宽波段光吸收法聚合物薄膜厚度在线检测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物薄膜是一种重要的化学材料。随着石油化学工业和聚合物加工工业的发展,聚合物薄膜的生产、应用也获得了很大的发展,并在农业、包装、化工、国防和人们生活等方面扮演了越来越重要的角色。在聚合物薄膜众多工业性能要求当中,厚度是衡量其质量的主要技术指标。聚合物薄膜厚度不仅涉及到生产工厂的成本,还会影响其拉伸强度、阻隔性等实际应用效果。因此,聚合物薄膜厚度在线检测一直是人们关心的重要问题。
     本文采用宽波段光吸收法对聚合物薄膜厚度进行在线检测。针对目前商业化薄膜厚度在线检测装置采用的双波长对比法存在的双单色光测量位置偏差、通用性差等问题,研制一种抗环境干扰能力强、无需配置滤光片、具有长期工作可靠性的薄膜厚度在线检测系统是本文研究的关键问题。在宽波段内应用朗伯定律,并基于宽波段光吸收法建立一种薄膜厚度测量模型是本文研究的又一个重要问题。此外,针对工业聚合物薄膜生产线不停机持续生产的实际情况,根据宽波段光源长期工作时波段光强的变化来补偿光谱强度的波动也是本文研究的一个重要问题。针对上述问题,开展本文的研究工作。本文的主要研究内容如下:
     (1)根据宽波段光在透过薄膜后的光辐射衰减情况,提出了基于宽波段光吸收法的薄膜厚度在线测量方法。分析了光辐射在介质中传播时的指数衰减规律及物质自发辐射谱和吸收谱的洛伦兹线型。讨论了当一定频率区间内的光辐射在物质中传播时,物质光学厚度光谱分布与光源光谱强度分布的带宽比及两者中心频率偏移率对光学厚度测量的影响。研究了宽波段光吸收法测量物质厚度时,抗系统误差及随机误差的能力。在提出波段朗伯定律概念的基础上,提出了宽波段薄膜厚度测量模型。该模型不需对薄膜的特征吸收带进行分析,适用于在较宽波段内均有光吸收特性的薄膜,且具有很强的抗光谱透过率测量随机误差能力。对厚度为100m左右的薄膜测量时,仿真误差绝对值在0.4m以内;实验误差绝对值在0.8m以内。
     (2)针对工业现场聚合物薄膜生产的特殊应用要求,研制了宽波段薄膜厚度在线检测系统。根据宽波段薄膜厚度测量模型,建立了光功率与薄膜厚度的函数关系。根据离散函数的特性,采用了基于数值分析的薄膜厚度反演方法。该系统采用宽波段热辐射光源及基于热电堆探测器的光功率计,根据宽波段光吸收法对工业生产线中的聚合物薄膜进行在线扫描检测。分析了光源与探测器相对位置变化对探测器接收光辐射的影响。采用扫描全程的小标样动态标定方法对扫描架导轨进行了标定。标定完成后,测量100m以内薄膜时,导轨扫描引入的最大误差范围小于0.7m。
     (3)针对工业聚合物薄膜生产线长期连续工作的情况,提出了基于波段光强的宽波段光源光谱辐射强度波动补偿方法。该方法通过研究黑体光谱辐射出射度和全辐射出射度的依赖关系,建立了光谱辐射出射度与波段辐射出射度的函数关系式。该方法应用于在线检测系统时,不需要额外增加硬件设备,只需测量光源的波段光强变化即可补偿光源光谱辐射强度的波动,解决了在线检测系统长期工作时光源波动对检测结果的影响问题。在黑体全辐射出射度变化1倍时,绝大多数数据点的补偿结果相对误差绝对值在1%以内。不同电源输入功率下宽波段光源光谱强度拟合相对误差绝对值在1.5%以内。
     (4)对检测系统进行了实验研究及不确定度分析。采用在线获取方法得到了薄膜样品并使用轮廓仪测量了其厚度。使用傅里叶光谱仪测量了薄膜样品的光谱透过率和光源相对光谱强度。获取了光功率与薄膜厚度的关系曲线,得出检测系统在测量100m以内薄膜时测量分辨率为0.4m。使用不同厚度的薄膜标样,对系统检测误差进行了测试实验。系统30个厚度输出值与标准厚度最大偏差在1.5m以内,其中每个厚度输出值为5次测量的平均值。分析了系统测量不确定度,得到了系统在50m~150m的检测范围内,单次测量结果的扩展不确定度(k2)在3.0m以内;5次测量均值的扩展不确定度()在1.7m以内。
Polymer film is an important kind of chemical material. With the development ofpetrochemical industry and polymer processing industry, polymer film production andapplication also obtain a great development. Polymer film plays an increasinglyimportant role in agriculture, packaging, chemicals, defense and people’s life. In manyindustrial performance requirements, the thickness of the polymer film is a maintechnical indicator for measuring quality. The polymer film thickness is not only relatedto the production cost, but also affects the actual application effect such as the tensilestrength, barrier properties. Therefore, polymer film thickness on-line measurement hasalways been a main concerned problem.
     In this dissertation, broadband optical absorption method is proposed for polymerfilm thickness on-line measurement. At present, the dual-wavelength contrast method isused in commercialize film thickness on-line measurement device, while it has theproblems of double monochromatic measurement position deviation and poor versatility.For these problems, to develop an on-line film thickness measurement system with ananti-environmental interference ability, long-term reliability, and without having toconfigure filters is a key issue of this dissertation. Applying Lambert law in broadbandand building a film thickness measurement model based on broadband opticalabsorption method is another important issue of this dissertation. In addition, for theindustrial polymer film production line actual situation of non-stop continuousproduction, compensating illuminant spectral intensity fluctuations, according to thechange of broadband intensity during the long working time is also an important issueof this dissertation. In response to these problems, carry out research work of thisdissertation. The main research contents are as follows:
     (1) According to the optical radiation attenuation of broadband light after passingthrough the film, the film thickness on-line measurement method based on broadbandoptical absorption is proposed. Exponential decay laws of optical radiation pass inmedium and Lorentzian lineshape of material spontaneous radiation spectrum andabsorption spectrum are analyzed. When a certain frequency range of light radiationpropagates in material, the influences of the bandwidth ratio of the material opticalthickness spectral distribution and the illuminant spectral intensity distribution and theircenter frequency drift rate on the material optical thickness measurement are discussed.The abilities of resistance to the systematic error and random error are analyzed, whenusing broadband optical absorption method to measure material thickness. Thebroadband film thickness measurement method is proposed, after the concept of band Lambert law was proposed. This model does not need to analyze the characteristicabsorption band of the film, and is suitable for the film with a wide band lightabsorption characteristics, and has a strong resistance of random error for spectraltransmittance measurement. The absolute value of simulation error is less than0.4mand the absolute value of experimental error is less than0.8m when the film thicknessis about100m.
     (2) For special application requirments of polymer film production in industrial site,a broadband film thickness on-line measurement system is developed. A functionbetween optical power and film thickness is built according to the broadband filmthickness measurement model. With the characteristics of discrete function, a filmthickness inversion method based on numerical analysis is adopted. A broadbandthermal radiation illuminant and a optical power meter based on thermopile detector areused in the system. The broadband optical absorption method is used for polymer filmon-line scan measurement. The influence of relative position change of illuminant anddetector to the light radiation received by the detector is analyzed. The scanning frameguide rail is calibrated with the dynamic calibration method using small-sized standardsamples to scan the whole range. After the calibration, maximum error range due toguide rail scanning is less than0.7m when measuring film at the thickness of100mor less.
     (3) For the long-term continuous industrial polymer film production line case,broadband illuminant spectral radiation intensity fluctuation compensation methodbased on band intensity change is proposed. The functional relationship betweenspectral radiant exitance and band radiant exitance is built by studying the dependencerelationship between spectral radiant exitance and whole radiant exitance of blackbody.When this method is applied to on-line measurement system, no additional hardwaredevice is needed. Illuminant spectral radiation intensity fluctuation can be compensatedjust by measuring the illuminant band intensity change. This method solve the problemof the influence of illuminant fluctuation to measurement results. The vast majority ofdata points compensation results are in a relative error of less than1%, when theblackbody whole radiant exitance vary double. The fitting relative error of broadbandilluminant spectral intensity is less than1.5%at different power input.
     (4) The experiment research and uncertainty analysis of the measurement system iscarried out. The film samples are obtained by using on-line method and theirthicknesses are measured by contourgraph. The spectral transmittances of the filmsamples and the illuminant relative spectral intensity are measured by Fourierspectrometer. The relationship curve of optical power and film thickness is obtained,and the measurement resolution of the system is0.4m for measuring film at the thickness of less than100m. Use film standards with different thicknesses to test thesystem measurement error. The maximum deviation between30thickness outputs andthe standard thickness are less than1.5m; each thickness output value is the average of5measurements. The uncertainty of the measurement system is analyzed. In themeasurement range of50m to100m, a single measurement expanded uncertainty(k2) is3.0m and the mean of5measurements expanded uncertainty () is lessthan1.7m.
引文
[1] Malpass D. B., Band E. I. Introduction to Industrial Polypropylene: Properties,Catalysts Processes[M]. United States of America: John Wiley and Sons,2012.
    [2] Kasirajan Subrahmaniyan, Ngouajio Mathieu. Polyethylene and biodegradablemulches for agricultural applications: a review[J]. Agronomy for SustainableDevelopment.2012,32(2):501-529.
    [3] Vox Giuliano, Schettini Evelia. Evaluation of the radiometric properties ofstarch-based biodegradable films for crop protection[J]. Polymer Testing.2007,26(5):639-651.
    [4] Aniunoh Kenneth, Harrison Graham M. The processing of polypropylene castfilms. I. Impact of material properties and processing conditions on filmformation[J]. Polymer Engineering&Science.2010,50(6):1151-1160.
    [5] Campanella Luigi, Antiochia Riccarda, Dragone Roberto, Lavagnini Irma.Determination of oxygen permeability of food wrapping films by anamperometric sensor[J]. International Journal of Environmental AnalyticalChemistry.2005,85(12-13):959-969.
    [6] Bart J. C. J. Plastics additives: Advanced industrial analysis[M]. Netherlands:DSM Research,2006.
    [7] Kalapat Nanticha, Amornsakchai Taweechai. Surface modification of biaxiallyoriented polypropylene (BOPP) film using acrylic acid-corona treatment: Part I.Properties and characterization of treated films[J]. Surface and CoatingsTechnology.2012,207:594-601.
    [8] Kalapat Nanticha, Amornsakchai Taweechai, Srikhirin Toemsak. Surfacemodification of biaxially oriented polypropylene (BOPP) film using acrylicacid-corona treatment: Part II. Long term aging surface properties[J]. Surface andCoatings Technology.2013,234:67-75.
    [9] Lei Jingxin, Liao Xia. Surface graft copolymerization of acrylic acid onto LDPEfilm through corona discharge[J]. European Polymer Journal.2001,37(4):771-779.
    [10] K I. Nova, Florian S. Investigation of long-term hydrophobic recovery of plasmamodified polypropylene[J]. Journal of Materials Science.2004,39(6):2033-2036.
    [11] Guimond S. Bastien, Wertheimer Michael R. Surface degradation andhydrophobic recovery of polyolefins treated by air corona and nitrogenatmospheric pressure glow discharge[J]. Journal of Applied Polymer Science.2004,94(3):1291-1303.
    [12] Lamberti G., Titomanlio G., Brucato V. Measurement and modelling of the filmcasting process2. Temperature distribution along draw direction[J]. ChemicalEngineering Science.2002,57:1993-1996.
    [13] Lamberti G., Titomanlio G., Brucato V. Measurement and modelling of the filmcasting process1. Width distribution along draw direction[J]. ChemicalEngineering Science.2001,56(20):5749-5761.
    [14] Aniunoh Kenneth K., Harrison Graham M. Experimental Investigation of FilmFormation: Film Casting[J]. Journal of Plastic Film and Sheeting.2006,22(3):177-192.
    [15] Silagy D., Demay Y., Agassant J. F. Numerical simulation of the film castingprocess[J]. International Journal for Numerical Methods in Fluids.1999,30(01):1-18.
    [16] Acierno D., Di Maio L., Ammirati C. C. Film casting of polyethyleneterephthalate: Experiments and model comparisons[J]. Polymer Engineering&Science.2000,40(1):108-117.
    [17] Lobo R. F. M., Pereira-Da-Silva M. A., Raposo M., Faria R. M., Jr O. N. Oliveira.In situ thickness measurements of ultra-thin multilayer polymer films by atomicforce microscopy[J]. Nanotechnology.1999,10:389-393.
    [18] Hong Xiaodong, Gan Yang, Wang You. Facile measurement of polymer filmthickness ranging from nanometer to micrometer scale using atomic forcemicroscopy[J]. Surface and Interface Analysis.2011,43(10):1299-1303.
    [19] Passeri D., Dong C., Angeloni L., Pantanella F., Natalizi T., Berlutti F.,Marianecci C., Ciccarello F., Rossi M. Thickness measurement of soft thin filmson periodically patterned magnetic substrates by phase difference magnetic forcemicroscopy[J]. Ultramicroscopy.2014,136:96-106.
    [20] Mykhaylyk T. A., Dmitruk N. L., Evans S. D., Hamley I. W., Henderson J. R.Comparative characterisation by atomic force microscopy and ellipsometry ofsoft and solid thin films[J]. Surface and Interface Analysis.2007,39(7):575-581.
    [21] Gesang T., Fanter D., H O Per R., Possart W., Hennemann O-D. Comparativefilm thickness determination by atomic force microscopy and ellipsometry forultrathin polymer films[J]. Surface and interface analysis.1995,23(12):797-808.
    [22] Walsh Christopher B., Franses Elias I. Thickness and quality of spin-coatedpolymer films by two-angle ellipsometry[J]. Thin Solid Films.1999,347(1-2):167-177.
    [23] Tompkins Harland G., Tiwald Tom, Bungay Corey, Hooper Andrew E.Measuring the thickness of organic/polymer/biological films on glass substratesusing spectroscopic ellipsometry[J]. Journal of Vacuum Science and TechnologyA: Vacuum, Surfaces and Films.2006,24(4):1605-1609.
    [24] Kim S. W., Kim G. H. Thickness-profile measurement of transparent thin-filmlayers by white-light scanning interferometry[J]. Appl Opt.1999,38(28):5968-5973.
    [25] Yongkai Zhu, Lu Zhang, Haitao Wang, Hong Zhao. A sensing system formonitoring the thickness of thin films by spectrum analysis of white-lightinterference[C]. Proc. of SPIE.2008,7064:70640R.
    [26]薛晖,沈伟东,顾培夫,罗震岳,刘旭,章岳光.基于白光干涉的光学薄膜物理厚度测量方法[J].光学学报.2009(07):1877-1880.
    [27] Dong J. T., Lu R. S. Sensitivity analysis of thin-film thickness measurement byvertical scanning white-light interferometry[J]. Appl Opt.2012,51(23):5668-5675.
    [28] Gamsky Christopher J., Howes Glenn R., Taylor James W. Infrared ReflectionAbsorption Spectroscopy of Photoresist Films on Silicon Wafers: Measuring FilmThickness and Removing Interference Fringes[J]. Analytical Chemistry.1994,66(7):1015-1020.
    [29] Laasonen Magali, Harmia-Pulkkinen Tuulikki, Simard Christine, R s nenMarkku, Vuorela Heikki. Determination of the thickness of plastic sheets used inblister packaging by near infrared spectroscopy: development and validation ofthe method[J]. European Journal of Pharmaceutical Sciences.2004,21(4):493-500.
    [30] Yang Peng, Meng Xiangfei, Zhang Zhiyuan, Jing Benxin, Yuan Jing, YangWantai. Thickness Measurement of Nanoscale Polymer Layer on PolymerSubstrates by Attenuated Total Reflection Infrared Spectroscopy[J]. AnalyticalChemistry.2005,77(4):1068-1074.
    [31]徐源,黄金强,崔灿,卢秀乐,周贤菊.利用红外光谱仪快速测量塑料薄膜厚度[J].物理实验.2012,32(05):31-33.
    [32] Jie Mao, Ming-Xuan Li, Xiao-Min Wang. Thickness Determination for aTwo-Layered Composite of a Film and a Plate by Low-Frequency Ultrasound[J].Chinese Physics Letters.2007,24(3):755-758.
    [33] An Min, Sun Jie, Zhang Yinyan. Research of ultrasonic thickness measurementmethod based on the pulse reflection type[J]. Applied Mechanics and Materials.2013,380-384:798-801.
    [34] Sastikumar D., Gobi G., Renganathan B. Determination of the thickness of atransparent plate using a reflective fiber optic displacement sensor[J]. Optics&Laser Technology.2010,42(6):911-917.
    [35] Grunlan Jaime C., Mehrabi Ali R., Ly Tien. High-throughput measurement ofpolymer film thickness using optical dyes[J]. Measurement Science andTechnology.2005,16(1):153-161.
    [36] Bikiaris D., Koutri I., Alexiadis D., Damtsios A., Karagiannis G. Real time andnon-destructive analysis of tablet coating thickness using acoustic microscopyand infrared diffuse reflectance spectroscopy[J]. International Journal ofPharmaceutics.2012,438(1-2):33-44.
    [37] Lifeng Guo, Yuming Fan, Guoxiong Zhang, Ken Chen. CCD-based on-linethickness measurement system for calender[C]. Proc. of SPIE.2007,6834:683430.
    [38]郭丽峰,樊玉铭,张嘉亮,张超,张国雄,刘文耀.基于虚拟仪器的压延机在线测厚系统[J].天津大学学报.2007,40(10):1256-1259.
    [39]宋敏,郑亚茹,卢永军,曲艳玲.一种可实现薄膜厚度在线测量的方法[J].光学技术.2007,32(03):447-449.
    [40] Tojo F., Hirakawa S., Toyoda T., Itoh M. Sheet-Thickness Process Control bySelf-Calibrated Optical and Magnetic Sensing[J]. IEEE Sensors Journal.2006,6(5):1309-1313.
    [41] Wang Yanfei. Study on measuring object thickness with the laser light trianglemethod[C]. Proceedings of the International Symposium on Test andMeasurement.1999:839-842.
    [42] Weidong Yang, Zhanbiao Gao. Research of strategy for automatic measurementof sheet thickness[C]. Proc. of SPIE.2011,7997:79973E.
    [43] Spinola C., Vazquez M. J. M., Bohorquez A. F., Bonelo J. M., Vizoso J.Calibration of thickness measurement instruments based on twin laser sensors.Isoline bilinear look up tables[C]. Conference Record-IEEE Instrumentation andMeasurement Technology Conference.2001,2:1079-1083.
    [44]邓湘,郑义忠.塑料薄膜及涂层厚度在线测量研究[J].计量学报.2001,22(04):268-271.
    [45] Ma Yu Zhen, Ye S. H., Duan F., Zheng Y. A Plastic Film Thickness On-LineDetecting System[J]. Key Engineering Materials.2005,295-296:387-392.
    [46] Yuzhen Ma, Xinhua Wang, Fajie Duan, Yizhong Zheng, Shenghua Ye. Study ofplastic film thickness detecting system based on capacitive sensor[J]. ChineseJournal of Sensors and Actuators.2005,18(01):116-119.
    [47]李恒.电容式塑料薄膜厚度扫描检测系统的研究[D].天津大学,2007.
    [48]闫坤.塑料薄膜厚度在线测量系统的设计[J].仪表技术与传感器.2011(02):91-94.
    [49] Shirakawa Y. A build-up treatment for thickness gauging of steel plates based ongamma-ray transmission[J]. Appl Radiat Isot.2000,53(4-5):581-586.
    [50] Liang Manchun, Yi Hongchang, Lin Qian. New correction method for dynamicerror in on-line gamma ray thickness detection[J]. Applied Radiation and Isotopes.2009,67(11):1974-1976.
    [51] Mincong Chen, Hongmei Li, Ziyu Chen, Ji Shen. An examination of massthickness measurements with X-ray sources[J]. Applied Radiation and Isotopes.2008,66(10):1387-1391.
    [52] Ekinci N., Kurucu Y., Z E., Ahin Y. Determination of the coating thicknesses dueto the scattered radiation in energy dispersive X-ray fluorescence spectrometry[J].Radiation Measurements.2002,35(3):223-227.
    [53] Ekinci Neslihan, Oz Elif, Kurucu Yakup, Sahin Yusuf. Measurement of foil andcable thicknesses by a transmission method[J]. Instrumentation Science&Technology.2001,29(5):415-421.
    [54] Birkholz Mario. Thin film analysis by X-ray scattering[M]. United States ofAmerica: John Wiley and Sons,2006.
    [55] Sowerby B. D., Rogers C. A. Gamma-ray density and thickness gauges usingultra-low activity radioisotope sourcesfillin[J]. Applied Radiation and Isotopes.2005,63(5-6):789-793.
    [56] Shirakawa Y. A build-up treatment for thickness gauging of steel plates based ongamma-ray transmission[J]. Applied Radiation and Isotopes.2000,53(4-5):581-586.
    [57]许立梓,李传芳,林文豪,郑锐生.用β射线在线测试薄膜厚度的计算机测量系统[J].广东工业大学学报.1999,16(2):5-8.
    [58] Tojo Fumio, Hirakawa Syunzou, Toyoda Toshiyasu, Iguchi Masaru, KatayamaYusuke, Nishikubo Tokoh, Fujita Hiroyuki, Itoh Mineo. Evaluation of PlasticFilm Thickness Measuring System Using an X-ray Slit Beam[C]. ConferenceRecord-IEEE Instrumentation and Measurement Technology Conference.2007:4258159.
    [59] Tojo Fumio, Hirakawa Shunzo, Toyoda Toshiyasu, Iguchi Masaru, KatayamaYusuke, Itoh Mineo. Characteristic of a Plastic Film Thickness MeasuringSystem Using a Slit Beam X-ray[J]. IEEJ Transactions on Industry Applications.2008,128(5):601-606.
    [60]靳其兵,陈拉.往复式薄膜X射线测厚仪的研制[J].工业仪表与自动化装置.2007(1):65-67.
    [61] Larena Alicia, Pinto Gabriel, Millán Felipe. Using the Lambert-Beer law forthickness evaluation of photoconductor coatings for recording holograms[J].Applied Surface Science.1995,84(4):407-411.
    [62] Larena Alicia, Millán Felipe, Pinto Gabriel. Iterative method for the opticalcharacterization of biaxially oriented poly(ethyleneterephthalate) films[J]. OpticalMaterials.2006,28(8-9):1013-1019.
    [63] Busigny Vincent, Cartigny Pierre, Philippot Pascal, Javoy Marc. Quantitativeanalysis of ammonium in biotite using infrared spectroscopy[J]. AmericanMineralogist.2004,89(11-12):1625-1630.
    [64] Ye C., R ty J., Nyblom I., Hyv rinen H. K., Moss P., Keskuslaboratorio O.Estimation of lignin content in single, intact pulp fibers by UV photometry andVIS Mueller matrix polarimetry[J]. Nordic Pulp and Paper Research Journal.2001,16(2):143-148.
    [65] Agrinier Pierre, Nathalie Jendrzejewski. Overcoming problems of density andthickness measurements in FTIR volatile determinations: a spectroscopicapproach[J]. Contributions to Mineralogy and Petrology.2000,139(3):265-272.
    [66] Kroeze Jessica E., Savenije Tom J., Vermeulen Martien J. W., Warman John M.Contactless Determination of the Photoconductivity Action Spectrum, ExcitonDiffusion Length, and Charge Separation Efficiency in Polythiophene-SensitizedTiO2Bilayers[J]. The Journal of Physical Chemistry B.2003,107(31):7696-7705.
    [67] Cohen R., Exerowa D., Kolarov T., Yamanaka T., Tano T. Foam films stabilizedwith lysophosphatidylcholine: A comparison of microinterferometric and fouriertransform infrared spectroscopy thickness measurements[J]. Langmuir.1997,13(12):3172-3176.
    [68] Ganesh S., Khan F., Ahmed M. K., Velavendan P., Pandey N. K., KamachiMudali U. Spectrophotometric determination of trace amounts of phosphate inwater and soil[J]. Water Science&Technology.2012,66(12):2653-2658.
    [69] Basniwal Pawan Kumar, Kumar Vinesh, Shrivastava Prabhat Kumar, Jain Deepti.Spectrophotometric Determination of Cilostazol in Tablet Dosage Form[J].Tropical Journal of Pharmaceutical Research.2011,9(5):499-503.
    [70] Onah Johnson O., Ajima Ukpe. Spectrophotometric determination of tenofovirdisoproxil fumarate after complexation with ammonium molybdate and picricacid[J]. International Journal of Drug Development and Research.2011,3(1):199-204.
    [71] Inagaki Hideto, Saito Akinori, Murakami Motoichi, Konomi Toshiaki.Measurement of oil film thickness distribution on piston surface using thefluorescence method[J]. JSME International Journal Series B.1997,40(3):487-493.
    [72]杜方迅,徐刚,汤晓波.透射式激光测厚传感器的研制[J].传感器技术.2002,21(10):16-18.
    [73] Im Jisun, Sengupta Sandip K., Whitten James E. Photometer for monitoring thethickness of inkjet printed films for organic electronic and sensor applications[J].Review of Scientific Instruments.2010,81(3):34103.
    [74] Xu F., Lv Z., Zhang Y. G., Somesfalean G., Zhang Z. G. Concentrationevaluation method using broadband absorption spectroscopy for sulfur dioxidemonitoring[J]. Applied Physics Letters.2006,88(23):231109.
    [75] Xu Feng, Zhang Yungang, Somesfalean Gabriel, Wang Huashan, Wu Shaohua,Zhang Zhiguo. Broadband spectroscopic sensor for real-time monitoring ofindustrial SO2emissions[J]. Applied Optics.2007,46(13):2503-2506.
    [76] Gray Caprice, Rogers Chris B., Manno Vincent P., White Robert D. Modeling ofdual emission laser induced fluorescence for slurry thickness measurements inchemical mechanical polishing[J]. Experiments in Fluids.2011,51(1):281-293.
    [77] Edgar Roger F. Uses Of The Infrared Absorption Gauge For On-Line Gauging OfCoatings And Film Thickness[C]. Proc. of SPIE.1977,110:30-34.
    [78]井田芳明.膜厚测定装置[P].日本专利.昭60-164599.1985-07-23.
    [79]张鸣华.红外技术在塑料薄膜膜厚在线检测中的应用[J].浙江工学院学报.1985(02):3-10.
    [80]张鸣华,闵心蓉.红外测厚[J].自动化仪表.1988(2):5-9.
    [81]张鸣华,闵心蓉.红外测厚仪及提高其精度的方法[J].电子测量与仪器学报.1992,6(04):34-40,61.
    [82]廖复中,魏和荣,赵文奎,方毓文.用红外吸收法非接触测量涤纶薄膜的厚度[J].计量学报.1990,11(4):266-270.
    [83]林瑞国,刘青,卢竞宪,郭蓥武,黄桂兰. IM-C型红外水份/薄膜厚度测试仪的研制[J].仪表技术与传感器.1998(10):16-19,23.
    [84]何平,何露雅,杨旭东,刘俊武,钱玉恒. LED式固态红外薄膜厚度测量方法[P].中国专利. CN101839695A.2010-09-22.
    [85]刘俊武. LED式固态薄膜厚度在线测量系统研究[D].哈尔滨工业大学,2011.
    [86] Xu Yu, Jones N. Barrie, Fothergill John C., Hanning Chris D. Error analysis oftwo-wavelength absorption-based fibre-optic sensors[J]. Optics and Lasers inEngineering.2001,36(6):607-615.
    [87] Bach M., Heering W. NIR-laser based detection of the photopolymerization stateof acrylate coatings suitable for in situ measurements[J]. Journal of AppliedPolymer Science.2012,124(4):3494-3500.
    [88]董殿会,程江,王广彪.红外测厚技术在超薄薄膜和多层共挤薄膜生产线上的应用[J].塑料加工.2008,44(1):45-51.
    [89] Wang H. S., Zhang Y. G., Wu S. H., Lou X. T., Zhang Z. G., Qin Y. K. Usingbroadband absorption spectroscopy to measure concentration of sulfur dioxide[J].Applied Physics B: Lasers and Optics.2010,100(3):637-641.
    [90] Zhang Y. G., Somesfalean G., Guo W., Wang H. S., Wu S. H., Qin Y. K., ZhangZ. G. An optical system for measuring nitric oxide using spectral separationtechniques[J]. Applied Physics B: Lasers and Optics.2012,107(2):435-440.
    [91] Johnson Jay, Harris Tequila. Full-field optical thickness profilometry ofsemitransparent thin films with transmission densitometry[J]. Appl Opt.2010,49(15):2920-2928.
    [92]张丽红,李艳萍,候桂凤,伦翠芬,于之靖.光纤传感器在涡轮轴向位移检测中的应用研究[J].仪表技术与传感器.2005(09):55-56.
    [93]周小丽,刘木清.近红外光源的稳定性控制[J].光源与照明.2004(04):4-5.
    [94]王帅,冯新泸,管亮.近红外光谱仪光源稳定性的控制研究[J].计算机与应用化学.2010(12):1687-1690.
    [95] Nagali V., Chou S. I., Baer D. S., Hanson R. K., Segall J. Tunable diode-laserabsorption measurements of methane at elevated temperatures[J]. Appl Opt.1996,35(21):4026-4032.
    [96]王霞,金伟其,王汝琳.红外气体传感器多光路光学系统设计[J].光学技术.2002,28(02):152-154.
    [97] Chan Kinpui, Ito Hiromasa, Inaba Humio. Remote sensing system fornear-infrared differential absorption of CH4gas using low-loss optical fiberlink[J]. Applied Optics.1984,23(19):3415-3420.
    [98]吕玉祥,董肖节,郭峰.基于红外差分检测的甲烷气体传感器[J].应用光学.2012,33(4):747-751.
    [99]汪晓东.强度型激光光纤传感系统的神经网络补偿方法[J].光学学报.2002(02):215-219.
    [100]白力,廖宁放,栗兆剑,吴文敏,杨卫平.单光路分光光度计中光源影响的软件补偿方法[J].光学技术.2004(02):166-169.
    [101]徐克尊.高等原子分子物理学[M].科学出版社,2006.
    [102]方容川.固体光谱学[M].中国科学技术大学出版社,2001.
    [103] Chan George C. Y., Chan Wingtat. Beer’s Law Measurements UsingNon-monochromatic Light Sources—A Computer Simulation[J]. Journal ofChemical Education.2001,78(9):1285-1288.
    [104]朱继亦,任建伟,李葆勇,万志,刘则洵,李宪圣,张艳琪,叶钊,全先荣.基于LED的光谱可调光源的光谱分布合成[J].发光学报.2010,31(6):882-887.
    [105]崔厚欣.吸收光谱法在实际应用中的关键问题的研究[D].天津大学,2007.
    [106] Zhao Huayong, Williams Ben, Stone Richard. Measurement of the spatiallydistributed temperature and soot loadings in a laminar diffusion flame using aCone-Beam Tomography technique[J]. Journal of Quantitative Spectroscopy andRadiative Transfer.2014,133:136-152.
    [107] Rodiet Christophe, Rémy Benjamin, Degiovanni Alain, Demeurie Franck.Optimisation of wavelengths selection used for the multi-spectral temperaturemeasurement by ordinary least squares method of surfaces exhibitingnon-uniform emissivity[J]. Quantitative InfraRed Thermography Journal.2013,10(2):222-236.
    [108] Anevsky Sergey, Krutikov Vladimir, Minaeva Olga, Minaev Roman, SeninDmitriy, Hollandt J rg, Taubert Dieter R. Method for the calibration of thespectral irradiance of tungsten filament transfer standard sources traceable tosynchrotron radiation[J]. Applied Optics.2013,52(21):5152.
    [109] Kappes Ralf S., Sch nfeld Friedhelm, Li Chen, Gutmann Jochen S., ButtHans-Jürgen. Temperature analysis of laser heated polymers on microsecond timescales[J]. Applied Physics A: Materials Science and Processing.2012,106(4):791-801.
    [110] Ball David W. Wien’s displacement law as a function of frequency[J]. Journal ofChemical Education.2013,90(9):1250.
    [111]李成思.基于相对误差意义下的最小二乘法[J].数理统计与管理.2003,22(4):36-40.
    [112]金伟其,胡威捷.辐射度、光度与色度及其测量[M].北京理工大学出版社,2006.
    [113]宋明顺,顾龙芳,陈意华.最小二乘测量结果不确定度的评定及案例[J].计量技术.2000(01):43-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700