基于β-环糊精和纳米碳材料的POPs电化学传感研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
持久性有机污染物(Persistent organic pollutants, POPs)是指能持久存在于环境中,可通过生物食物链(网)累积、并对人类健康和环境造成有害影响的化学物质。相比于常规污染物,POPs对人类健康和自然环境的危害更大:在自然环境中滞留时间长,极难降解,毒性极强,并能导致全球性的传播。在被生物体摄入后不易分解,并沿着食物链浓缩放大。而位于生物链顶端的人类则把这些毒性放大到了7万倍。POPs不仅会对人体本身造成影响(如:免疫能力下降、内分泌失调、内脏器官坏死、新陈代谢受阻、诱发癌症等),还可能影响到后代的正常生长和发育(如畸形、智力发育缓慢等)。因此,对POPs实现准确的定性和定量分析具有重大的价值和意义。
     β-环糊精是直链淀粉在芽孢杆菌产生的环糊精葡萄糖基转移酶作用下生成的含有7个葡萄糖单元的环状低聚糖,它具有环内疏水环外亲水的特性,同时能够选择性的识别许多如有机分子等客体形成主客体包络物。另一方面,纳米碳材料(如碳纳米管、石墨烯、碳空心球)具有大的表面积,优良的导电性和电催化性能。本文主要结合β-环糊精和碳材料的协同作用,发展了一系列电化学检测POPs的新材料和新方法:
     (1)成功制备了巯基-β-环糊精(SH-β-CD)功能化修饰金纳米粒子/氮掺杂中空碳微球(AuNPs/HNCMS)复合材料,实现了对萘酚异构体高灵敏度的电化学传感分析。实验结果显示,1-萘酚(1-NAP)和2-萘酚(2-NAP)在HS-β-CD/AuNPs/HNCMS修饰玻碳(GC)电极表面氧化峰电流远远大于AuNPs/HNCMS/GC、 HNCMS/GC、裸GC电极表面的氧化峰电流。与已有的萘酚电化学检测方法相比,通过本方法得出的1-NAP和2-NAP的检测限(1.0nM和1.2nM)分别降低了4倍和两个数量级,两者的线性范围均为2-150nM。
     (2)采用湿化学法制备了β-环糊精-铂纳米粒子/石墨烯纳米复合材料(β-CD-PtNPs/GNs),采用原子力显微镜、透射电子显微镜、傅立叶变换红外光谱和电化学方法对其进行表征,实现了对萘酚的超灵敏电化学检测。测量结果显示,与PtNPs/GNs/GC、β-CD/GNs/GC、GNs/GC、裸GC电极相比,萘酚在β-CD-Pt NPs/GNs/GC电极上的氧化峰电流最大。另外,与已有的萘酚电化学传感器相比,该传感器对1-NAP的检测限(0.23nM)降低了大约一个数量级,2-NAP的检测限(0.37nM)降低了大约三个数量级。
     (3)以3,4,9,10-苝四酸(PTCA)作为“桥”将氨基环糊精(NH_2-β-CD)固定到石墨烯(GN)表面,制备了环糊精功能化石墨烯纳米复合材料(CD-PTCA-GN),采用用傅里叶红外光谱、热重分析、原子力显微镜和电化学方法对该复合物进行了表征,实现了具有代表性的四种有机污染物[1-萘胺(1-NA),五氯苯酚,9-羧酸蒽(9-ACA)和双酚A]的电化学检测。研究结果显示,该材料修饰GC电极对上述四种污染物均具有很好的电催化作用。以1-萘胺为模型,详细探讨了CD-PTCA-GN复合材料修饰电极对1-萘胺的电化学传感的研究结果,线性响应范围达10nM-550nM,检测限达1.0nM。
     (4)将β-CD固定到PTCA功能化的单壁碳纳米管(SWCNT)上面,制备了β-CD功能化SWCNTs复合物(β-CD-PTCA-SWCNTs),采用傅里叶红外光谱、投射电子显微镜、热重分析仪、拉曼光谱和电化学方法对该复合物进行了表征,并应用于9-ACA的电化学传感。由于SWCNTs优良的电学性能和β-CD的分子识别能力,9-ACA在β-CD/PTCA/SWCNTs修饰GC电极(β-CD-PTCA-SWCNTs/GC)表面的氧化峰电流分别是SWCNTs/GC、GC的4倍、31.2倍,线性响应范围达2nM-140nM,检测限达0.65nM。
     (5)基于β-环糊精/聚乙酰苯胺/电沉积石墨烯(β-CD/PNAANI/EG)膜与探针分子和被分析物之间竞争,发展了一种既灵敏又具选择性的新型双信号电化学检测电活性有机污染物方法。在此,以罗丹明B(RhB)和1-氨基芘(1-AP)分别作为探针和目标物分子。由于主客体包络作用,RhB分子可以进入β-CD内腔,因此在β-CD/PNAANI/EG修饰GC电极上会明显的出现RhB氧化峰。然而,加入1-AP后,它将与RhB产生竞争性结合β-CD内腔并取代RhB分子,从而使RhB的氧化峰下降同时出现1-AP的氧化峰,两者信号的改变值大小与1-AP的浓度成线性关系。以两者信号改变值的绝对值之和为响应信号所获得的对1-AP的检测限比单独作为响应信号所获得的检测限要低很多。
     此外,通过一种简单的电聚合方法,我们制备了聚噻唑(PAMT)修饰GC电极(PAMT/GC),并将该修饰电极应用于9-ACA的电化学检测。由于PAMT大的表面积、好的电催化性能和电学性能,PAMT/GC对9-ACA的检测限达0.012μM (S/N=3),线性响应范围达0.7~1.1μM。此外,本文所制备的PAMT/GC电极在检测9-ACA时不会产生电极污染,从而使得该电极的重现性和稳定性良好,有利于实际应用。
Persistent organic pollutants (POPs) are chemical substances that persist in theenvironment, bioaccumulate through the food web, and pose a risk of causingadverse effects to human health and the environment. Compared to generalpollutants, POPs are more harmfull. It’s very difficult to decompound POPsexisted in biology and the POPs can accumulate in human body through the foodchain. These will not only affect the human body itself, resulting in endocrinedisorder, weakened immune system, metabolic disruption, necrosis of internalorgans, causing cancer, etc., but also affect the normal development and growth oftheir offspring, who may be deformity or slow mental development. Therefor, it’sof great significance to achieve the qualitative and quantitative determinations ofPOPs.
     β-cyclodextrins (β-CD) is oligosaccharides composed of seven glucose units,which is toroidal in shape with a hydrophobic inner cavity and a hydrophilicexterior. It is well known that β-CD has high molecular selectivity andenantioselectivity, various organic, inorganic, and biological guest molecules canbe bound selectively in the inner cavity of β-CD to form stable host-guestinclusion complexes. On the other hand, carbon materials, sucs as carbon nanotube,graphene and hollow carbon microspheres, have high specific surface area, goodchemical stability and electrochemical properties. Herein, based on the synergeticeffects from carbon materials and β-CD, we developed a series of nanohybrids andmethods to detect POPs ultrasensitively by electrochemical technology:
     (1) Gold nanoparticles (Au NPs)/hollow nitrogen-doped carbon microspheres(HNCMS) hybrids (Au NPs/HNCMS) were prepared and functionalized bythiolated-β-cyclodextrin (HS-β-CD) for the first time, and then appliedsuccessfully in sensitive and simultaneous electrochemical detection of naphthols.The results show that the oxidation peak currents of naphthols obtained on theHS-β-CD/AuNPs/HNCMS modified glassy carbon (GC) electrode are much higherthan that on the HS-β-CD/HNCMS/GC, AuNPs/HNCMS/GC, HNCMS/GC andbare GC electrodes. Additionally, compared with the other electrochemical sensorsdeveloped previously, the proposed electrode demonstrates the improved detectionlimits of about four times for1-NAP (1.0nM) and two orders of magnitudefor2-NAP (1.2nM). The linear response range for both1-NAP and2-NAP are2– 150nM.
     (2) β-cyclodextrin (β-CD)-platinum nanoparticles (Pt NPs)/graphenenanosheets (GNs) nanohybrids (β-CD-PtNPs/GNs) were prepared for the first timeusing a simple wet chemical method and characterized by atomic force microscopy,transmission electron microscopy, Fourier transform infrared spectroscopy, andelectrochemical methods, and then applied in the ultrasensitive electrochemicaldetection of naphthol isomers. The results show that the oxidation peak currents ofnaphthol isomers obtained at the glassy carbon (GC) electrode modified withβ-CD-PtNPs/GNs are much higher than those at the β-CD/GNs/GC,PtNPs/GNs/GC, GNs/GC, and bare GC electrodes. Additionally, compared withother electrochemical sensors developed previously, the proposed electrode resultsin decreased detection limits of about one order of magnitude for1-NAP (0.23nM)and three orders of magnitude for2-NAP (0.37nM).
     (3) Using3,4,9,10-perylene tetracarboxylic acid as a bridge to connectmono(6-ethanediamine-6-deoxy)-b-cyclodextrin (NH_2-β-CD)to the surface ofgraphene, noncovalently functionalized graphene nanosheets (CD-PTCA-GNs) aresynthesized for the first time. The as-prepared CD-PTCA-GNs were characterizedby Fourier transform infrared spectroscopy, thermogravimetric analysis, atomicforce microscopy, and electrochemical methods. The electrocatalytic activitiestoward several organic pollutants at the glassy carbon (GC) electrode modifiedwith CD-PTCA-GNs were investigated, all of which show a remarkable increase inelectrochemical performance relative to the bare GC and GNs/GC electrodes.1-aminonaphthalene (1-NA) was used as the representative analyte to demonstratethe sensing performance of the CD-PTCA-GNs. The results show that the linearresponse range of1-NA is10–550nM with the detection limit of1.0nM (S/N=3),thus implying that the CD-PTCA-GNs organic–inorganic nanohybrids will havepromising applications in organic pollutants analysis and sensors.
     (4) We reported a simple and facile approach to synthesis β-cyclodextrinnon-covalently functionalized single-walled carbon nanotubes bridged by3,4,9,10-perylene tetracarboxylic acid (β-CD-PTCA-SWCNTs), and Fourier transforminfrared spectroscopy, transmission electron microscopy, thermogravimetricanalysis, Raman spectroscopy and electrochemical methods were used tocharacterize the as-prepared functionalized SWCNTs. Furthermore, theβ-CD-PTCA-SWCNTs were applied successfully to detect9-AnthracenecarboxylicAcid by electrochemical methods. The results show that the oxidation peak current of9-ACA at β-CD-PTCA-SWCNTs modified GC electrode is4.0and31.2times higher than that at the SWCNTs/GC and bare GC electrodes, respectively, and the proposed modified electrode has a linear response range of2.00to140.00nM with a detection limit of0.65nM (S/N=3) towards9-ACA, due to the synergetic effects from SWCNTs (good electrochemical properties and large surface area) and β-CD (a hydrophilic external surface, high supramolecular recognition and enrichment capability).
     (5) Based on the competitive host-guest interaction between β-cyclodextrin/poly(N-acetylaniline)/electrogenerated-graphene (β-CD/PNAANI/EG) film and probe or target molecules, a new dual-signalling electrochemical sensing method has been developed for sensitive and selective determination of organic pollutants. As the model, rhodamine B (RhB) and1-aminopyrene (1-AP) were adopted as the probe and target molecules, respectively. Due to the host-guest interaction, RhB molecules can entry into the hydrophobic inner cavity of β-CD, and the β-CD/PNAANI/EG modified glassy carbon electrode displays a remarkable oxidation peak of RhB. While in the presence of1-AP, competitive association to the β-CD occurs and the RhB molecules are displaced by1-AP. This results in that the oxidation peak current of RhB decreases and the oxidation peak current of1-AP appears, and the changes of dual signals are linear with the concentration of1-AP. When "ΔI1-AP+|ΔIRhB|"(ΔI1-AP and ΔIRhB are the change values of the oxidation peak currents of1-AP and RhB, respectively.) is used as the response signal to quantitatively determine the concentration of1-AP, the detection limit is much lower than that by using ΔI1-AP or ΔIRhB as the response signal. This dual-signalling sensor can provide more sensitive target recognition, and will have important applications in the sensitive and selective electrochemical determination of electroactive organic pollutants.
     Additionally, an ultrathin film modified glassy carbon (GC) electrode was prepared by electropolymerization of5-amino-1,3,4-thiadiazole-2-thiol (AMT) on the GC electrode (PAMT/GC) and used to detect9-ACA. Compared to the GC electrode, the PAMT/GC electrode shows more excellent stability and reproducibility, and meanwhile exhibits higher electrochemical response of9-ACA due to the unique properties of PAMT such as large surface area, good electronic properties and catalytic ability. The linear range for9-ACA detection is from7.0x10-8M to1.1×10-6M and the detection limit is1.2×10-8M (S/N=3). Finally, the proposed methodology was successfully applied to the detection of9-ACA inwater samples.
引文
[1] Jones K C, de Voogt P. Persistent organic pollutants (pops): State of thescience. Environmental Pollution,1999,100(1-3):209-221
    [2]穆季平.持久性有机污染物(POPs)研究进展.环境科学与技术,2006,29:40-143
    [3]任仁.《斯德哥尔摩公约》禁用的12种持久性有机污染物.大学化学,2003,18(3):37-41
    [4] Zhang Z L, Hong H S, Zhou J L, et al. Fate and assessment of persistentorganic pollutants in water and sediment from minjiang river estuary,southeast china. Chemosphere,2003,52(9):1423-1430
    [5] Wania F, MacKay D. Peer reviewed: Tracking the distribution of persistentorganic pollutants. Environmental Science&Technology,1996,30(9):390A-396A
    [6] Li J, Yang L, Luo S, et al. Polycyclic aromatic hydrocarbon detection byelectrochemiluminescence generating Ag/TiO_2nanotubes. AnalyticalChemistry,2010,82(17):7357-7361
    [7] Yang L, Chen B, Luo S, et al. Sensitive detection of polycyclic aromatichydrocarbons using CdTe quantum dot-modified TiO_2nanotube arraythrough fluorescence resonance energy transfer. Environmental Science&Technology,2010,44(20):7884-7889
    [8] Zhao G, Jiang L, He Y, et al. Sulfonated graphene for persistent aromaticpollutant management. Advanced Materials,2011,23(34):3959-3963
    [9] Zhu G, Gai P, Wu L, et al. β-cyclodextrin-platinum nanoparticles/graphenenanohybrids: Enhanced sensitivity for electrochemical detection of naphtholisomers. Chemistry–An Asian Journal,2012,7(4):732-737
    [10] Zhao J, Hu G, Yang Z, et al. Determination of1-Naphthol with denaturedDNA–modified pretreated glassy carbon electrode. Analytical Letters,2007,40:459–470
    [11] Beyer A, Mackay D, Matthies M, et al. Assessing long-range transportpotential of persistent organic pollutants. Environmental Science&Technology,2000,34(4):699-703
    [12] Muir D C G, Howard P H. Are there other persistent organic pollutants? Achallenge for environmental chemists. Environmental Science&Technology,2006,40(23):7157-7166
    [13] Kouimtzis T, Samara C, Voutsa D, et al. PCDD/Fs and PCBs in airborneparticulate matter of the greater thessaloniki area. Greece. Chemosphere,2002,47(2):193-205
    [14] Chen S-J, Hsieh L-T, Hwang P-S. Concentration, phase distribution, and sizedistribution of atmospheric polychlorinated biphenyls measured in southerntaiwan. Environment International,1996,22(4):411-423
    [15]张祖麟.闽江口持久性有机污染物—多氯联苯的初步研究.环境科学学报,2002,22(6):788-791
    [16]康跃惠,盛国英.珠江澳门河口沉积物柱样中有机氯农药的垂直分布特征.环境科学,2001,22(1):81-85
    [17] David O.什么是持久性有机污染物?持久性有机污染物控制研究会论文集.北京:国家环保局,2001,9
    [18] Eljarrat E, Caixach J, Rivera J. Levels of polychlorinated dibenzo-p-dioxinsand dibenzofurans in soil samples from spain. Chemosphere,2001,44(6):1383-1387
    [19]龚钟明.天津市郊污灌区农田土壤中的有机氯农药残留.农业环境保护,2002,21(5):459-461
    [20]李国刚,李红莉.持久性有机污染物在中国的环境检测现状.中国环境检测,2004,4:53-60
    [21]于慧芳.北京地区人乳有机氯农药蓄积水平的动态研究.环境与健康杂志,2001,18(6):352-354
    [22] Wong C K C, Leung K M, Poon B H T, et al. Organochlorine hydrocarbons inhuman breast milk collected in hong kong and guangzhou. Archives ofEnvironmental Contamination and Toxicology,2002,43(3):0364-0372
    [23]谢武明,胡勇有,刘焕彬, et al.持久性有机污染物(POPs)的环境问题与研究进展.中国环境监测,2004,20(2):58-61
    [24]王正萍,周雯.环境有机污染物监测分析.北京:化学工业出版社,2002,5-6
    [25]高芷芳,周黎,吴庭明.五氯苯酚离子选择电极的研制.分析测试通报,1990,9(4):37-40
    [26]李玉平,曹宏斌,张懿.硝基苯在碳纳米管修饰电极上的电化学行为及其分析应用.环境化学,2005,24(3):315-317
    [27] Wei M-Y, Wen S-D, Yang X-Q, et al. Development of redox-labeledelectrochemical immunoassay for polycyclic aromatic hydrocarbons withcontrolled surface modification and catalytic voltammetric detection.Biosensors and Bioelectronics,2009,24(9):2909-2914
    [28] Wang L-R, Wang Y, Chen J-W, et al. A structure-based investigation on thebinding interaction of hydroxylated polycyclic aromatic hydrocarbons withDNA. Toxicology,2009,262(3):250-257
    [29]王晓岗,刘往专,吴庆生等.表面活性剂增强下萘酚异构体的电化学快速测定.应用化学,2007,24(9):996-999
    [30]韦进宝,钱沙华.环境分析化学.北京:化学工业出版社,2002,161-162.
    [31]魏杰,张冰,郑海洋等.激光质谱法对痕量污染物的快速检测.中国科学A,2001,31
    [32] United states environmental protection agency. mehtod1613:tetra-through octa. chlorinated dioxins and furans by isotope dilutionhrgc/hrms.1994. October
    [33] Lores M, Llompart M, González-Garc a R, et al. On-fibre photodegradationstudies of polychlorinated biphenyls using SPME-GC-MS-MS: A newapproach. Chemosphere,2002,47(6):607-615
    [34]吴健民.临床化学自动化免疫分析.北京:科学出版社,2000,120-149
    [35] Boujday S, Nasri S, Salmain M, et al. Surface ir immunosensors forlabel-free detection of benzo[a]pyrene. Biosensors and Bioelectronics,2010,26(4):1750-1754
    [36] Mauriz E, Calle A, Montoya A, et al. Determination of environmentalorganic pollutants with a portable optical immunosensor. Talanta,2006,69(2):359-364
    [37] Galloway T S, Sanger R C, Smith K L, et al. Rapid assessment of marinepollution using multiple biomarkers and chemical immunoassays.Environmental Science&Technology,2002,36(10):2219-2226
    [38] Szolar O H J, Brown R S, Luong J H T. Separation of pahs by capillaryelectrophoresis with laser-induced fluorescence detection using mixtures ofneutral and anionic beta-cyclodextrins. Analytical Chemistry,1995,67(17):3004-3010
    [39] Freeman R, Finder T, Bahshi L, et al. β-cyclodextrin-modified CdSe/ZnSquantum dots for sensing and chiroselective analysis. Nano Letters,2009,9(5):2073-2076
    [40] Guo Y, Guo S, Ren J, et al. Cyclodextrin functionalized graphene nanosheetswith high supramolecular recognition capability: Synthesis and host-guestinclusion for enhanced electrochemical performance. ACS Nano,2010,4(7):4001-4010
    [41] Zhu G, Zhang X, Gai P, et al. Enhanced electrochemical sensing forpersistent organic pollutants by nanohybrids of graphene nanosheets that arenoncovalently functionalized with cyclodextrin. ChemPlusChem,2012,77(9):844-849
    [42]叶素芳.环糊精和环糊精包和物.化工纵横,2002,8:1-4
    [43]谷福根,高永良,崔福德.环糊精包合物研究进展.中国新药杂志,2005,14(6):686-693
    [44] Inoue Y, Liu Y, Tong L H, et al. Calorimetric titration of inclusioncomplexation with modified beta-cyclodextrins enthalpy-entropycompensation in host-guest complexation: From ionophore to cyclodextrinand cyclophane. Journal of the American Chemical Society,1993,115(23):10637-10644
    [45] Inoue Y, Hakushi T, Liu Y, et al. Thermodynamics of molecular recognitionby cyclodextrins. Calorimetric titration of inclusion complexation ofnaphthalenesulfonates with Alpha-, Beta-, and Gamma-cyclodextrins:Enthalpy-entropy compensation. Journal of the American Chemical Society,1993,115(2):475-481
    [46] Rekharsky M V, Inoue Y. Complexation thermodynamics of cyclodextrins.Chemical Reviews,1998,98(5):1875-1918
    [47]易争平,赵长春,陈慧兰,于俊生. PH值对3-基-2-奈甲酸荧光性质及其α-环糊精包结物生成常数的影响.无机化学学报,1997,13(2):212-215.
    [48]王南平,张其平,张跃华,陈洪渊. D-环糊精与神经递质的包络作用及其结构.化学学报,2003,61(4):597-602
    [49] Zhao Y-L, Hu L, Stoddart J F, et al. Pyrenecyclodextrin-decoratedsingle-walled carbon nanotube field-effect transistors as chemical sensors.Advanced Materials,2008,20(10):1910-1915
    [50]程珂伟,李新华.环糊精的改性及其应用.沈阳农业大学学报,2001,32(4):313-316
    [51] Immel S, Lichtenthaler F W. Per-O-methylated α-and β-CD: Cyclodextrinswith inverse hydrophobicity. Starch-St rke,1996,48(6):225-232
    [52] Guo Y, Guo S, Li J, et al. Cyclodextrin-graphene hybrid nanosheets asenhanced sensing platform for ultrasensitive determination of carbendazim.Talanta,2011,84(1):60-64
    [53] Li X, Liu D, Wang Z. Highly selective recognition of naphthol isomers basedon the fluorescence dye-incorporated SH-β-cyclodextrin functionalized goldnanoparticles. Biosensors and Bioelectronics,2011,26(5):2329-2333
    [54] Rosa dos Santos J-F, Alvarez-Lorenzo C, Silva M, et al. Soft contact lensesfunctionalized with pendant cyclodextrins for controlled drug delivery.Biomaterials,2009,30(7):1348-1355
    [55] Gu mundsdóttir E, Stefánsson E, Bjarnadóttir G, et al. Methazolamide1%incyclodextrin solution lowers iop in human ocular hypertension. InvestigativeOphthalmology&Visual Science,2000,41(11):3552-3554
    [56] Kozuch P, Hoff P M, Hess K, et al. Phase i bioequivalency study of mitoextraand mitomycin c in patients with solid tumors. Cancer,2001,91(4):815-821
    [57] Sawicki R, Mercier L. Evaluation of mesoporous cyclodextrin-silicananocomposites for the removal of pesticides from aqueous media.Environmental Science&Technology,2006,40(6):1978-1983
    [58] Kida T, Nakano T, Fujino Y, et al. Complete removal of chlorinated aromaticcompounds from oils by channel-type β-cyclodextrin assembly. AnalyticalChemistry,2007,80(1):317-320
    [59] Fava F, Bertin L, Fedi S, et al. Methyl-β-cyclodextrin-enhancedsolubilization and aerobic biodegradation of polychlorinated biphenyls intwo aged-contaminated soils. Biotechnology and Bioengineering,2003,81(4):381-390
    [60] S. I. Helical microtubules of graphitic carbon. Nature,1991,354(6348):56-58
    [61] Zhou Z, Kang H, Clarke M L, et al. Water-soluble DNA-wrappedsingle-walled carbon-nanotube/quantum-dot complexes. Small,2009,5(19):2149-2155
    [62] Wong E W, Sheehan P E, Lieber C M. Nanobeam mechanics: Elasticity,strength, and toughness of nanorods and nanotubes. Science,1997,277(5334):1971-1975
    [63] Ebbesen T W L H J, Hiura H, et al. Electrical conductivity of individualcarbon nanotubes. Nature,1996,382(6586):54-56
    [64] Britto P J S K S V, Rubio A, et al. Improved charge transfer at carbonnanotube electrodes. Advanced Materials,1999,11(2):154-157
    [65] Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas ofmassless dirac fermions in graphene. Nature,2005,438(7065):197-200
    [66] Nair R R, Blake P, Grigorenko A N, et al. Fine structure constant definesvisual transparency of graphene. Science,2008,320(5881):1308-1308
    [67] Li X, Cai W, An J, et al. Large-area synthesis of high-quality and uniformgraphene films on copper foils. Science,2009,324(5932):1312-1314
    [68] Wassei J K, Mecklenburg M, Torres J A, et al. Graphene: Chemical vapordeposition of graphene on copper from methane, ethane and propane:Evidence for bilayer selectivity. Small,2012,8(9):1289-1289
    [69] Avdoshenko S M, Nozaki D, Gomes da Rocha C, et al. Dynamic andelectronic transport properties of DNA translocation through graphenenanopores. Nano Letters,2013
    [70] Mao X, Su H, Tian D, et al. Bipyrene-functionalized graphene as a turn-onfluorescence sensor for manganese(ii) ions in living cells. ACS AppliedMaterials&Interfaces,2013,5(3):592-597
    [71] Xia Y, Li W, Wang M, et al. A sensitive enzymeless sensor for hydrogenperoxide based on the polynucleotide-templated silvernanoclusters/graphene modified electrode. Talanta,2013,107(0):55-60
    [72] Alizadeh T, Soltani L H. Graphene/poly(methyl methacrylate) chemiresistorsensor for formaldehyde odor sensing. Journal of Hazardous Materials,2013,248-249:401-406
    [73] Wu Z, Chen X, Zhu S, et al. Enhanced sensitivity of ammonia sensor usinggraphene/polyaniline nanocomposite. Sensors and Actuators B: Chemical,2013,178(0):485-493
    [74] Xiao C, Chu X, Yang Y, et al. Hollow nitrogen-doped carbon microspherespyrolyzed from self-polymerized dopamine and its application insimultaneous electrochemical determination of uric acid, ascorbic acid anddopamine. Biosensors and Bioelectronics,2011,26(6):2934-2939
    [75] Zhu G, Gai P, Yang Y, et al. Electrochemical sensor for naphthols based ongold nanoparticles/hollow nitrogen-doped carbon microsphere hybridsfunctionalized with SH-β-cyclodextrin. Analytica Chimica Acta,2012,723(0):33-38
    [76] Chen J, Chen W, Zhu D. Adsorption of nonionic aromatic compounds tosingle-walled carbon nanotubes: Effects of aqueous solution chemistry.Environmental Science&Technology,2008,42(19):7225-7230
    [77] Tabakman S M, Welsher K, Hong G, et al. Optical properties of single-walledcarbon nanotubes separated in a density gradient: Length, bundling, andaromatic stacking effects. The Journal of Physical Chemistry C,2010,114(46):19569-19575
    [78] Zhao B, Hu H, Haddon R C. Synthesis and properties of a water-solublesingle-walled carbon nanotube–poly(m-aminobenzene sulfonic acid) graftcopolymer. Advanced Functional Materials,2004,14(1):71-76
    [79] Star A, Stoddart J F, Steuerman D, et al. Preparation and properties ofpolymer-wrapped single-walled carbon nanotubes. Angewandte ChemieInternational Edition,2001,40(9):1721-1725
    [80] Xu C-H W, J.-C.; Wan, L.; Lin J.-J.; Wang, X. Microwave-assisted covalentmodification of graphene nanosheets with hydroxypropyl-β-cyclodextrin andits electrochemical detection of phenolic organic pollutants. Journal ofMaterials Chemistry,2011,21:10463-10471
    [81] Zhang W, Zhu G, Ma J, et al. A new electrochemical sensor based onw-doped titania-cnts composite for detection of pentachlorophenol. indianjournal of chemistry,2011,50A:15-21
    [82] Remes A, Pop A, Manea F, et al. Electrochemical determination ofpentachlorophenol in water on a multi-wall carbon nanotubes-epoxycomposite electrode. Sensors,2012,12(6):7033-7046
    [83] Ma J, Zhang Y, Zhang X, et al. Sensitive electrochemical detection ofnitrobenzene based on macro-/meso-porous carbon materials modified glassycarbon electrode. Talanta,2012,88(0):696-700
    [84] Wang Z, Li S, Lv Q. Simultaneous determination of dihydroxybenzeneisomers at single-wall carbon nanotube electrode. Sensors and Actuators B:Chemical,2007,127(2):420-425
    [85] Kalimuthu P, John S A. Nanostructured electropolymerized film of5-amino-2-mercapto-1,3,4-thiadiazole on glassy carbon electrode for theselective determination of l-cysteine. Electrochemistry Communications,2009,11(2):367-370
    [86] Kalimuthu P, John S A. Simultaneous determination of epinephrine, uric acidand xanthine in the presence of ascorbic acid using an ultrathin polymer filmof5-amino-1,3,4-thiadiazole-2-thiol modified electrode. Analytica ChimicaActa,2009,647(1):97-103
    [87] Wang Y, Tong L. Electrochemical sensor for simultaneous determination ofuric acid, xanthine and hypoxanthine based on poly (bromocresol purple)modified glassy carbon electrode. Sensors and Actuators B: Chemical,2010,150(1):43-49
    [88] Niwa S-i, Eswaramoorthy M, Nair J, et al. A one-step conversion of benzeneto phenol with a palladium membrane. Science,2002,295(5552):105-107
    [89] Zhang Y, Zhuang H. Poly (acridine orange) film modified electrode for thedetermination1-naphthol in the presence of2-naphthol. Electrochimica Acta,2009,54(28):7364-7369.
    [90] Sun H, Shen O-X, Xu X-L, et al. Carbaryl,1-naphthol and2-naphthol inhibitthe beta-1thyroid hormone receptor-mediated transcription in vitro.Toxicology,2008,249(2-3):238-242
    [91] Smith C J, Walcott C J, Huang W, et al. Determination of selectedmonohydroxy metabolites of2-,3-and4-ring polycyclic aromatichydrocarbons in urine by solid-phase microextraction and isotope dilutiongas chromatography-mass spectrometry. Journal of Chromatography B,2002,778(1-2):157-164
    [92] Shin H-S, Lim H-H. Simultaneous determination of2-naphthol and1-hydroxy pyrene in urine by gas chromatography–mass spectrometry.Journal of Chromatography B,2011,879(7–8):489-494
    [93] Andreoli R, Manini P, Bergamaschi E, et al. Determination of naphthalenemetabolites in human urine by liquid chromatography-mass spectrometrywith electrospray ionization. Journal of Chromatography A,1999,847(1-2):9-17
    [94] Massey K A, Van Engelen D L, Warner I M. Determination of carbaryl as itsprimary metabolite,1-naphthol, by reversed-phase high-performance liquidchromatography with fluorometric detection. Talanta,1995,42(10):1457-1463
    [95] Kang R-H, Wang Y-S, Yang H-M, et al. Rapid simultaneous analysis of1-hydroxypyrene,2-hydroxyfluorene,9-hydroxyphenanthrene,1-and2-naphthol in urine by first derivative synchronous fluorescencespectrometry using tween-20as a sensitizer. Analytica Chimica Acta,2010,658(2):180-186
    [96] Wang X-G, Wu Q-S, Ding Y-P. Direct simultaneous determination of α-andβ-naphthol isomers at gc-electrode modified with cnts network joined by Ptnanoparticles through derivative voltammetry. Electroanalysis,2006,18(5):517-520
    [97] Liu R, Mahurin S M, Li C, et al. Dopamine as a carbon source: Thecontrolled synthesis of hollow carbon spheres and yolk-structured carbonnanocomposites. Angewandte Chemie International Edition,2011,50(30):6799-6802
    [98] Liu Y, Wang D, Xu L, et al. A novel and simple route to prepare a ptnanoparticle-loaded carbon nanofiber electrode for hydrogen peroxidesensing. Biosensors and Bioelectronics,2011,26(11):4585-4590
    [99] Huang J, Liu Y, Hou H, et al. Simultaneous electrochemical determination ofdopamine, uric acid and ascorbic acid using palladium nanoparticle-loadedcarbon nanofibers modified electrode. Biosensors and Bioelectronics,2008,24(4):632-637
    [100] Freeman R, Finder T, Bahshi L, et al. β-cyclodextrin-modified cdse/znsquantum dots for sensing and chiroselective analysis. Nano Letters,2009,9(5):2073-2076
    [101] Du D, Wang M, Cai J, et al. Sensitive acetylcholinesterase biosensor basedon assembly of β-cyclodextrins onto multiwall carbon nanotubes fordetection of organophosphates pesticide. Sensors and Actuators B: Chemical,2010,146(1):337-341
    [102] Abbaspour A, Noori A. A cyclodextrin host–guest recognition approach to anelectrochemical sensor for simultaneous quantification of serotonin anddopamine. Biosensors and Bioelectronics,2011,26(12):4674-4680
    [103] Yuan Y-K, Xiao X-L, Wang Y-S, et al. Quartz crystal microbalance withβ-cyclodextrin/TiO_2composite films coupled with chemometrics for thesimultaneous determination of urinary1-and2-naphthol. Sensors andActuators B: Chemical,2010,145(1):348-354
    [104] Meeker J D, Barr D B, Serdar B, et al. Utility of urinary1-naphthol and2-naphthol levels to assess environmental carbaryl and naphthalene exposurein an epidemiology study. Journal of Exposure Science and EnvironmentalEpidemiology,2006,17(4):314-320
    [105] Wang D, Sun L, Liu W, et al. Photoinduced DNA cleavage by α-, β-, andγ-cyclodextrin-bicapped c60supramolecular complexes. EnvironmentalScience&Technology,2009,43(15):5825-5829
    [106] Guo S, Dong S, Wang E. Three-dimensional Pt-on-Pd bimetallicnanodendrites supported on graphene nanosheet: Facile synthesis and usedas an advanced nanoelectrocatalyst for methanol oxidation. ACS Nano,2009,4(1):547-555
    [107] Li X, Wang X, Zhang L, et al. Chemically derived, ultrasmooth graphenenanoribbon semiconductors. Science,2008,319(5867):1229-1232
    [108] Ratinac K R, Yang W, Ringer S P, et al. Toward ubiquitous environmentalgas sensors capitalizing on the promise of graphene. EnvironmentalScience&Technology,2010,44(4):1167-1176
    [109] Zhang H, Fan X, Quan X, et al. Graphene sheets grafted Ag@AgCl hybridwith enhanced plasmonic photocatalytic activity under visible light.Environmental Science&Technology,2011,45(13):5731-5736
    [110] Tan L, Zhou K-G, Zhang Y-H, et al. Nanomolar detection of dopamine in thepresence of ascorbic acid at β-cyclodextrin/graphene nanocompositeplatform. Electrochemistry Communications,2010,12(4):557-560
    [111] Niyogi S, Bekyarova E, Itkis M E, et al. Solution properties of graphite andgraphene. Journal of the American Chemical Society,2006,128(24):7720-7721
    [112] Liu N, Luo F, Wu H, et al. One-step ionic-liquid-assisted electrochemicalsynthesis of ionic-liquid-functionalized graphene sheets directly fromgraphite. Advanced Functional Materials,2008,18(10):1518-1525
    [113] Patil A J, Vickery J L, Scott T B, et al. Aqueous stabilization andself-assembly of graphene sheets into layered bio-nanocomposites usingDNA. Advanced Materials,2009,21(31):3159-3164
    [114] Si Y, Samulski E T. Synthesis of water soluble graphene. Nano Letters,2008,8(6):1679-1682
    [115] Ke C, Yang C, Mori T, et al. Catalytic enantiodifferentiatingphotocyclodimerization of2-anthracenecarboxylic acid mediated by anon-sensitizing chiral metallosupramolecular host. Angewandte Chemie,2009,121(36):6803-6805
    [116] Shi J, Chen Y, Wang Q, et al. Construction and efficient radical cationstabilization of cyclodextrin/aniline polypseudorotaxane and its conjugatewith carbon nanotubes. Advanced Materials,2010,22(23):2575-2578
    [117] Liu Y, Wang K-R, Guo D-S, et al. Supramolecular assembly of perylenebisimide with β-cyclodextrin grafts as a solid-state fluorescence sensor forvapor detection. Advanced Functional Materials,2009,19(14):2230-2235
    [118] Hummers W S, Offeman R E. Preparation of graphitic oxide. Journal of theAmerican Chemical Society,1958,80(6):1339-1339
    [119] Liu Q, Liu Z, Zhang X, et al. Polymer photovoltaic cells based onsolution-processable graphene and P3HT. Advanced Functional Materials,2009,19(6):894-904
    [120] Preuss R, Angerer J. Simultaneous determination of1-and2-naphthol inhuman urine using on-line clean-up column-switching liquidchromatography-fluorescence detection. Journal of Chromatography B,2004,801(2):307-316
    [121] Wang Y, Wang Y-S, Yang H-M, et al. Simultaneous determination ofα-naphthol, β-naphthol and1-hydroxypyrene in urine by synchronousfluorescence spectrometry using β-cyclodextrin as a sensitiser. InternationalJournal of Environmental Analytical Chemistry,2011,91(1):87-96
    [122] Zhong S, Tan S N, Ge L, et al. Determination of bisphenol a and naphthols inriver water samples by capillary zone electrophoresis after cloud pointextraction. Talanta,2011,85(1):488-492
    [123] Daghbouche Y, Garrigues S, de la Guardia M. Solid phasepreconcentration-fourier transform infrared spectrometric determination ofcarbaryl and1-naphthol. Analytica Chimica Acta,1995,314(3):203-212
    [124] Penalva J, Puchades R, Maquieira A, et al. Development of immunosensorsfor the analysis of l-naphthol in organic media. Biosensors andBioelectronics,2000,15(3-4):99-106
    [125] Zhang X, Hou L, Cnossen A, et al. One-pot functionalization of graphenewith porphyrin through cycloaddition reactions. Chemistry–A EuropeanJournal,2011,17(32):8957-8964
    [126] Kong. L W J, Meng. F, Chen. X, Jin. Z, Liu.J and Huang. X. J. J.Mater. Chem.,2011,21(11109-11115
    [127] Wei Y, Kong L-T, Yang R, et al. Single-walled carbonnanotube/pyrenecyclodextrin nanohybrids for ultrahighly sensitive andselective detection of p-nitrophenol. Langmuir,2011,27(16):10295-10301
    [128] Song J, Yin Z, Yang Z, et al. Enhancement of photogenerated electrontransport in dye-sensitized solar cells with introduction of a reducedgraphene oxide–TiO_2junction. Chemistry–A European Journal,2011,17(39):10832-10837
    [129] Compton O C, Nguyen S T. Graphene oxide, highly reduced graphene oxide,and graphene: Versatile building blocks for carbon-based materials. Small,2010,6(6):711-723
    [130] Ambrosi A, Bonanni A, Sofer Z, et al. Electrochemistry at chemicallymodified graphenes. Chemistry–A European Journal,2011,17(38):10763-10770
    [131] Robinson J T, Perkins F K, Snow E S, et al. Reduced graphene oxidemolecular sensors. Nano Letters,2008,8(10):3137-3140
    [132] Kang Q, Chen Y, Li C, et al. A photoelectrochemical immunosensor forbenzo[a]pyrene detection amplified by bifunctional gold nanoparticles.Chemical Communications,2011,47(46):12509-12511
    [133] Yosypchuk O, Barek J, Vysko il V. Voltammetric determination ofcarcinogenic derivatives of pyrene using a boron-doped diamond filmelectrode. Analytical Letters,2012,45(5-6):449-459
    [134] Wu B, Hu D, Kuang Y, et al. High dispersion of platinum-rutheniumnanoparticles on the3,4,9,10-perylene tetracarboxylic acid-functionalizedcarbon nanotubes for methanol electro-oxidation. Chemical Communications,2011,47(18):5253-5255
    [135] Lee J-H, Yoon S-M, Kim K K, et al. Exfoliation of single-walled carbonnanotubes induced by the structural effect of perylene derivatives and theiroptoelectronic properties. The Journal of Physical Chemistry C,2008,112(39):15267-15273
    [136] Qiu J-D, Zhou W-M, Guo J, et al. Amperometric sensor based onferrocene-modified multiwalled carbon nanotube nanocomposites as electronmediator for the determination of glucose. Analytical Biochemistry,2009,385(2):264-269
    [137] Liu J, Zhang X, Pang H, et al. High-performance bioanode based on thecomposite of cnts-immobilized mediator and silk film-immobilized glucoseoxidase for glucose/O_2biofuel cells. Biosensors and Bioelectronics,2012,31(1):170-175
    [138] Gao Y, Cao Y, Yang D, et al. Sensitivity and selectivity determination ofbisphenol a using SWCNT-CD conjugate modified glassy carbon electrode.Journal of Hazardous Materials,2012,199-200:111-118
    [139] Xu Y, Bai H, Lu G, et al. Flexible graphene films via the filtration ofwater-soluble noncovalent functionalized graphene sheets. Journal of theAmerican Chemical Society,2008,130(18):5856-5857
    [140] Rao C N R, Sood A K, Subrahmanyam K S, et al. Graphene: The newtwo-dimensional nanomaterial. Angewandte Chemie International Edition,2009,48(42):7752-7777
    [141] Zima J, Dejmkova H, Barek J. Hplc determination of naphthalene aminoderivatives using electrochemical detection at carbon paste electrodes.Electroanalysis,2007,19(2-3):185-190
    [142] Shi Z-G, Lee H K. Dispersive liquid-liquid microextraction coupled withdispersive solid-phase extraction for the fast determination of polycyclicaromatic hydrocarbons in environmental water samples. AnalyticalChemistry,2010,82(4):1540-1545
    [143] Wang H, Campiglia A D. Determination of polycyclic aromatic hydrocarbonsin drinking water samples by solid-phase nanoextraction andhigh-performance liquid chromatography. Analytical Chemistry,2008,80(21):8202-8209
    [144] Lee S-W, Ichinose I, Kunitake T. Molecular imprinting of azobenzenecarboxylic acid on a tio2ultrathin film by the surface sol-gel process.Langmuir,1998,14(10):2857-2863
    [145] Ouyang M, Huang J-L, Cheung C L, et al. Energy gaps in "metallic"single-walled carbon nanotubes. Science,2001,292(5517):702-705
    [146] Ouyang M, Huang J-L, Lieber C M. Fundamental electronic properties andapplications of single-walled carbon nanotubes. Accounts of ChemicalResearch,2002,35(12):1018-1025
    [147] Allen B L, Kotchey G P, Chen Y, et al. Mechanistic investigations ofhorseradish peroxidase-catalyzed degradation of single-walled carbonnanotubes. Journal of the American Chemical Society,2009,131(47):17194-17205
    [148] Hu C, Zhang Y, Bao G, et al. DNA functionalized single-walled carbonnanotubes for electrochemical detection. The Journal of Physical ChemistryB,2005,109(43):20072-20076
    [149] Liu Z, Sun X, Nakayama-Ratchford N, et al. Supramolecular chemistry onwater-soluble carbon nanotubes for drug loading and delivery. ACS Nano,2007,1(1):50-56
    [150] Wang K-R, Guo D-S, Jiang B-P, et al. Molecular aggregation behavior ofperylene-bridged bis(β-cyclodextrin) and its electronic interactions uponselective binding with aromatic guests. The Journal of Physical Chemistry B,2009,114(1):101-106
    [151] Jiang B-P, Guo D-S, Liu Y. Self-assembly of amphiphilicperylene-cyclodextrin conjugate and vapor sensing for organic amines. TheJournal of Organic Chemistry,2010,75(21):7258-7264
    [152] Shen X, Cui Y, Pang Y, et al. Graphene oxide nanoribbon and polyhedraloligomeric silsesquioxane assembled composite frameworks forpre-concentrating and electrochemical sensing of1-hydroxypyrene.Electrochimica Acta,2012,59(0):91-99
    [153] Shen X, Cui Y, Pang Y, et al. Pre-concentration and in situ electrochemicalsensing of1-hydroxypyrene on an electrodeposited poly(3-methylthiophene)film modified electrode. Journal of Electroanalytical Chemistry,2012,667(0):1-6
    [154] Ferancova′A, Buckova′M, Korgova′E, et al. Association interaction andvoltammetric determination of1-aminopyrene and1-hydroxypyrene atcyclodextrin and DNA based electrochemical sensors. Bioelectrochemistry,2005,67(2):191-197
    [155] Pecková K, Barek J, Navrátil T, et al. Voltammetric determination ofnitronaphthalenes at a silver solid amalgam electrode. Analytical Letters,2009,42(15):2339-2363
    [156] Yosypchuk O, Barek J, Vysko il V. Voltammetric determination ofcarcinogenic derivatives of pyrene using a boron-doped diamond filmelectrode. Analytical Letters,2012,45(5-6):449-459
    [157] Ballesteros E, García Sánchez A, Ramos Martos N. Simultaneousmultidetermination of residues of pesticides and polycyclic aromatichydrocarbons in olive and olive-pomace oils by gas chromatography/tandemmass spectrometry. Journal of Chromatography A,2006,1111(1):89-96
    [158] Rodil R, Quintana J B, López-Mahía P, et al. Multi-residue analyticalmethod for the determination of emerging pollutants in water by solid-phaseextraction and liquid chromatography-tandem mass spectrometry. Journal ofchromatography. A,2009,1216(14):2958-2969
    [159] Xie W, Xu A, Yeung E S. Determination of nad+and nadh in a single cellunder hydrogen peroxide stress by capillary electrophoresis. AnalyticalChemistry,2009,81(3):1280-1284
    [160] Bergamo A B, Fracassi da Silva J A, de Jesus D P. Simultaneousdetermination of aspartame, cyclamate, saccharin and acesulfame-k in softdrinks and tabletop sweetener formulations by capillary electrophoresis withcapacitively coupled contactless conductivity detection. Food Chemistry,2011,124(4):1714-1717
    [161] Pienpinijtham P, Han X X, Ekgasit S, et al. Highly sensitive and selectivedetermination of iodide and thiocyanate concentrations usingsurface-enhanced raman scattering of starch-reduced gold nanoparticles.Analytical Chemistry,2011,83(10):3655-3662
    [162] Zhang X, Teng Y, Fu Y, et al. Lectin-based electrochemical biosensorconstructed by functionalized carbon nanotubes for the competitive assay ofglycan expression on living cancer cells. Chemical Science,2011,2(12):2353-2360
    [163] Chen X, Cheng X, Gooding J J. Detection of trace nitroaromatic isomersusing indium tin oxide electrodes modified using β-cyclodextrin and silvernanoparticles. Analytical Chemistry,2012,84(20):8557-8563
    [164] Liu G, Wang S, Liu J, et al. An electrochemical immunosensor based onchemical assembly of vertically aligned carbon nanotubes on carbonsubstrates for direct detection of the pesticide endosulfan in environmentalwater. Analytical Chemistry,2012,84(9):3921-3928
    [165] Vyskocil V, Barek J. Electroanalysis of nitro and amino derivatives ofpolycyclic aromatic hydrocarbons. Current Organic Chemistry,2011,15(3059-3076
    [166] Yard m Y, Keskin E, Levent A, et al. Voltammetric studies on the potentcarcinogen,7,12-dimethylbenz[a]anthracene: Adsorptive strippingvoltammetric determination in bulk aqueous forms and human urine samplesand detection of DNA interaction on pencil graphite electrode. Talanta,2010,80(3):1347-1355
    [167] Yosypchuk O, Barek J, Vysko V. Voltammetric determination of carcinogenicderivatives of pyrene using a boron-doped diamond film electrode.Analytical Letters,2012,45(5-6):449-459
    [168] Liu C, Wang K, Luo S, et al. Direct electrodeposition of graphene enablingthe one-step synthesis of graphene–metal nanocomposite films. Small,2011,7(9):1203-1206
    [169] Zheng L, Wu S, Lin X, et al. Preparation and characterization of a novelβ-cyclodextrin modified poly(n-acetylaniline) film. Macromolecules,2002,35(16):6174-6177
    [170] Zhou B, Wu S. Electrochemical preparation ofpoly(n-acetylaniline)/poly-(4-styrenesulfonic acid-co-maleic acid)composite film towards ascorbic acid sensing. Journal of Applied PolymerScience,2008,109(4):2400-2407
    [171] Zhu G, Zhang X, Gai P, et al. Beta-cyclodextrin non-covalentlyfunctionalized single-walled carbon nanotubes bridged by3,4,9,10-perylenetetracarboxylic acid for ultrasensitive electrochemical sensing of9-anthracenecarboxylic acid. Nanoscale,2012,4(18):5703-5709.
    [172] Wang J, Rivas G, Luo D, et al. DNA-modified electrode for the detection ofaromatic amines. Analytical Chemistry,1996,68(24):4365-4369
    [173] Barek J, Muck A, Wang J, et al. Study of voltammetric determination ofcarcinogenic1-nitropyrene and1-aminopyrene using a glassy carbon pasteelectrode. Sensors and Actuators A: Physical,2004,4(47-57
    [174] Ferancová A, Bucková M, Korgová E, et al. Association interaction andvoltammetric determination of1-aminopyrene and1-hydroxypyrene atcyclodextrin and DNA based electrochemical sensors. Bioelectrochemistry,2005,67(2):191-197
    [175] Inoue T, Masuda K, Nakashima K, et al. Highly sensitive detection ofaromatic molecules by laser two-photon ionization on the surface of water inambient air. Analytical Chemistry,1994,66(7):1012-1014
    [176] Lee S-W, Yang D-H, Kunitake T. Regioselective imprinting ofanthracenecarboxylic acids onto TiO_2gel ultrathin films: An approach tothin film sensor. Sensors and Actuators B: Chemical,2005,104(1):35-42
    [177] Gan T, Hu C, Chen Z, et al. A disposable electrochemical sensor for thedetermination of indole-3-acetic acid based on poly(safranine t)-reducedgraphene oxide nanocomposite. Talanta,2011,85(1):310-316
    [178] Wang H-S, Li T-H, Jia W-L, et al. Highly selective and sensitivedetermination of dopamine using a nafion/carbon nanotubes coatedpoly(3-methylthiophene) modified electrode. Biosensors and Bioelectronics,2006,22(5):664-669
    [179] Vasantha V S, Chen S-M. Electrocatalysis and simultaneous detection ofdopamine and ascorbic acid using poly(3,4-ethylenedioxy)thiophene filmmodified electrodes. Journal of Electroanalytical Chemistry,2006,592(1):77-87
    [180] Kumar S A, Tang C-F, Chen S-M. Poly(4-amino-1-Azobenzene-3,4-Disulfonic acid) coated electrode for selective detection of dopamine fromits interferences. Talanta,2008,74(4):860-866
    [181] Yao H, Sun Y, Lin X, et al. Electrochemical characterization of
    poly(eriochrome black t) modified glassy carbon electrode and its
    application to simultaneous determination of dopamine, ascorbic acid and
    uric acid. Electrochimica Acta,2007,52(20):6165-6171

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700