氢键强弱不同,从而导致配体中氢键给体单元上的电子结构发生变化,进而影响到配合物发光中心的光物理性质。
     2、具有不同抗衡离子的铱配合物对外界刺激的响应性研究
     配合物[(ppy)2IrNH]+PF6在固态下表现出明显的研磨磷光变色现象。通过对配合物[(ppy)2IrNH]+PF6的晶体进行研磨可以使配合物由绿色发光变为橙色发光,这种橙色发光粉末可以在二氯甲烷的蒸汽氛围下恢复到原来的绿色发光状态。而且,通过二次研磨又可使配合物变为橙色发光状态。这个过程可以重复多次进行。通过XRD粉末衍射及红外光谱测试,我们提出这种固态下发光颜色的变化是由外界环境诱导的分子内氢键的断裂和修复引起的。另外,配合物[(ppy)2IrNH]+PF6在溶液状态下还表现出明显的电致瞵光变色现象。在外界电场存在的情况下,配合物的发光颜色会由原来的橙色发光变为绿色发光。这种在电场作用下溶液发光颜色的变化是由于电场诱使配体中氢键给体单元上的N-H键的极化引起。最后,基于配合物这种对外界刺激的特殊光物理性质响应,我们分别构建了两类信息存储器件。
     3、氟离子对铱配合物光物理性质的调控机理研究
     我们合成了三种具有不同环金属配体的以2-吡啶基苯并咪唑作为NAN配体的阳离子铱配合物(2fnpy)2IrNH]+PF6-、[(ppy)2IrNH]+PF6-和[(tpq)2IrNH]+PF6-。由于咪唑上的NH单元能与氟离子发生氢键相互作用,我们通过紫外—可见吸收光谱及光致发光光谱考察了氟离子对这三种配合物光物理性质的影响。结果发现,对于不同的环金属配体,配合物对氟离子表现出不同的光谱响应现象。当向配合物的二氯甲烷溶液加入氟离子时,蓝绿光铱配合物[(2fnpy)2IrNH]+PF6-发光强度变弱,黄橙光铱配合物[(ppy)2IrNH]+PF6-的发光颜色发生明显的蓝移,而红光铱配合物[(tpq)2IrNH]+PF6-的发光颜色却发生了红移。通过1HNMR和19F NMR,我们详细研究了氟离子与配合物之间的相互作用。结果表明,当氟离子浓度比较低时会优先与咪唑环上的NH单元形成氢键;随着氟离子浓度的进一步增加,氟离子会夺取NH上的质子,诱导配合物发生由离子型到中性的转变。通过理论计算,我们详细研究了这种离子型配合物与中性配合物的激发态性质。
     4、铱/硼异核配合物的光物理性质调控与细胞成像研究
     基于三种绿光、黄光和红光配体的铱配合物,并以多齿配体邻羟基吡啶羧酸作为桥连单元,我们成功构建了一类新型的硼杂异核铱配合物。首先,通过单晶X射线衍射实验、1HNMR、19F NMR和质谱对这类配合物的结构进行了表征;然后,通过紫外—可见吸收光谱以及荧光光谱详细研究了溶液和固态下BF2单元的引入对铱配合物光物理性质的影响。结果发现,对于不同的环金属配体,BF2单元的引入对配合物光物理性质的影响不同。相比于对应的单核铱配合物(2fppy)2Irpic]、[(ppy)2Irpic]和[(tpq)2Irpic], BF2单元引入导致配合物[(2fppy)2IrpicBF2]、[(ppy)2IrpicBF2]和[(tpq)2IrpicBF2]的发光性质分别表现为发光红移、发光变弱和发光蓝移。通过理论计算我们还详细研究了BF2单元的引入对铱配合物电子结构和激发态性质的影响。最后我们还成功的将这类配合物应用于细胞成像。
     5、基于聚集诱导磷光发射性质的纳米探针与细胞成像研究
     在本章中,我们首先合成了一类具有聚集诱导磷光发射性质的铂配合物,通过紫外—可见吸收光谱和发射光谱详细研究了这类配合物的光物理性质。基于这类材料,我们利用再沉淀法和苯乙烯微乳液聚合包覆法分别制备了具有磷光发射性质的纳米粒子。利用时间分辨光谱实验证明了这类磷光纳米材料在时间分辨成像领域的应用潜力。通过对磷光纳米粒子的表面进行生物功能化,制备了具有癌细胞靶向功能的磷光纳米探针,并成功应用于癌细胞靶向磷光成像。
Phosphorescent metal complexes have been attracting wide spread interest in recent year because of the excellent photophysical properties, such as high luminescence efficiencies, significant Stokes shifts and easy-to-ajust emission properties. And all these merits make phosphorescent metal complexes been promising for various applications such as organic light emitting diodes (OLEDs), light-emitting electrochemical cells (LECs), phosphorescent sensor and bio-imaging. However, the traditional photophysical properties tuning methods are mainly based on the chemical modification of the existing ligand or construction of new ligand skeleton, which always involves the complicated chemical reaction. With the ongoing development of materials science, however, this tradition construction strategy of new metal complexes have seriously limit the further developments of metal complexes. Therefore, it is necessary to develop new construction methods and photophysical tuning strategies of metal complexes, which will offer an opportunity to further expand the application space of phosphorescent metal complexes in optoelectronics device field. In this thesis, we have carry out the research as follows.
     1. The new photophysical properties tuning strategy of ionic iridium complexes based on conterions
     2-(2-pyridyl)benzimidazole was chosen as N^N ligand to synthesise the cationic iridium complexes [(ppy)2IrNH]+A-.Through single crystal diffraction and'H NMR we have demonstrate that there exist hydrogen bonding interaction between conterions and cation centre in both solid and solution state, except for electrostatic interaction. The conterions depended photophysical properties of [(ppy)2IrNH]+A-were investigated through photoluminescence spectrum. In CH2Cl2solution, as the changes of conterions, the emission wavelength of complex [(ppy)2IrNH]+A-can be regulated continuously between490nm and584nm. By contrast with1H NMR spectra of iridium complexes with various conterions, in combination with calculated results, we conclude that the couterions depended photophysical properties is the result of electronic structure changing of hydrogen donor, which is affected by the counterions.
     2. The piezochromic and electrochromism of ionic iridium complex with hydrogen bond donor in the ligand, mechanism and application study.
     We have prepared and discovered cationic complexes [(ppy)2IrNH]+A-exhibiting a fascinating piezochromic and electrochromism phosphorescence. For piezochromic, the emission colour of complex in solid can be switched revcrsibly by grinding and vapour fuming. Based on the PXRD, CP/MAS, NMR and IR studies, we found that this piezochromic phosphorescence origin could be attributed to a hydrogen bond destruction and restoration along with amorphous-crystalline phase transformation. For electrochromism, the emission colour of complex in acetonitrile solution can be switched reversibly by adding and removing electric field. Based on the1H and19F NMR and CP/MAS, we found that this electrochromism phosphorescence origin could be attributed to the polarisation of the N-H bond of the ligand under external electric field. Finally, we have designed optical and electric recording devices based on the piezochromic and electrochromism, respectively.
     3. Study on the spectra response mechanism of three ionic iridium complexes with different cyclomedtalating ligand to fluoride ion, by1H NMR and theoretical calculation.
     We have synthesised three ionic iridium complexes with different cyclomedtalating ligand based on2-(2-pyridyl)benzimidazole as N^N ligand:[(2fnpy)2IrNH]+PF6-,[(ppy)2IrNH]+PF6-and [(tpq)2IrNH]+PF6-. The response of iridium complexes to fluoride ion were studied through the UV-vis absorption and photoluminescence spectra. As the addition of fluoride ion, the emission properties of this three iridium complexes show different changes. For [(2fnpy)2IrNH]+PF6-the emission will be quenched, and for [(ppy)2IrNH]+PF6-the emission will be blue-shift, whereas [(tpq)2IrNH]+PF6-will be red-shift. The]1H NMR changes of iridium complexes with the addition of fluoride ion shown that at the low concentration of fluoride ion it formed firstly hydrogen bond between fluoride ion and NH group, with the increase of fluoride ion concentration the NH group will be further deprotonated, in consequence, the ionic iridium complexes will be changed to neutral iridium complexes.
     4. Heteronuclear phosphorescent iridium(Ⅲ) complexes with tunable photophysical and excited-state properties by chelating BF2moiety for application in bioimaging
     In the present study, we explored a novel design strategy of heteronuclear phosphorescent iridium(Ⅲ) complexes chelated by BF2moiety with3-hydroxypicolinic acid as the chelate ligand and synthesized a new series of iridium(Ⅲ) complexes [Ir(dfppy)2(hpa)BF2](1b),[Ir(ppy)2(hpa)BF2](2b) and [Ir(tpq)2(hpa)BF2](3b)(hpa=3-hydroxypicolinic acid, dfppy=2-(2,4-difluorophenyl)pyridine, ppy=2-phenylpyridine, tpq=2-(thiophen-2-yl)quinoline) under mild conditions. The emission colors and wavelengths of iridium(Ⅲ) complexes can be affected evidently by chelating BF2moiety into iridium(Ⅲ) complexes, and this effect will be changed with the difference of cyclometalating CAN ligands. A combination of UV-vis absorption, photoluminescence, excited-state lifetime measurements and theoretical calculations has provided the significant insight into the nature of the excited state and photophysical properties of these interesting iridium(Ⅲ) complexes. Moreover, the exclusive staining of cytoplasm and low cytotoxicity were demonstrated for these new iridium(Ⅲ) complexes, which make them promising candidates as multi-color phosphorescent dyes for living cell imaging.
     5. Design of nano materials with aggregation-induced phosphorescent emission and their promising applications in time-resolved luminescence assay and targeted phosphorescence imaging of cancer cells
     A series of cyclometalated Pt(Ⅱ) complexes with AIPE properties have been exploited, we demonstrated their application in time-resolved luminescence assay to eliminate the interference from background fluorescence utilizing the long emission lifetime of phosphorescent signal, which is their advantage compared with fluorescent organic dyes. Moreover, the targeted phosphorescence imaging of cancer cells based on AIPE-active polymer nanoparticles have been realized.
引文
[1]BALDO M A, O'BRIEN D F, YOU Y et al Highly efficient phosphorescent emission from organic electroluminescent devices [J]. Nature 1998,395(6698):151-154.
    [2]MA Y G, ZHANG H Y, SHEN J C et al Electroluminescence from triplet metal-ligand charge-transfer excited state of transition metal complexes [J]. Synthetic Metals,1998,94(3): 245-248.
    [3]WALZER K, MAENNIG B, PFEIFFER M et al. Highly efficient organic devices based on electrically doped transport layers[J]. Chem Rev,2007,107, (4):1233-1271.
    [4]CAO Y, PARKER I D, YU G et al. Improved quantum efficiency for electroluminescence in semiconducting polymers [J]. Nature,1999,397 (6718):414-417.
    [5]BOLINK H J, CORONADO E, COSTA R D et al. Long-Living Light-Emitting Electrochemical Cells-Control through Supramolecular Interactions[J]. Adv Mater,2008,20, (20):3910-3911.
    [6]COSTA R D, ORTI E, BOLINK H J et al. Intramolecular pi-Stacking in a Phenylpyrazole-Based Iridium Complex and Its Use in Light-Emitting Electrochemical Cells[J]. JAm Chem Soc,2010,132, (17):5978-5979.
    [7]ZHAO Q, HUANG C H & LI F Y. Phosphorescent heavy-metal complexes for bioimaging[J]. Chem Soc Rev,2011,40, (5):2508-2524.
    [8]LAU J S-Y, LEE P-K, TSANG K H-K et al. Luminescent cyclometalated iridium(ⅲ) polypyridine indole complexes-synthesis, photophysics, electrochemistry, protein-binding properties, cytotoxicity, and cellular uptake[J]. Inorg Chem,2009,48, (2):708-718.
    [9]ALEXANDRE P, ANTHONY D, PATRICE L B et al. Long-lived two-photon excited luminescence of water-soluble europium complex:applications in biological imaging using two-photon scanning microscopy[J]. JAm Chem Soc,2008,130, (5):1532-1533.
    [10]GOLDSMITH J I, HUDSON W R, LOWRY M S et al. Discovery and high-throughput screening of heteroleptic iridium complexes for photoinduced hydrogen production[J]. J Am Chem Soc,2005,127, (20):7502-7510.
    [11]KING K A, SPELLANE P J, WATTS R J et al. Excited-State Properties of a triply ortho-metalated iridium(Iⅱ) complex [J]. J Am Chem Soc,1985,107(5):1431-1432.
    [12]DEDEIAN K, DJUROVICH P I, GARCES F O et al. A new synthetic route to the reparation of a series of strong photoreducing agents-fac tris-ortho-metalated complexes of iridium(Iⅱ) with substituted 2-phenylpyridines [J]. Inorg Chem,1991,30 (8):1685-1687.
    [13]BOTTCHER H C, GRAF M, KRUGER H et al. Synthesis and X-ray crystal structure of a heteroleptic tris-cyclometalated iridium(Ⅲ) complex [J]. Inorg Chem Commun,2005,8 (3): 278-280.
    [14]ONO K, JOHO M, SAITO K, TOMURA M et al. Synthesis and electroluminescence properties of fac-tris(2-phenylpyridine)iridium derivatives containing hole-trapping moieties [J]. Eur J Inorg Chem,2006, (18):3676-3683.
    [15]OTSUKI J, TOKIMOTO T, NODA Y et al. Ordered arrays of organometallic iridium complexes with long alkyl chains on graphite [J]. Chem-Eur J,2007,13 (8):2311-2319.
    [16]RAGNI R, PLUMMER E A, BRUNNER K et al. Blue emitting iridium complexes:synthesis, photophysics and phosphorescent devices [J]. J Mater Chem,2006,16 (12):1161-1170.
    [17]SU Y J, HUANG H L, LI C L et al. Highly efficient red electrophosphorescent devices based on iridium isoquinoline complexes:Remarkable external quantum efficiency over a wide range of current [J]. Adv Mater,2003,15 (11):884-888.
    [18]BETTINGTON S, TAVASLI M, BRYCE M R et al. Tris-cyclometalated iridium(Ⅲ) complexes of carbazole(fluorenyl)pyridine ligands:Synthesis, redox and photophysical properties, and electrophosphoreseent light-emitting diodes [J]. Chem--Eur J,2007,13 (5): 1423-1431.
    [19]CUMPSTEY N (?) et al. Investigating the effect of steric crowding in phosphorescent dendrimers[J]. Macromolecules,2005,38 (23):9564-9570.
    [20]LO S C, RICHARDS G J, MARKHAM J P J et al. A light-blue phosphorescent dendrimer for efficient solution-processed light-emitting diodes [J]. Adv Funct Mater,2005,15 (9): 1451-1458.
    [21]OKADA S, OKINAKA K, IWAWAKI H et al. Substituent effects of iridium complexes for highly efficient red OLEDs [J]. Dalton Trans.,2005, (9):1583-1590.
    [22]TAVASLI M, BETTINGTON S, BRYCE M. R et al. Practical syntheses of N-hexylcarbazol-2-yl-and-3-yl-boronic acids, their cross-coupled products and a derived tris-cyclometalated (pyridin-2-yl)carbazole iridium(Ⅲ) complex [J]. Synthesis-Stuttgart,2005, (10):1619-1624.
    [23]YOU Y. M, AN C G, LEE D S et al. Silicon-containing dendritic tris-cyclometalated Ir(Ⅲ) complex and its electrophosphorescence in a polymer host [J]. J. Mater. Chem.,2006,16 (48): 4706-4713.
    [24]ZHOU G J, WONG W Y, YAO B et al Triphenylamine-dendronized pure red iridium phosphors with superior OLED efficiency/color purity trade-offs [J]. Angew Chem, Int Ed, 2007,46(7):1149-1151.
    [25]DEDEIAN K, SHI J M, SHEPHERD N et al. Photophysical and electrochemical properties of heteroleptic tris-cyclometalated iridium(Ⅲ) complexes [J]. Inorg Chem,2005,44 (13): 4445-4447.
    [26]CHEN L Q, YANG C L, QIN J G et al. Synthesis, structure, electrochemistry, photophysics and electroluminescence of 1,3,4-oxadiazole-based ortho-metalated iridium(Ⅲ) complexes [J]. J Organomet Chem,2006,691 (16):3519-3530.
    [27]HSIEH C H, WU F I, FAN C H et al. Design and synthesis of iridium bis(carbene) complexes for efficient blue electrophosphorescence[J]. Chem-Eur J,2011,17, (33):9180-9187.
    [28]TENNYSON A G, ROSEN E L, COLLINS M S et al. Bimetallic n-heterocyclic carbene-iridium complexes:Investigating metal-metal and metal-ligand communication via electrochemistry and phosphorescence spectroscopy[J]. Inorg Chem,2009,48, (14): 6924-6933.
    [29]HANEDER S, DA COMO E, FELDMANN J et al. Controlling the radiative rate of deep-blue electrophosphorescent organometallic complexes by singlet-triplet gap engineering[J]. Adv Mater,2008,20, (17):3325-3326.
    [30]CHANG C-F, CHENG Y-M, CHI Y et al. Highly efficient blue-emitting iridium(ⅲ) carbene complexes and phosphorescent oleds[J]. Angew Chem Int Ed,2008,47, (24):4542-4545.
    [31]CHANG Y Y, HUNG J Y, CHI Y et al. Emissive iridium(iii) diimine complexes formed by double cyclometalation of coordinated triphenylphosphite[J]. Inorg Chem,2011,50, (11): 5075-5084.
    [32]CHIU Y C, LIN C H, HUNG J Y et al. Authentic-blue phosphorescent iridium(ⅲ) complexes bearing both hydride and benzyl diphenylphosphine; control of the emission efficiency by ligand coordination geometry[J]. Inorg Chem,2009,48, (17):8164-8172.
    [33]HUNG J Y, LIN C H, CHI Y et al. Phosphorescent ir(ⅲ) complexes bearing double benzyldiphenylphosphine cyclometalates; strategic synthesis, fundamental and integration for white oled fabrication[J]. J Mater Chem,2010,20, (36):7682-7693.
    [34]HUNG J Y, CHI Y, PAI I H et al. Blue-emitting ir(iii) phosphors with ancillary 4,6-difluorobenzyl diphenylphosphine based cyclometalate[J]. Dalton Trans,2009, (33): 6472-6475.
    [35]TAMAYO A B, ALLEYNE B D, DJUROVICH P I et al. Synthesis and characterization of facial and meridional tris-cyclometalated iridium(Ⅲ) complexes [J]. J. Am. Chem. Soc.2003, 125(24):7377-7387.
    [36]TSUBOYAMA A, IWAWAKI H, FURUGORI M et al. Homoleptic cyclometalated iridium complexes with highly efficient red phosphorescence and application to organic light-emitting diode[J]. JAm Chem Soc,2003,125, (42):12971-12979.
    [37]LI J, DJUROVICH P I, ALLEYNE B D et al. Synthetic control of excited-state properties in cyclometalated ir(iii) complexes using ancillary ligands[J]. Inorg Chem,2005,44, (6): 1713-1727.
    [38]NAZEERUDDIN M K, HUMPHRY-BAKER R, BERNER D et al. Highly phosphorescence iridium complexes and their application in organic light-emitting devices[J]. J Am Chem Soc, 2003,125, (29):8790-8797.
    [39]CHEN L, YANG C, QIN J et al. Synthesis, structure, electrochemistry, photophysics and electroluminescence of 1,3,4-oxadiazole-based ortho-metalated iridium(iii) complexes [J]. J Organomet Chem,2006,691, (16):3519-3530.
    [40]MAK C S K, (HAYER(?)A,PASCU S I et al. Blue-to-green electrophosphorescence of iridium-based (?) Chem Commun,2005, (37):4708-4710.
    [41]LAMANSKY S, DJUROVICH P, MURPHY D et al. Highly phosphorescent bis-cyclometalated iridium complexes:Synthesis, photophysical characterization, and use in organic light emitting diodes[J]. JAm Chem Soc,2001,123, (18):4304-4312.
    [42]XU W J, LIU S J, ZHAO XY et al. Cationic iridium(iii) complex containing both triarylboron and carbazole moieties as a ratiometric fluoride probe that utilizes a switchable triplet-singlet emission[J]. Chem-Eur J,2010,16, (24):7125-7133.
    [43]HE L, QIAO J, DUAN L et al. Toward highly efficient solid-state white light-emitting electrochemical cells:Blue-green to red emitting cationic iridium complexes with imidazole-type ancillary ligands[J]. Adv Funct Mater,2009,19, (18):2950-2960.
    [44]ROTHE C, CHIANG C J, JANKUS V et al Ionic iridium(iii) complexes with bulky side groups for use in light emitting cells:Reduction of concentration quenching[J]. Adv Funct Mater,2009,19, (13):2038-2044.
    [45]NEVE F, CRISPINI A. Metal-containing amphiphiles:Orthometallated iridium(ⅲ) complexes with substituted 6'-phenyl-2,2'-bipyridines[J]. Eur J Inorg Chem,2000, (5):1039-1043.
    [46]NEVE F, CRISPINI A, CAMPAGNA S et al. Synthesis, structure, photophysical properties, and redox behavior of cyclometalated complexes of iridium(ⅲ) with functionalized 2,2 '-bipyridines[J]. Inorg Chem,1999,38, (10):2250-2258.
    [47]LOWRY M S, BERNHARD S. Synthetically tailored excited states:Phosphorescent, cyclometalated iridium(Ⅲ) complexes and their applications [J]. Chem--Eur J,2006,12 (31): 7970-7977.
    [48]WHITTLE B, EVEREST N S, HOWARD C et al. Synthesis and electrochemical and spectroscopic properties of a series of binuclear and trinuclear ruthenium and palladium complexes based on a new bridging ligand containing terpyridyl and catechol binding-sites [J]. Inorg Chem,1995,34 (8):2025-2032.
    [49]MI B X, WANG P F, GAO Z Q et al. Strong luminescent iridium complexes with (CN)-N-boolean AND=N structure in ligands and their potential in efficient and thermally stable phosphorescent OLEDs [J]. Adv Mater,2009,21 (3):339-343.
    [50]TSUZUKI T, SHIRASAWA N, SUZUKI T et al. Color tunable organic light-emitting diodes using pentafluorophenyl-substituted iridium complexes [J]. Adv Mater,2003,15 (17): 1455-1458.
    [51]BOLINK H J, CAPPELLI L, CHEYLAN S et al. Origin of the large spectral shift in electroluminescence in a blue light emitting cationic iridium(Ⅲ) complex [J]. J Mater Chem, 2007,17 (48):5032-5041.
    [52]COPPO P, PLUMMER E A, DE COLA L. Tuning iridium(Ⅲ) phenylpyridine complexes in the "almost blue" region [J]. Chem Commun,2004, (15):1774-1775.
    [53]SU H C, FANG F C, HWU T Y et al. Highly efficient orange and green solid-state light-emitting electrochemical cells based on cationic Ir-III complexes with enhanced steric hindrance [J]. Adv. Fund. Mater.,2007,17 (6):1019-1027.
    [54]ZHAO Q, YU M X, SHI L X et al. Cationic iridium(ⅲ) complexes with tunable emission color as phosphorescent dyes for live cell imaging[J]. Organometallics,2010,29, (5):1085-1091.
    [55]WILLIAMS J A G, WILKINSON A J, WHITTLE V L. Light-emitting iridium complexes with tridentatc ligands [J]. Dalton Trans.,2008, (16):2081-2099.
    [56]ROBERTO D, TESSORE F, UGO R et al. Terpyridine Zn(Ⅱ), Ru(Ⅲ) and Ir(Ⅲ) complexes as new asymmetric chromophores for nonlinear optics:first evidence for a shift from positive to negative value of the quadratic hyperpolarizability of a ligand carrying an electron donor substituent upon coordination to different metal centres [J]. Chem Commun,2002, (8): 846-847.
    [57]TESSORE F, ROBERTO D, UGO R et al. Terpyridine Zn(Ⅱ), Ru(Ⅲ), and Ir(Ⅲ) complexes: The relevant role of the nature of the metal ion and of the ancillary ligands on the second-order nonlinear response of terpyridines carrying electron donor or electron acceptor groups [J]. Inorg Chem,2005,44 (24):8967-8978.
    [58]DI CENSO D, FANTACCI S, DE ANGELIS F et al. Synthesis, characterization, and DFT/TD-DFT calculations of highly phosphorescent blue light-emitting anionic iridium complexes [J]. Inorg Chem,2008,47 (3):980-989.
    [59]CHIN C S, EUM M S, KIM S Y et al. Blue-light-emitting complexes:Cationic (2-phenylpyridinato)iridium(III) complexes with strong-field ancillary ligands [J]. Eur. J. Inorg Chem,2007, (3):372-375.
    [60]THOMAS K R J, VELUSAMY M, LIN J T et al. Efficient red-emitting cyclometalated iridium(Ⅲ) complexes containing lepidine-based ligands [J]. Inorg Chem,2005,44 (16): 5677-5685.
    [61]TANG W S, LU X X, WONG K M C et al. Synthesis, photophysics and binding studies of Pt(II) alkynyl terpyridine complexes with crown ether pendant. Potential luminescent sensors for metal ions [J]. J Mater Chem,2005,15 (27-28):2714-2720.
    [62]LU W, MI B X, CHAN M C W et al. Light-emitting tridentate cyclometalated platinum(II) complexes containing sigma-alkynyl auxiliaries:Tuning of photo-and electrophosphorescence [J].J Am Chem Soc,2004,126 (15):4958-4971.
    [63]LIN Z H, ZHAO Y G, DUAN C Y et al. A highly selective chromo-and fluorogenic dual responding fluoride sensor:naked-eye detection of F-ion in natural water via a test paper [J]. Dalton Trans,2006, (30):3678-3684.
    [64]BRINAS R P, TROXLER T, HOCHSTRASSER R M et al. Phosphorescent oxygen sensor with dendritic protection and two-photon absorbing antenna [J]. J Am Chem Soc,2005,
    [65]CHARBONNIERE L J, ZIESSEL R F, SAMS C A et al. Coordination properties of a diarylaza crown ether appended with a luminescent [ru(bipy)3]2+unit[J]. Inorg Chem,2003,42, (11): 3466-3474.
    [66]LI C K, LU X X, WONG K M C et al. Molecular design of luminescence ion probes for various cations based on weak gold(i)-gold(i) interactions in dinuclear gold(i) complexes[J]. Inorg Chem,2004,43, (23):7421-7430.
    [67]MUEGGE B D & RICHTER M M. Electrochemiluminescent detection of metal cations using a ruthenium(ⅱ) bipyridyl complex containing a crown ether moiety[J]. Anal Chem,2001,74, (3): 547-550.
    [68]LIN H, CINAR M E & SCHMITTEL M. Comparison of ruthenium(ⅱ) and cyclometalated iridium(ⅲ) azacrown ether phenanthroline hybrids for the detection of metal cations by electrochemiluminescence[J]. Dalton Trans,2010,39, (21):5130-5138.
    [69]HO M L, HWANG F M, CHEN P N et al. Design and synthesis of iridium(ⅲ) azacrown complex:Application as a highly sensitive metal cation phosphorescence sensor[J]. Organic& Biomolecular Chemistry,2006,4, (1):98-103.
    [70]BRANDEL J, SAIRENJI M, ICHIKAWA K et al. Remarkable mg2+-selective emission of an azacrown receptor based on ir(ⅲ) complex[J]. Chem Commun,2010,46, (22):3958-3960.
    [71]ZHAO Q, CAO T, LI F et al. A highly selective and multisignaling optical-electrochemical sensor for hg2+based on a phosphorescent iridium(ⅲ) complex[J]. Organometallics,2007,26, (8):2077-2081.
    [72]ZHAO Q, LIU S, LI F et al. Multisignaling detection of hg(2+) based on a phosphorescent iridium(iii) complex[J]. Dalton Trans,2008, (29):3836-3840.
    [73]WONG W Y, HO C L, GAO Z Q et al. Multifunctional iridium complexes based on carbazole modules as highly efficient electrophosphors (vol 45, pg 7800,2006)[J]. Angew Chem Int Ed, 2007,46, (10):1558-1558.
    [74]ARAYA J C, GAJARDO J, MOYA S A et al. Modulating the luminescence of an iridium(ⅲ) complex incorporating a di(2-picolyl)anilino-appended bipyridine ligand with zn2+cations[J]. New J Chem,2010,34, (1):21-24.
    [75]ZHAO N, WU Y H, WEN H M et al. Conversion from ilct to llct/mlct excited state by heavy metal ion binding in iridium(ⅲ) complexes with functionalized 2,2'-bipyridyl ligands[J]. Organometallics,2009,28, (19):5603-5611.
    [76]YU M, ZHAO Q, SHI L et al. Cationic iridium(ⅲ) complexes for phosphorescence staining in the cytoplasm of living cells[J]. Chem Commun,2008, (18):2115-2117.
    [77]LO KKW, LEE P K & LAU J S Y. Synthesis, characterization, and properties of luminescent organoiridium(iii) polypyridine complexes appended with an alkyl chain and their interactions with lipid bilayers, surfactants, and living cells[J]. Organometallics,2008,27, (13): 2998-3006.
    [78]LAU J S Y, LEE P K, TSANG K H K et al. Luminescent cyclometalated iridium(ⅲ) polypyridine indole complexes-synthesis, photophysics, electrochemistry, protein-binding properties, cytotoxicity, and cellular uptake[J]. Inorg Chem,2009,48, (2):708-718.
    [79]MOLLER, S., PERLOV, C. JACKSON, W., et al., A polymer/semiconductor write-once read-many-times memory [J]. Nature,2003.426(6963):166-169.
    [80]LING Q D, LIAW D J, ZHU C X, et al., Polymer electronic memories:Materials, devices and mechanisms[J]. Prog Polym Sci,2008.33(10):917-978.
    [81]LIU S J, LIN Z H, ZHAO Q et al., Flash-Memory effect for polyfluorenes with on-chain iridium(III) complexes[J]. Adv Funct Mater,2011.21(5):979-985.
    [82]LIU S J., LIN W P, YIMD et al., Conjugated polymers with cationic iridium(Ⅲ) complexes in the side-chain for flash memory devices utilizing switchable through-space charge transfer[J]. J Mater Chem,2012.22(43):22964-22970.
    [83]ZHAO Q, LI F Y & HUANG C H. Phosphorescent chemosensors based on heavy-metal complexes[J]. Chem Soc Rev,2010,39, (8):3007-3030.
    [84]XU W J, LIU S J, ZHAO X Y et al. Cationic iridium(ⅲ) complex containing both triarylboron and carbazole moieties as a ratiometric fluoride probe that utilizes a switchable triplet-singlet emission[J]. Chem-Eur J,2010,16, (24):7125-7133.
    [85]LAM S T, ZHU N Y & YAM V W W. Synthesis and characterization of luminescent rhenium(i) tricarbonyl diimine complexes with a triarylboron moiety and the study of their fluoride ion-binding properties[J]. Inorg Chem,2009,48, (20):9664-9670.
    [86]BOTCHWAY S W, CHARNLEY M, HAYCOCK J W et al. Time-resolved and two-photon emission imaging microscopy of live cells with inert platinum complexes[J]. Proc Natl Acad Sci,2008,105,(42):16071-16076.
    [87]CHEN H L, ZHAO Q, WU Y B et al. Selective phosphorescence chemosensor for homocysteine based on an iridium(ⅲ) complex[J]. Inorg Chem,2007,46, (26):11075-11081.
    [88]XU W J, LIU S J, MA T C et al. P-n mctallophosphor based on cationic iridium(ⅲ) complex for solid-state light-emitting electrochemical cells[J]. J Mater Chem,2011,21, (36): 13999-14007.
    [89]COSTA R D, ORTI E, BOLINK H J et al. Intramolecular pi-stacking in a phenylpyrazole-based iridium complex and its use in light-emitting electrochemical cells[J]. J Am Chem Soc,2010,132, (17):5978-+.
    [90]COSTA R D, ORTI E, BOLINK H J et al. Efficient and long-living light-emitting electrochemical cells[J]. Adv Funct Mater,2010,20, (9):1511-1520.
    [91]ROTHE C, CHIANG C J, JANKUS V et al. Ionic iridium(iii) complexes with bulky side groups for use in light emitting cells:Reduction of concentration quenching[J]. Adv Fund Mater,2009,19, (13):2038-2044.
    [92]HE L, QIAO J, DUAN L et al. Toward highly efficient solid-state white light-emitting electrochemical cells:Blue-green to red emitting cationic iridium complexes with imidazole-type ancillary ligands[J]. Adv Funct Mater,2009,19, (18):2950-2960.
    [93]WANG P, LIU S J, LIN Z H et al. Design and synthesis of conjugated polymers containing pt(ii) complexes in the side-chain and their application in polymer memory devices[J]. J Mater Chem,2012,22, (19):9576-9583.
    [94]LIU S J, WANG P, ZHAO Q et al. Single polymer-based ternary electronic memory material and device[J]. Adv Mater,2012,24, (21):2901-2905.
    [95]LIU S J, CHEN Y, XU W J et al. New trends in the optical and electronic applications of polymers containing transition-metal complexes[J]. Macromol Rapid Commun,2012,33, (6-7): 461-480.
    [96]YOU Y, NAM W. Photofunctional triplet excited states of cyclometalated ir(iii) complexes:Beyond electroluminescence[J]. Chem Soc Rev,2012,41, (21):7061-7084.
    [97]SASABE H, TAKAMATSU J-I, MOTOYAMA T et al. High-efficiency blue and white organic light-emitting devices incorporating a blue iridium carbene complex[J]. Adv Mater, 2010,22, (44):5003.
    [98]CHE C-M, KWOK C-C, LAI S-W et al. Photophysical properties and oled applications of phosphorescent platinum(ii) schiff base complexes[J]. Chem-Eur J,2010,16, (1):233-247.
    [99]XU W J, LIU S J, MA T C et al. P-n metallophosphor based on cationic iridium(iii) complex for solid-state light-emitting electrochemical cells[J]. J Mater Chem,2011,21, (36): 13999-14007.
    [100]COSTA R D, ORTI E, BOLINK H J et al. Intramolecular pi-stacking in a phenylpyrazole-based iridium complex and its use in light-emitting electrochemical cells[J]. J Am Chem Soc,2010,132, (17):5978-5979.
    [101]LIU S J, WANG P, ZHAO Q et al. Single polymer-based ternary electronic memory material and device[J]. Adv Mater,2012,24, (21):2901-2905.
    [102]LIU S J, LIN Z H, ZHAO Q et al. Flash-memory effect for polyfluorenes with on-chain iridium(ⅲ) complexes[J]. Adv Funct Mater,2011,21, (5):979-985.
    [103]ZHAO Q, HUANG C H & LI F Y. Phosphorescent heavy-metal complexes for bioimaging[J]. Chem Soc Rev,2011,40, (5):2508-2524.
    [104]XU W J, LIU S J, ZHAO X Y et al. Cationic iridium(ⅲ) complex containing both triarylboron and carbazole moieties as a ratiometric fluoride probe that utilizes a switchable triplet-singlet emission[J]. Chem-Eur J,2010,16, (24):7125-7133.
    [105]CHEN H L, ZHAO Q, WU Y B et al. Selective phosphorescence chemosensor for homocysteine based on an iridium(ⅲ) complex[J]. Inorg Chem,2007,46, (26):11075-11081.
    [106]YEH S J, WU M F, CHEN C T et al. New dopant and host materials for blue-light-emitting phosphorescent organic electroluminescent devices[J]. Adv Mater,2005,17, (3):285-286.
    [107]ANTHOPOULOS T D, FRAMPTON M J, NAMDAS E B et al. Solution-processable red phosphorescent dendrimers for light-emitting device applications[J]. Adv Mater,2004,16, (6): 557-558.
    [108]TSUBOYAMA A, IWAWAKI H, FURUGORI M et al. Homoleptic cyclometalated iridium complexes with highly efficient red phosphorescence and application to organic light-emitting diode[J]. J Am Chem Soc,2003,125, (42):12971-12979.
    [109]LAMANSKY S, DJUROVICH P, MURPHY D et al. Highly phosphorescent bis-cyclometalated iridium complexes:Synthesis, photophysical characterization, and use in organic light emitting diodes[J]. J Am Chem Soc,2001,123, (18):4304-4312.
    [110]MA B W, DJUROVICH P I, THOMPSON M E. Excimer and electron transfer quenching studies of a cyclometalated platinum complex[J]. Coordination Chemistry Reviews,2005,249, (13-14):1501-1510.
    [111]FORREST S R, THOMPSON M E. Introduction:Organic electronics and optoelcctronics[J]. Chemical Reviews,2007,107, (4):923-925.
    [112]WONG W-Y & HO C-L. Heavy metal organometallic electrophosphors derived from multi-component chromophores[J]. Coordination Chemistry Reviews,2009,253, (13-14): 1709-1758.
    [113]TAMAYO A B, GARON S, SAJOTO T et al. Cationic bis-cyclometalated iridium(iii) diimine complexes and their use in efficient blue, green, and red electroluminescent devices[J]. Inorganic Chemistry,2005,44, (24):8723-8732.
    [114]LO S C, ANTHOPOULOS T D, NAMDAS E B et al. Encapsulated cores:Host-free organic light-emitting diodes based on solution-processible electrophosphorescent dendrimers[J]. Advanced Materials,2005,17,(16):1945-1946.
    [115]LO S C, RICHARDS G J, MARKHAM J P J et al. A light-blue phosphorescent dendrimer for efficient solution-processed light-emitting diodes[J]. Advanced Functional Materials,2005, 15,(9):1451-1458.
    [116]SLINKER J D, GORODETSKY A A, LOWRY M S et al. Efficient yellow electroluminescence from a single layer of a cyclometalated iridium complex[J]. Journal of the American Chemical Society,2004,126, (9):2763-2767.
    [117]YEH S J, WU M F, CHEN C T et al. New dopant and host materials for blue-light-emitting phosphorescent organic electroluminescent devices[J]. Advanced Materials, 2005,17, (3):285-286.
    [118]J. B. Birks, Photophysics of aromatic molecules, Wiley, London,1970.
    [119]KAWAMURA Y, GOUSHI K, BROOKS J et al.100% phosphorescence quantum efficiency of ir(iii) complexes in organic semiconductor films[J]. Applied Physics Letters, 2005,86, (7).
    [120]LUO J D, XIE Z L, LAM J W Y et al. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole[J]. Chemical Communications,2001, (18):1740-1741.
    [121]HONG Y, LAM J W Y & TANG B Z. Aggregation-induced emission:Phenomenon, mechanism and applications [J]. Chemical Communications,2009, (29):4332-4353.
    [122]YUAN W Z, LU P, CHEN S et al. Changing the behavior of chromophores from aggregation-caused quenching to aggregation-induced emission:Development of highly efficient light emitters in the solid state[J]. Advanced Materials,2010,22, (19):2159-2160.
    [123]LEVITUS M, SCHMIEDER K, RICKS H et al. Steps to demarcate the effects of chromophore aggregation and planarization in poly(phenyleneethynylene)s.1. Rotationally interrupted conjugation in the excited states of 1,4-bis(phenylethynyl)benzene[J]. Journal of the American Chemical Society,2001,123, (18):4259-4265.
    [124]DEANS R, KIM J, MACHACEK M R et al. A poly (p-phenylenecthynylene) with a highly emissive aggregated phase[J]. Journal of the American Chemical Society,2000,122, (35): 8565-8566.
    [125]BELTON C, O'BRIEN D F, BLAU W J et al. Excited-state quenching of a highly luminescent conjugated polymer[J]. Applied Physics Letters,2001,78, (8):1059-1061.
    [126]YU Y, FENG C, HONG Y et al. Cytophilic fluorescent bioprobes for long-term cell tracking[J]. Advanced Materials,2011,23, (29):3298-3299.
    [127]SHI H, LIU J, GENG J et al. Specific detection of integrin alpha(v)beta(3) by light-up bioprobe with aggregation-induced emission characteristics[J]. Journal of the American Chemical Society,2012,134, (23):9569-9572.
    [128]AN B K, LEE D S, LEE J S et al. Strongly fluorescent organogel system comprising fibrillar self-assembly of a trifluoromethyl-based cyanostilbene derivative[J]. Journal of the American Chemical Society,2004,126,(33):10232-10233.
    [129]CHI Y & CHOU P-T. Transition-metal phosphors with cyclometalating ligands:Fundamentals and applications[J]. Chemical Society Reviews,2010,39, (2):638-655.
    [130]PROCOPIO E Q, MAURO M, PANIGATI M et al. Highly emitting concomitant polymorphic crystals of a dinuclear rhenium complex[J]. Journal of the American Chemical Society,2010,132, (41):14397-14399.
    [131]STRASSERT C A, CHIEN C-H, LOPEZ M D G et al. Switching on luminescence by the self-assembly of a platinum(ii) complex into gelating nanofibers and electroluminescent films[J]. Angewandte Chemie-International Edition,2011,50, (4):946-950.
    [132]SUN Y, YE K, ZHANG H et al. Luminescent one-dimensional nanoscale materials with pt-ii-pt-ii interactions[J]. Angewandte Chemie-International Edition,2006,45, (34): 5610-5613.
    [133]KOMIYA N, OKADA M, FUKUMOTO K et al. Highly phosphorescent crystals of vaulted trans-bis(salicylaldiminato)platinum(ii) complexes[J]. Journal of the American Chemical Society,2011,133,(17):6493-6496.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700