基于外光注入VCSELs产生高性能毫米波
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光载无线(RoF)技术是一种将宽带无线通信的灵活性与光纤通信的大容量传输的有机结合起来的通信技术,它是第四代宽带综合通信系统设计中的关键技术,可为大容量、低成本的无线电信号有线传输和超过1Gbit/s的超宽带无线接入提供理想的解决方案。在RoF系统中,高质量毫米波副载波的获取技术至关重要。目前,产生毫米波副载波的方法有直接电流调制、自脉动和锁模激光器、光外差、光锁相环、双模激光器以及光注入半导体激光器的单周期(P1)振荡等。其中,基于光注入半导体激光器的单周期(P1)振荡产生毫米波由于具有其独特的优势而受到相关学者的高度关注。本文提出了一种基于垂直腔表面发射激光器(VCSELs)的单周期振荡态获取高性能毫米波的方案。该方案首先基于外光注入VCSELs呈现的单周期振荡产生频率可调的高频毫米波,然后在此基础上通过引入偏振旋转光反馈,对毫米波的线宽进行窄化,从而获得高性能的毫米波。数值模拟结果显示:一个受到主VCSEL (M-VCSEL)光注入的副VCSEL(S-VCSEL)在一定条件下可以产生单周期(P1)振荡,即在光波上调制了一个微波信号。通过调节外光注入强度以及S-VCSEL与M-VCSEL之间频率失谐量,可以获得频率在大范围内连续可调的毫米波信号;进一步引入偏振旋转光反馈,在选取合适的反馈强度以及反馈延迟时间的条件下可使产生的毫米波信号线宽得到明显窄化。本文的研究结果对光载无线(RoF)系统中毫米波副载波信号的获取具有一定的参考意义。
The Radio-over-Fiber (RoF) is a communication technology which brings the agility of broadband wireless communication and the huge capacity of optical fiber communication together, it is a key technology in the design of the fourth-generation broadband communication system, which can offer an ideal solution for high-capacity, low-cost cable transmission of radio signals and more than1Gbit/s ultra-broadband wireless access. In Rof system, the technology of acquiring high-quality millimeter-wave subcarrier is critical. Presently, there are several ways of generating millimeter-wave, such as direct modulation, self-pulsations and mode-locked laser, optical heterodyne, optical phase-locked loop, dual-mode laser and optically injected semiconductor laser period-one state (P1) oscillation. The way of acquiring millimeter-wave based on optically injected semiconductor laser P1oscillation attract a lot of attention by related scholars.A scheme of optical generation of high-quality millimeter-wave based on the optically injected vertical-cavity surface-emitting lasers (VCSELs) PI oscillation is proposed in this paper. First the millimeter-wave based on the optically injected vertical-cavity surface-emitting lasers (VCSELs) P1oscillation has been studied, whose frequency can be continuously adjusted in a large range; then next the linewidth of millimeter-wave can be obviously narrowed by introducing polarization-rotated optical feedback. The results of numerical simulation show that under suitable operation conditions, a slave VCSEL (S-VCSEL) injected by a master VCSEL (M-VCSEL) will operate at the period-one (P1) oscillation state and the output optical intensity of S-VCSEL looks like being modulated by a microwave signal. By adjusting the injection strength and the frequency detuning between S-VCSEL and M-VCSEL, a millimeter-wave, whose frequency can be continuously adjusted in a large range, is obtained. After introducing polarization-rotated optical feedback, the linewidth of millimeter-wave can be obviously narrowed by adjusting the feedback strength and the feedback delay time. The results obtained in this paper are helpful to acquiring high-quality millimeter-wave used in high speed Radio-over-Fiber (RoF) system.
引文
[1] GKeiser著,李玉权,崔敏等译.光纤通信.北京:电子工业出版社.2002.
    [2] C. T. Yen, J. F. Huang, "Realization of OSW/AGW-based bipolar wavelength time optical CDMA for wired-wireless transmissions," Opt. Fiber Tech..,2009, 1(5):74-82.
    [3]黄嘉明,陈舜儿,刘伟平等.RoF技术分析及其应用.光纤与电缆及其应用技术,2007,(2):32-35.
    [4] A. J. C. Vieira, L. E. M. De Barros, et al., "Millimeter wave over fiber a new Approach," Antennas and Propagation Society International Symposium. IEEE Digest,1997,2:13-18.
    [5]严开恩.OFDM-ROF光传输系统中一些问题的研究[硕士论文].上海:上海大学,2005.
    [6] Z. Jia, J. Yu, G. El linas, et al. "Key Enabling Technologies for Optical Wireless Networks:Optical Millimeter-wave Generation, Wavelength Reuse, and Architecture," J. Lightwave Technol.,2007,25(11):3452-3471.
    [7]赵银川.基于光载波抑制调制的ROF系统的研究[硕士论文].重庆:西南大学,2010.
    [8] N. Mineo, K. Yamada, K. Nakamura, et al., "60-GHz Band Electroabsorption
    Modulator Module," OFC'98, San Jose, TuH4,1998.
    [9] K Kitayama, T. Kuri, H. Ogawa, "Error-free Optical 156Mb/s Millimeter-wave Wireless Transpot Through 60GHz-Band External Modulation," OFC'98, San Jose, Thc2,1998.
    [10] T. Kuri, K. I. Kitayama, A. Stohr, H. Ogawa, "Fiber-Optic Millimeter-Wave Downlink System Using 60GHz-Band External Modulation," J. Lightwave Technol.,1999,1(17):799-806.
    [11] J. X. Ma, J. J. Yu, C. X. Yu, et al., "The influence of fiber dispersion on the code form of the optical mm-wave signal generated by single sideband intensity modulation," Opt. Commun.,2007,271(2):396-403.
    [12] J. X. Ma, C. X. Yu, Z. Zhou, et al., "Optical mm-wave generation by using external modulator based on optical carrier suppression," Opt. Commun.,2006,268(1): 51-57.
    [13] H. Soda, K. Iga, C. Kitahara, et al., "GaInAsP/Inp surface emitting injection lasers," Japan. J. Appl. Phys.,1979,18(12):2329-2330.
    [14] K. Iga, F. Koyama, S. Kinoshita, "Surface emitting semiconducter lasers," IEEE J. Quantum. Electron.,1988,24(9):1845-1855.
    [15] K. Iga, S. Ishikawa, S. Ohkouchi et al., "Room temperature pulsed oscillation of GaAlAs/GaAs surface emitting injection laser," Appl. Phys. Lett.,1984,45(4): 348-350.
    [16] K. Iga, "Surface-emitting-laser-its birth and generation of new optoelectronic field," IEEE J. Quantum Electron.,2000,6(6):1201-1215.
    [17] K. Kojima, R. A. Morgan, T. Mulaly, et al., "Reduction of p-doped mirror electrical resistance of GaAs/AlGaAs vertical-cavity surface-emitting lasers by delta doping," Electron. Lett.,1993,29(20):1771-1772.
    [18] M. Ogura, S. Mukai, M. Shimada, et al., "Surface-Emitting Laser Diode with Distributed Bragg Reflector and Buried Heterostructure," Electron. Lett.,1990, 26(1):18-19.
    [19] H. Okuda, H. Soda, K. Moriki, et al., "GaInAsP/InP surface emitting injection laser with buried heterostructures," Japan. J. Appl. Phys.,1981,20(8):L563-L566.
    [20] Y. Motegi, H. Soda, K. Iga, "Surface-emitting GaInAsP/InP injection laser with short cavity length," Electron. Lett.,1982,18(11):461-463.
    [21] K. Iga, H. Soda, T. Terakado, et al., "Lasing characteristics of improved GalnAsP /InP surface emitting injection lasers," Electron. Lett.,1983,19(13):457-458.
    [22] H. Soda, Y. Motegi, K. Iga, "GaInAsP/InP surface emitting injection lasers with short cavity length," IEEE J. Quantum Electron.,1983,19(6):1035-1041.
    [23] S. Uchiyama, K. Iga, "GaInAsP/InP surface emitting injection laser with a ring electrode," IEEE J. Quantum Electron.,1984,20(10):302-309.
    [24] K. Iga, S. Ishikawa, S. Ohkouchi, et al., "Room temperature pulsed oscillation of GaAlAs/GaAs surface emitting junction laser," IEEE J. Quantum Electron.,1985, 21(6):663-668.
    [25] A. Chailertvanitkul, K. Iga, K. Moriki, "GaInAsP/InP surface emitting laser (λ,=1.4μm, 77K) with heteromultilayer Bragg reflector," Electron. Lett.,1985, 21(7):303-304.
    [26] S. Uchiyama, K. Iga, "Consideration on threshold current density of GaInAsP/InP surface emitting junction lasers," IEEE J. Quantum Electron.,1986,22(2): 302-309.
    [27] Z. L. Liau, J. N. Walpole, "Surface-emitting GalnAsP/InP laser with low threshold current and high efficiency" Appl. Phys. Lett.,1985,46(2):115-117.
    [28] S. Uchiyama, Y. Ohmae, S. Shimizu, et al., "GaInAsP/InP surface emitting lasers with current confining structure," J. Lightwave Technol.,1986,4(7):846-851.
    [29] A. Ibaraki, S. Ishikawa, S. Ohkouchi, K. Iga, "Trial fabrication of GaAlAs/GaAs surface-emitting injection laser," Japan. J. Appl. Phys.,1984,23:781-782.
    [30] A. Ibaraki, S. Ishikawa, S. Ohkouchi, et al., "Pulsed oscillation of GaAlAs/GaAs surface-emitting injection laser," Electron. Lett.,1984,20(10):420-422.
    [31] S. Kinoshita, T. Kobayashi, T. Sakaguchi, T. Odagawa, and K. Iga, "Room temperature pulse operation of GaAs surface emitting laser by using TiOz/SiOz dielectric multilayer reflector," Trans. IECE Japan,1986,69:412-420.
    [32] S. Kinoshita, K. Iga, "Circular buried heterostructure (CBH) GaAlAs/GaAs surface emitting lasers," IEEE J. Quantum Electron.,1987,23(6):882-888.
    [33] K. Iga, S. Kinoshita, and F. Koyama, "Microcavity GaAlAs/GaAs surface-emitting laser with Ith=6mA," Electron. Lett.,1986,23(13):134-136.
    [34] S. Kinoshita, T. Sakaguchi, T. Odagawa, et al., "GaAlAs/GaAs surface emitting laser with high reflective TiO2/SO2 multilayer Bragg reflector," Japan. J. Appl.
    Phys.,1987,26(8):410-415.
    [35] K. Iga, F. Koyama, S. Kinoshita, "Surface emitting semiconductor laser array:Its advantage and future," J. Vac. Sci. Technol. A,1989,7(3):842-846.
    [36] M. Gotoda, H. Sugimoto, Y. Nomura, T. Isu, M. Nunoshita S.Maruno, Selectively embedded growth by chenfical beam epitaxy for the fabrication of InGaAs/InP double-heterostructure lasers, J. Cryst. Growth,1994,140:277-281.
    [37]赵路民.980nm高功率垂直腔ICl发射激光器的研制及测试分析[硕士论文].长春:吉林大学,2004年5月.
    [38] E. Kapon, A. Sirbu, "Long-wavelength VCSELS:Power-efficient answer," Nature Photonics,2009,3:27-29.
    [39] C. Wilmsen, H. Temldn and L. A. Coldren, "Vertical-cavity surface-emitting lasers: design, fabrication, characterization and application," Cambridge University Press, 1999.
    [40] M. Gotoda, H. Sugimoto, Y. Nomura, T. Isu, M. Nunoshita and S. Maruno, "Selectively embedded growth by chenfical beam epitaxy for the fabrication of InGaAs/InP double-heterostructure lasers," J. Cryst. Growth,1994,140:277-281.
    [41] S. F. Yu, "Analysis and Design of Vertical Cavity Surface Emitting Lasers," (John Wiley & Sons, Inc., Hoboken, New Jersey,2003).
    [42] S. Nakagawa, E. Hall, G. Almuneau, et al.,1.55μm InP-lattice-matched VCSELs with Al-GaAsSb-AlAsSb DBRs," IEEE J. Sel. Top. Quantum Electron.,2001,7(2): 224-230.
    [43] T. Yoshikawa, T. Kawakami, Hideaki Saito, et al., "Polarization Controlled Single Mode VCSEL." IEEE J. Sel. Top. Quantum Electron.,1998,34(6):1009-1015.
    [44]刘立新、赵洪东、曹萌.垂直腔而发射激光器热场特性分析.微纳电子技术,2003,4:8-11.
    [45]高洪海、林世鸣、康学军等.垂直腔而发射激光器热特性的实验研究.光子学报,1997,26(6):522-526.
    [46] H. Roscher, M. B. Sanayeh, S. B. Thapa, et al., "VCSEL arrays with redundant pixel designs for 10 Gbit/s 2-D space-parallel multimode fiber transmission," Optical Communication, ECOC, Scotland,2005, IEEE Conference Publications, 2005:687-688.
    [1] Y. Hong, R. Ju, P. S. Spencer, et al., "Investigation of polarization bistability in vertical-cavity surface-emitting lasers subjected to optical feedback," IEEE J. Quantum Electron.,2005,41(5):619-624.
    [2] M. Sciamanna, K. Panajotov, H. Thienpont. "Optical feedback induces polarization mode hopping in vertical-cavity surface-emitting lasers," Opt. Lett.,2003,28(17): 1543-1545.
    [3] K. Panajotov, M. Sciamanna, A. Tabaka, et al. "Residence time distribution and coherence resonance of optical-feedback-induced polarization mode hopping in vertical-cavity surface-emitting lasers," Phys. Rev. A,2004,69(1):011801.
    [4] C. Masoller, M. S. Torre, P. Mandel. "Influence of the injection current sweep rate on the polarization switching of vertical-cavity surface-emitting lasers," J. Appl. Phys.,2006,99(2):026108.
    [5] J. M. Regalado, F. Prati, M. S. Miguel, N. B. Abraham, "Polarization properties of vertical-cavity surface-emitting lasers," IEEE J. Quantum Electron.,1997,33, 765-783.
    [6]刘文揩.VCSEL的偏振特性与半导体微腔效应的研究[博士论文].北京:中科院半导体所,2002.
    [7] M. S. Miguel, Q. Feng, J. V. Moloney, "Light-polarization dynamics in surface emitting semiconductor lasers," Phys. Rev. A,1995,52(2):1728-1739.
    [8] J. P. Hermier, M. I. Kolobov, I. Maurin, et al., "Quantum spin-flip model of vertical-cavity surface-emitting lasers," Phys. Rev. A.,2002,65(5):53825(1)-(13).
    [9] J. M. Regalado, S. Balle, M. S. Miguel, et al., "Polarization and transverse-mode dynamics of gain-guided vertical-cavity surface-emitting lasers," Opt. Lett.,1997, 22(7):460-2.
    [10] M. P. V. Exter, R. F. M. Hendriks, J. P. Woerdman, "Physical insight into the polarization dynamics of VCSELs," Phys. Rev. A,57:2080-2090.
    [11] C. Masoller, M. S. Torre, "Influence of optical feedback on the polarization switching of vertical-cavity surface emitting lasers," IEEE J. Quantum Electron., 2005,41(4):483-489.
    [12] M. Sciamanna, K. Panajotov. "Route to polarization switching induced by optical injection in vertical-cavity surface-emitting lasers," Phys. Rev. A,2006,73(2): 023811.
    [13]王小发.VCSELs偏振特性及其混沌同步特性[硕士论文].重庆:西南大学,2009.
    [14] J. Y. Law, G. P. Agrawal, "Effects of optical feedback on static and dynamic characteristics of vertical-cavity surface-emitting lasers," IEEE J. Sel. Top. Quantum Electron.,1997,3(2):353-358.
    [15] H. Aoyama, S. Tomida, R. Shogenji, et al., "Chaos dynamics in vertical cavity surface emitting semiconductor lasers with polarization selected optical feedback," Opt. Commun.,2011,284(5):1405-1411.
    [16] A. Uchida, T. Heil, Y. Liu, et al., "High-frequency broad-band signal generation using a semiconductor laser with a chaotic optical injection," IEEE J. Quantum Electron.,2003,39(11):1462-1467.
    [17] M. S. Torre, C. Masoller, K. A. Shore, "Numerical study of optical injection dynamics of vertical-cavity surface-emitting lasers", IEEE J. Quantum. Electron., 2004,40:25-30.
    [18] L. Chrostowski, W. Hofmann, S. Wieczorek, et al., "40 GHz bandwidth and 64 GHz resonance frequency in injection-locked 1.55um VCSELs," IEEE J. Select. Topics Quantum Electron.,2007,13(5):1200-1208.
    [19] L. Chrostowski, X. Zhao, C. J. Chang-Hasnain, et al., "50-GHz Optically Injection-Locked 1.55um VCSELs," IEEE Photon. Technol. Lett.,2006,18(2):367-369.
    [1] A. J. Cooper, "'Fibre/radio'for the provision of cordless/mobile telephony services in the access network," Electron. Lett.,1990,26(24):2054-2056.
    [2] J. Capmany, D. Novak, "Microwave photonics combines two worlds," Nature Photon,2007,1(6):319-330.
    [3] A. Kim, Y. H. Joo, and Y. Kim, "60GHz wireless communication system with Radio-over-Fiber links for indoor wireless LANs," IEEE Trans. Consumer Electron.,2004,50(2):517-520.
    [4] Y. L. Guennec, G. Maury, J. P. Yao, et al, "New optical microwave Up-Conversion solution in Radio-over-Fiber networks for 60-GHz wireless applications," J. Lightwave Technol.,2006,24(3):1277-1282.
    [5] D. Visani, G. Tartarini, P. Faccin, et al., "Cost-effective radio over fiber system for multi service wireless signal," Optics Commun.,2011284(12):2751-2754.
    [6] C. T. Lin, J. H. Chen, P. T. Shih, W. J. Jian, et al., "Ultra-High Data-Rate 60 GHz Radio-Over-Fiber Systems Employing Optical Frequency Multiplication and OFDM Formats" J. Lightwave Technol.,2010,28(16):2296-2306.
    [7] O. Kjebon, R. Schatz, S. Lourdudoss, S. Nilsson, B. StAlnacke and L. Backbom, "30 GHz direct modulation bandwidth in detuned loaded InGaAsP DBR lasers at 1.55 μm wavelength," Electron. Lett.,1997,33(6):488-489.
    [8] D. Novak, Z. Ahmed, R. B. Waterhouse, and Rodney S. Tucker, Signal generation using pulsed semiconductor lasers for application in millimeter-wave wirless links," IEEE Trans. Microwave Theory Tech.,1995,43(9):2257-2262.
    [9] D. J. Derickson, R. J. Helkey, A. Mar, et al., "Microwave and Millimeter Wave Signal Generation Using Mode-Locked Semiconductor Lasers with Intra-Waveguide Saturable Absorbers," IEEE MTT-S Int. Microw. Symp. Dig, 1992,2(1):753-756.
    [10] J. Genest, M. Chamberland, P. Tremblay,et al., "Microwave signals generated by optical heterodyne between injection-locked semiconductor lasers," IEEE J. Quantum Electron.,1997,33(6):989-998.
    [11] L. A. Johansson, A. J. Seeds, "Generation and Transmission of Millimeter-Wave Data-Modulated Optical Signals Using an Optical Injection Phase-Lock Loop," J. Lightwave Technol.,2003,21(2):511-520.
    [12] D. Wake, C. R. Lima, P. A. Davies, "Optical generation of millimeter-wave signals for fiber-radio systems using a dual-mode DFB semiconductor laser," IEEE Trans. Microwave Theory Tech.,199543(9):2270-2276.
    [13] S. C. Chan, R. Diaz, J. M. Liu, "Novel photonic applications of nonlinear semi-conductor laser dynamics", Opt. Quant. Electron.,2008,40(2):83-95.
    [14] T. B. Simpson, F. Doft, "Double-locked laser diode for microwave photonics applications," IEEE Photon. Technol. Lett.,1999,11(11):1476-1478.
    [15] S. C. Chan, J. M. Liu, "Frequency Modulation on Single Sideband Using Con-trolled Dynamics of an Optically Injected Semiconductor Laser," IEEE J. Quantum Electron.,2006,42(7):699-705.
    [16] T. B. Simpson, "Phase-locked microwave-frequency modulations in optically inje-cted laser diodes," Opt. Commun.,1999,170(1-3):93-98.
    [17] A. Kaszubowska, P. Anandarajah, L. P. Barry, "Improved performance of a hybrid radio/fiber system using a directly modulated laser transmitter with external injection," IEEE Photon. Technol. Lett.,2002,14(2):233.
    [18] S. C. Chan, S. K. Hwang, J. M. Liu, "Period-one oscillation for photonic micro-wave transmission using an optically injected semiconductor laser", Opt. Express, 2007,15,(22):14921-14935.
    [19]牛生晓,王云才,贺虎成等.光注入半导体激光器产生可调谐高频微波.物理学报,2009,58(10):7241-7245.
    [20]谢红云,金冬月,何莉剑等.基于DFB激光器的光学微波信号的产生.物理学报,2008,57(7):4558-4563.
    [21] M. S. Miguel, Q. Feng, J. V. Moloney, "Light-polarization dynamics in surface-emitting semiconductor laser," Phys. Rev. A.,1995,52(2):1728-1739.
    [22] J. Martin-Regalado, F. Prati, M. San Miguel, N. B. Abraham, "Polarization Properties of Vertical-Cavity Surface-Emitting Lasers," IEEE J. Quantum Electron.,
    1997,33(5):765-783.
    [23] W. L. Zhang, W. Pan, B. Luo, et al., "Polarization switching of mutually coupled vertical-cavity surface-emitting lasers," J. Opt. Soc. Am. B,2007,24(6): 1276-1282.
    [24]王小发.VCSELs偏振特性及其混沌同步特性[硕士论文].重庆:西南大学,2009.
    [25]杨炳星,夏光琼,林晓东,吴正茂.光脉冲注入下的偏振开关特性.物理学报,2009,58(3):1480-1484.
    [26] J. Liu, Z. M. Wu, G. Q. Xia, "Dual-channel chaos synchronization and communication based on unidirectionally coupled VCSELs with polarization-rotated optical feedback and polarization-rotated optical injection," Opt. Express,2009,17(15):12619-12626.
    [27] Z. M. Leng, G. Q. Xia, Z. M. Wu, "Optical millimeter-wave generation based on period-one oscillation in VCSELs subject to optical injection," Optoelectron. Adv. Mat,2009,3(7):644-649.
    [28] T. B. Simpson, J. M. Liu, A. Gavrielides, "Small-signal analysis of modulation characteristics in a semiconductor laser subject to strong optical injection," IEEE J. Quantum Electron.,1996,32(8):1456-1468.
    [29] S. K. Hwang, J. M. Liu, J. K. White, "Characteristics of Period-One Oscillations in Semiconductor Lasers Subject to Optical Injection," IEEE J. Sel. Top. Quantum Electron.,2004,10(5):974-981.
    [1] S. C. Chan, S. K. Hwang, J. M. Liu, "Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser", Opt. Express,2007, 15,(22):14921-14935.
    [2] S. K. Hwang, J. M. Liu, J. K. White, "Characteristics of Period-One Oscillations in Semiconductor Lasers Subject to Optical Injection," IEEE J. Sel. Top. Quantum Electron.,2004,10(5):974-981.
    [3] S. C. Chan, R. Diaz, J. M. Liu, "Novel photonic applications of nonlinear semi-conductor laser dynamics", Opt. Quant. Electron.,2008,40(2):83-95.
    [4] Z. M. Leng, G. Q. Xia, Z. M. Wu, "Optical millimeter-wave generation based on period-one oscillation in VCSELs subject to optical injection," Optoelectron. Adv. Mat.,2009,3(7):644-649.
    [5] J. Genest, M. Chamberland, P. Tremblay, et al., "Microwave signals generated by optical heterodyne between injection-locked semiconductor lasers," IEEE J. Quantum Electron.,1997,33(6):989-998.
    [6] T. B. Simpson, "Phase-locked microwave-frequency modulations in optically inje-cted laser diodes," Opt. Commun.,1999,170(1):93-98.
    [7] S. C. Chan, J. M. Liu, "Tunable Narrow-Linewidth Photonic Microwave Genera-tion Using Semiconductor Laser Dynamics," IEEE J. Sel. Top. Quantum Electron., 2004,10(5):1025-1032.
    [8] M. S. Miguel, Q. Feng, J. V. Moloney, "Light-polarization dynamics in surface-emitting semiconductor laser," Phys. Rev. A.,1995,52(2):1728-1739.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700