相变过程中的高温粒子辐射特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相变过程中高温粒子的热辐射行为是目标探测与识别、火焰温度测量、森林火灾遥感和监控、等离子喷涂等很多工程技术中所面临的问题。外界辐照条件下粒子的相变行为,燃料液滴燃烧过程中对热辐射的吸收和散射,相变过程中粒子内部的辐射吸收等都是目前很多研究者所关心的问题。本文主要以固体燃料发动机尾喷焰中的氧化铝粒子( Al_2O_3)为例,分析不同相态粒子辐射特性和相变动力学过程,建立高温条件下粒子相变辐射模型。主要研究内容包括以下五个方面。
     (1)以尾喷焰中氧化铝粒子凝固过程中最易出现的三种相态(液态、γ相、α相)为研究对象,分析氧化铝粒子分别处于以上三种相态的光学常数及辐射特性。在紫外到近红外光谱范围内,考虑了氧化铝粒子的不同辐射机制,分析了其光学常数随相态的变化关系,以氧化铝粒子不同相态吸收指数模型的计算结果为基础,建立了描述不同相态的等温氧化铝粒子辐射特性的数学模型,发现由此计算出的不同相态氧化铝粒子光谱辐射强度的数值与实验值接近。
     (2)基于有效介质理论,建立掺有炭黑杂质的氧化铝粒子等效光学常数模型,考虑了粒子在熔点附近相态的变化。分析和比较了采用Maxwell-Garnett混合规则、Bruggeman混合规则、包覆层粒子球等效光学常数模型和复折射率体积平均这四种混合规则所计算的含炭黑杂质的氧化铝粒子等效光学常数数值,同时研究了四种混合规则的计算结果随波长的变化关系。考查了炭黑杂质的含量和炭黑在氧化铝粒子内的混合形态对整个粒子辐射特性的影响。通过计算发现炭黑杂质是尾喷焰中氧化铝粒子的吸收指数在熔点附近不连续性减小的原因之一。
     (3)熔融态氧化铝粒子凝固过程中动态辐射特性建模。首先,根据熔融氧化铝粒子凝固过程中的动力学方程,推导出了粒子凝固过程中各相态体积份额随时间的变化关系。其次,分别采用介电常数的体积平均、复折射率的体积平均、Bruggeman混合规则以及Maxwell-Garnett混合规则来表征氧化铝粒子相变过程中的等效光学常数的动态演变规律,发现采用以上四种混合规则计算的结果都比较接近。再次,根据熔融氧化铝粒子由液态到固态转变过程中可能出现的两种凝固方式:逐层凝固和容积凝固,分别建立了多层粒子球动态辐射模型和“等效介质”粒子球动态辐射模型。最后采用这两类模型计算氧化铝粒子相变过程中的动态光谱辐射特性,发现两种模型的计算结果都与实验数值呈现类似的变化趋势,而与实验过程比较接近的“等效介质”粒子球模型计算结果与实验结果符合较好。
     (4)径向非等温多种相态分层共存的氧化铝粒子内部和外表面热辐射特性的电磁理论研究。通过内部电磁场系数ci n和d in的反向递推公式求得多层同心球粒子内部各层电磁场系数a_(in), b_(in), c_(in)和d_(in)的数值,由此计算出的粒子内部吸收因子径向分布与Mackowski D.W.的计算结果非常接近。以液态、γ和α三相共存的氧化铝粒子和含炭黑的γ和α相共存氧化铝粒子为对象,分别采用多层同心球电磁理论模型与等效介质球Mie氏理论模型计算其吸收、衰减因子,发现只有当多层同心球粒子内各组份所在层的厚度比波长小很多时,有效介质理论对这种多层同心球的结构才适用。还采用多层同心球电磁理论模型对单相态和多相态共存的氧化铝粒子内部以及表面的辐射特性进行了计算和分析,考虑了粒子内部相态含量、各相态的排列顺序和径向温度梯度的影响。
     (5)考虑氧化铝粒子相变过程及粒子中的炭黑杂质对高温粒子流光辐射特性研究。采用反向蒙特卡罗法计算轴对称高温氧化铝粒子流在轴线正侧向辐射强度分布,以粒子的等效光学常数为基础,考察氧化铝粒子相变过程以及粒子中炭黑杂质对粒子流场轴线上辐射特性的影响。模拟结果发现:高温氧化铝粒子中的炭黑对粒子流辐射特性的影响显著,相变过程中的多相共存状态对粒子流的光谱辐射强度的影响在紫外短波处不可忽略。
The radiation of high temperature particle with phase transformation is encountered in numerous technologically important applications such as target diagnostics and investigation, temperature measurements of flame, remote sensing and suppression of forest fires, plasma spraying and many others. The corresponding problems, such as phase transformation of an irradiated particle, absorption and scattering of thermal radiation in combustion of fuel droplet, the local volumetric absorption of radiation in the particle with phase transformation and others, are of obvious interest to researchers in several fields. In this research, the alumina ( Al 2 O 3) particles in Solid Propellant Motor exhaust plume are taken as the primary research objects, and the radiative mechanisms of different phases and phase transformation kinetics are investigated, the models for simulating the thermal radiation of high temperature particles with phase transformation are established. The scope of present research contains five parts:
     (1) Three kinds of phases (liquid,γandαstates) that melted alumina particle in the exhaust is most likely to evolve into during its solidification are taken as research objects. The effect of different phase states of alumina particles on their optical constants and radiative properties is analyzed. Different mechanisms which are responsible for the alumina particles radiation are considered in the spectral range from ultraviolet to near infrared region. Based on the model for calculating absorption coefficient of alumina particles in different phases, the model for calculating radiative properties of isothermal particles is built up. Calculated results show satisfactory agreement with experimental data.
     (2) The optical constant of an alumina particle containing carbon impurity is simulated based on the effective medium theory, and phase transformation is considered when particle temperature goes through the melting point. The effective optical constants calculated by Maxwell-Garnett and Bruggeman mixing rules, volume-averaged complex refractive index and the concentric shell model for the particle are compared with each other, and the wave-dependence of effective optical constants calculated by the four mixing rules is studied. The effects of carbon content and mixing morphology on the particle’s radiative properties are investigated. It is indicated that carbon impurity is an important factor that can reduce the discontinuity in the absorption index of pure alumina through the melting point.
     (3) Modeling for the transient radiative properties of alumina particles with phase transformation. First, the time dependence of the volume fraction of different phases is calculated based on the kinetic equation of alumina particles’crystallization process. Second, the transient effective optical constants of alumina particles with phase transformation are calculated by different mixing rules. It is indicated that results calculated by these mixing rules are very close. Third, two kinds of models are built up based on two possible solidification modes, including the multilayered sphere model and the effective-medium sphere model, and then the spectral radiance of alumina particle is calculated in the phase transformation. It can be summarized that the present results show a trend similar to the experimental results, and the results of the effective-medium sphere model which is more in accord with the experimental process shows better agreement with the experimental data.
     (4) The electromagnetic model is constructed to determine thermal radiation inside and outside the radially nonisothermal multiphase alumina particle. The downward recurrence relations for c i n and d in are developed to determine the values for coefficients a_(in) , b_(in) , c_(in), d_(in) . Then the internal absorption factors are calculated, and the results of this paper are close to Mackowski D.W.’s results. Take two kinds of particles, which are multiphase alumina particle containing liquid,γ,αphases and particle containingγ,αphases, carbon soot impurity, as research objects, and the absorption and extinction factors are calculated by multilayered sphere model based on electromagnetic theory and effective-medium sphere model with Mie theory for these two kinds of particle. It is indicated that these two models’results show satisfactory agreement when the thickness of each layer is much less than the wavelength. The thermal radiation inside and outside the single phase and multiphase alumina particle is investigated by multilayered sphere model based on electromagnetic theory. The effects of constituent materials contents, the arrangement of constituent materials and radially temperature difference are also considered.
     (5) The influences of phase transformation and carbon soot impurity on the radiative properties of alumina particles flow are studied. The distribution of spectral radiance along the axis at 90o angle is calculated with backward Monte-Carlo method for axisymmetric high temperature alumina particles flow. Based on effective optical constant of the particle, the effect of alumina particle’s phase transformation and carbon soot impurity on the spectral radiance along the particles flow axis is analyzed. The calculated results indicate that the spectral radiance along the particles flow axis is obviously changed when carbon soot impurity mixed into the high temperature alumina particle. The influence of multiphase state on the ultraviolet radiation of high temperature particles flow can not be neglected.
引文
1郑楚光,晏蓉,周英彪,马毓义.煤燃烧过程中悬浮粒子的辐射特性.工程热物理学报,1993,14 (3):317-321
    2娄春,周怀春,朱国良,邵勇.煤粉炉内颗粒辐射特性的检测与分析.工程热物理学报,2007,28 (Suppl.2):217-220
    3 Bahador M.,Sundén B..Investigation on the Effects of Fly Ash Particles on the Thermal Radiation in Biomass Fired Boilers.Int. J. of Heat and Mass Transfer,2008,51:2411-2417
    4 Lipiński W.,Thommen D.,Steinfeld A..Unsteady Radiative Heat Transfer within a Suspension of ZnO Particles Undergoing Thermal Dissociation.Chemical Engineering Science,2006,61:7029-7035
    5 Moosmüller H.,Chakrabarty R.K.,Arnott W.P..Aerosol Light Absorption and its Measurement: A Review.J. of Quantitative Spectroscopy and Radiative Transfer,2009,110:844-878
    6 Wriedt T..Light Scattering Theories and Computer Codes.J. of Quantitative Spectroscopy and Radiative Transfer,2009,110:833-843
    7 Quirantes A.,Bernard S..Light-scattering Methods for Modelling Algal Particles as a Collection of Coated and/or Nonspherical Scatters.J. of Quantitative Spectroscopy and Radiative Transfer,2006,100:315-324
    8王补宣,周乐平,彭晓峰.纳米颗粒悬浮液热物性及颗粒比热容尺寸效应.工程热物理学报,2004,25 (2):296-298
    9 Xuan Yi-Min,Li Qiang.Heat Transfer Enhancement of Nanofluids.Int. J. of Heat and Fluid Flow,2000,21:58-64
    10黄勇,宣益民,李强,车剑飞.磁性相变微胶囊的制备与表征.科学通报,2008,53 (20):2526-2530
    11 Burt J.M.,Boyd I.D..Monte Carlo Simulation of Particle Radiation in High Altitude Solid Rocket Plumes.AIAA Paper 2007-5703,2007
    12 Gimelshein N.E.,Gimelshein S.F.,Lyons R.B.,Reuster J.G..Analysis of Physical and Numerical Factors for Prediction of UV Radiation from High Altitude Two-Phase Plumes.AIAA Paper 2008-4120,2008
    13 Gimelshein N.E.,Lyons R.B.,Reuster J.G.,Gimelshein S.F..Numerical Prediction of Ultraviolet Radiation from Two-Phase Plumes at High Altitudes.AIAA Journal,2008,46 (7):1764-1772
    14 Miliauskas G.,Sabanas V..Interaction of Transfer Processes during Unsteady Evaporation of Water Droplets.Int. J. of Heat and Mass Transfer,2006,49:1790-1803
    15 Zhou Chungen,Wang Na,Wang Zhenbo,Gong Shengkai,Xu Huibin.Thermal Cycling Life and Diffusivity of a Plasma-sprayed Nanostructured Thermal Barrier Coating.Scripta Materialia,2004,51:945-948
    16 Pawlowski L..Finely Grained Nanometric and Submicrometric Coatings by Thermal Spraying: A Review.Surface and Coating Technology,2008,202:4318-4328
    17 Shaw L.L.,Goberman D.,Ren R.,Gell M.,Jiang S.,Wang Y.,Xiao T.D.,Strutt P.R..The Dependency of Microstructure and Properties of Nanostructured Coatings on Plasma Spray Conditions.Surface and Coating Technology,2000,130:1-8
    18 Liang Bo,Ding Chuanxian.Phase Composition of Nanostructured Zironia Coatings Deposited by Air Plasma Spraying.Surface and Coating Technology,2005,191:267-273
    19 Moon J.,Choi H.,Kim H.,Lee C..The Effects of Heat Treatment on the Phase Transformation behavior of Plasma-sprayed Stabilized ZrO2 Coatings.Surface and Coating Technology,2002,155:1-10
    20 Sheng Xiaoling,Mackie C.,Hall III C.A..Heat Transfer Characterization of the Solidification Process Resulting from a Spray forming Process.Int. Communications in Heat and Mass Transfer,2005,32:872-883
    21 Dombrovsky L.A.,Ignat’ev M.B..Inclusion of Nonisothermality of Particles in the Calculations and Diagnostics of Two-Phase Jets Used for Spray Deposition of Coatings.High Temperature,2001,39(1):134-141
    22殷之文.电介质物理学.第二版,北京:科学出版,2003
    23陆维敏,陈芳.谱学基础与结构分析.北京:高等教育出版社,2005
    24余其铮.辐射换热原理.哈尔滨:哈尔滨工业大学出版社,2000
    25 Z’Graggen A.,Steinfeld A..Heat and Mass Transfer Analysis of a Suspension of ReactingParticles Subjected to Concentrated Solar Radiation– Application to the Steam-gasification of Carbonaceous Materials.Int. J. of Heat and Mass Transfer,2009,52:385-395
    26 Dombrovsky L.A..Spectral Model of Absorption and Scattering of Thermal Radiation by Diesel Fuel Droplets.High Temperature,2002,40 (2):242-248
    27 Dombrovsky L.A..An Estimate of Stability of Large Solidifying Droplets in Fuel-coolant Interaction.Int. J. of Heat and Mass Transfer,2007,50:3832-3836
    28 Dombrovsky L.A.,Lipiński W..Transient Temperature and thermal Stress Profiles in Semi-transparent Particles under High-flux Irradiation.Int. J. of Heat and Mass Transfer,2007,50:2117-2123
    29 Dombrovsky L.A..Approximate Model for Break-up of Solidifying Melt Particles due to Thermal Sresses in Surface Crust Layer.Int. J. of Heat and Mass Transfer,2009,52:582-587
    30刘中良,马重芳,孙璇.相变潜热随温度变化对固-液相变过程的影响.太阳能学报,2003,24 (l):53-57
    31张光跃,荆涛,柳百成.相场方法原理及在微观组织模拟中的应用.机械工程学报,2003,39 (5):6-9
    32张清光,陈民,过增元.过冷熔体中枝晶生长的相场模拟.工程热物理学报,2004,25 (3):487-489
    33刘捷,卢文强.非等温相变问题的双倒易边界元法求解.工程热物理学报,2006,27 (1):85-87
    34高志华,张明义,刘志强,张淑娟.相变温度场中无网格伽辽金法的应用.计算物理,2006,23 (5):545-550
    35吴斌,邢玉明.求解等温相变问题的解耦法.北京航空航天大学学报,2008,34 (12):1398-1401
    36张克从,张乐潓.晶体生长科学与技术.科学出版社,1997
    37 Mondal B.,Mishra S.C..Numerical Analysis of Solidification of a 3-D Semitransparent Medium in Presence of Volumetric Radiation.Int. J. of Thermal Sciences,2009,48:1116-1128
    38 Naterer G.F..Establishing Heat-Entropy Analogies for Interface Tracking in Phase Change Heat Transfer with Fluid Flow.Int. J. of Heat and Mass Transfer,2001,44:2903-2916
    39谈和平,夏新林,刘林华,阮立明.红外辐射特性与传输数值计算——计算辐射学.哈尔滨:哈尔滨工业大学出版,2006
    40 Li Changhui,Kattawar G.W.,Yang Ping.Effects of Surface Roughness on Light Scattering by Small Particles.J. of Quantitative Spectroscopy and Radiative Transfer,2004,89:123-131
    41 Petrov D.,Shkuratov Y.,Zubko E.,Videen G..Sh-matrices Method as Applied to Scattering by Particles with Layered Structure.J. of Quantitative Spectroscopy and Radiative Transfer,2007,106:437-454
    42 Mikrenska M.,Koulev P..Simulation of Light Scattering by Large Particles with Randomly Distributed Spherical or Cubic Inclusions.J. of Quantitative Spectroscopy and Radiative Transfer,2009,(to be published)
    43 Kahnert F.M..Numerical Methods in Electromagnetic Scattering Theory.J. of Quantitative Spectroscopy and Radiative Transfer,2003,79-80:775-824
    44 Sun Wenbo,Loeb N.G.,Fu Qiang.Light Scattering by Coated Sphere Immersed in Absorbing Medium: a Comparison between the FDTD and Analytic Solutions.J. of Quantitative Spectroscopy and Radiative Transfer,2004,83:483-492
    45 Simmons F.S..Rocket Exhaust Plume Phenomenology.California:The Aerospace Press,2000
    46 Menguc M.P.,Manickavasagam S.,D’SA D.A..Determination of Radiative Properties of Pulverized Coal Particles from Experiments.Fuel,1994,73 (4):613-625
    47 Gouesbet G..Asymptotic Quantum Elastic Generalized Lorenz-Mie Theory.Optics Communications,2006,266:704-709
    48 Gouesbet G..Generalized Lorenz-Mie Theories, the Third Decade: a Perspective.J. of Quantitative Spectroscopy and Radiative Transfer,2009,(to be published)
    49 Aden A.L.,Kerker M..Scattering of Electromagnetic Waves from Two Concentric Spheres.Journal of Applied Physics,1951,22 (10):1242-1246
    50 Bohren C.F.,Huffman D.R..Absorption and Scattering of Light by Small Particles.New York:Wiley,1983
    51 Sitarski M..Internal Heating of Multilayered Aerosol Particles by Electromagnetic Radiation.Langmuir,1987,3:85-93
    52 Mackowski D.W.,Altenkirch R.A.,Menguc M.P..Internal Absorption Cross Section in a Stratified Sphere.Applied Optics,1990,29 (10):1551-1559
    53 Wu Z.S.,Wang Y.P..Electromagnetic Scattering for Multilayered Sphere: Recursive Algorithms.Radio Science,1991,26 (6):1393-1401
    54 Kai L.,Massoli P..Scattering of Electromagnetic-Plane Waves by Radially Inhomogeneous Spheres:a Finely Stratified Sphere Model.Applied Optics,1994,33 (3):501-511
    55 Yang W..Improved Recursive Algorithm for Light Scattering by a Multilayered Sphere.Applied Optics,2003,42(9):1710-1720
    56 Dusel P.W.,Kerker M.,Cooke D.D..Distribution of Absorption Centers within Irradiated Spheres.Journal of Optical Society of America,1979,69(1):55-59
    57 Tuntomo A..Transport Phenomena in a small particle with Internal Radiant Absorption.Dissertation for the Philosophy Doctor Degree,University of California,Berkeley,1990
    58 Lage P.L.C.,Rangel R.H..Total Thermal Radiation Absorption by a Single Spherical Droplet.J. of Thermophysics and Heat Transfer,1993,7 (1):101-109
    59 Dombrovsky L.A..Thermal Radiation from Nonisothermal Spherical Particles of a Semitransparent Material.Int. J. of Heat and Mass Transfer,2000,43:1661-1672
    60 Dombrovsky L.A..Absorption of Thermal Radiation in Large Semi-transparent Particle at Arbitrary Illumination of the Polydisperse System.Int. J. of Heat and Mass Transfer,2004,47:5511-5522
    61 Mackowski D.W.,Altenkirch R.A.,Menguc M.P..A Comparison of Electromagnetic Wave and Radiative Transfer Equation Analyses of a Coal Particle Surrounded by a Soot Cloud.Combustion and Flame,1989,76:415-420
    62 Choi S.,Kruger C.H..Modeling Coal Particle Behavior under Simultaneous Devolatilization and Combustion.Combustion and Flame,1985,61:131-144
    63 Tuntomo A.,Tien C.L.,Park S.H..Internal Distribution of Radiant Absorption in a Spherical Particle.Journal of Heat Transfer,1991,113:407-412
    64 Baek S.W.,Park J.H.,Kang S.J..Transient Cooling of a Two-phase Medium of Spherical Shape when Exposed to the Rarefied Cold Environment.Int. J. of Heat and Mass Transfer,2001,44:2345-2356
    65 Liu L.H.,Tan H.P.,Tong T.W..Transient Coupled Radiation-Conduction in Semitransparent Spherical Particle.J. of Thermophysics and Heat Transfer,2002,16 (1):43-49
    66 Liu L.H.,Li B.X.,Tan H.P.,Yu Q.Z..Emissive Power of Semitransparent Spherical Particle with Nonuniform Temperature.Int. J. of Heat and Mass Transfer,2002,45:4907-4910
    67西泽泰二著,郝士明译.微观组织热力学.化学工业出版社. 2006
    68南策文著.非均质材料物理——显微结构-性能关联.科学出版社,2005
    69洪伟铭.掺铝对ZnO薄膜光学常数的影响.半导体光电,2007,28 (2):205-208
    70 Marquier F.,Joulain K.,Mulet J.P.,Carminati R.,Greffet J.J..Engineering Infrared Emission Properties of Silicon in the Near Field and the Far Field.Optics Communications,2004,237:379-388
    71 Fu C.J.,Zhang Z.M..Nanoscale Radiation Heat Transfer for Silicon at Different Doping Levels.Int. J. of Heat Transfer and Mass Transfer,2006,49:1703-1718
    72 Landauer R..Electrical Transport and Optical Properties of Inhomogeneous Media,American Institute of Physics Conference Proceedings,American Institute of Physics,New York,1978,Vol.40
    73 Hespel L.,Delfour A.,GosséS.,Millot F..Influence of Alumina Particles Heterogeneity on Particle Sizing and Radiative Properties Evaluation in Solid Rocket Plumes.AIAA Paper 2003-3650,2003
    74 Choy T.C..Effective Medium Theory——Principles and Applications.Oxford:Clarendon Press,1999:7-15
    75 Lesins G.,Chylek P.,Lohmann U..A Study of Internal and External Mixing Scenarios and its Effect on Aerosol Optical Properties and Direct Radiative Forcing.Journal of Geophysical Research,2002,107 (D10):(AAC5:1-12)
    76 Voshchinnikov N.V.,Mathis J.S..Calculating Cross Sections of Composite Interstellar Grains.The Astrophysical Journal,1999,526 (20):257-264
    77 Chylek P.,Videen G..Scattering by a Composite Sphere and Effective Medium Approximations.Optics Communications,1998,146:15-20
    78 Erlick C..Effective Refractive Indices of Water and Sulfate Drops Containing Absorbing Inclusions.Journal of the Atmospheric Sciences,2005,63:754-763
    79 Boer G.J.,Sokolik I.N.,Martin S.T..Infrared Optical Constants of Aqueous Sulfate-nitrate-ammonium Multi-component Tropospheric Aerosols from Attenuated Total Reflectance Measurements:Part II.An Examination of Mixing Rules.J. of Quantitative Spectroscopy & Radiative Transfer,2007,08:39-53
    80柳朝晖,刘迎晖,周英彪,郑楚光.多孔炭粒的等效光学常数及辐射特性.工程热物理学报,1997,18 (2):251-255
    81刑华伟,邓先和,郑楚光,柳朝晖.煤粉炉内颗粒光学特性实验与数值模型.燃烧科学与技术,2002,8 (1):34-37
    82 Oliver S.M.,Moylan B.E..An Analytical Approach for the Prediction of Gamma-to-Alpha Phase Transformation of Aluminum Oxide (Al2O3) Particles in the Space Shuttle ASRM and RSRM Exhausts.AIAA Paper 1992-2915,1992
    83 Plastinin Y.A.,Anfimov N.A.,Baula G.G.,Karabadzhak G.F.,Khmelinin B.A.,Rodionov A.V.,Modeling of Aluminum Oxide Particle Radiation in a Solid Propellant Motor Exhaust.AIAA Paper 1996-1879,1996
    84 Wan Y.P.,Prasad V.,Wang G.X.,Sampath S.,Fincke J.R..Model and Powder Particle Heating,Melting,Resolidification,and Evaporation in Plasma Spraying Processes.Journal of Heat Transfer,1999,121:691-699
    85 Chang K.C.,Chen C.M..Revisiting Heat Transfer Analysis for Rapid Solidification of Metal Droplets.Int. J. of Heat and Mass Transfer,2001,44:1573-1583
    86 Dombrovsky L.,Sazhin S..Absorption of Thermal Radiation in a Semi-transparent Spherical Droplet: A Simplied Model.Int. J. of Heat and Fluid Flow,2003,24:919-927
    87 Abramzon B.,Sazhin S..Droplet Vaporization Model in the Presence of Thermal Radiation.Int. J. of Heat and Mass Transfer,2005,48:1868-1873
    88 Tseng C.C.,Viskanta R..Heating/Melting of a Semitransparent Particle Including Radiation Effects.Int. J. of Thermal Sciences,2006,45:945-954
    89 Tseng C.C.,Viskanta R..Heating/Melting of a Fused Silica Particle by Convection and Radiation.Int. J. of Heat and Mass Transfer,2006,49:2995-3003
    90 Dombrovsky L.A.,Dinh T.N..The Effect of Thermal Radiation on the Solidification Dynamics of Metal Oxide Melt Droplets.Nuclear Engineering and Design,2008,238:1421-1429
    91徐匡迪,翟启杰.微滴凝固的若干科学问题.香山科学会议第211次学术讨论会论文集,2005,北京,36-54
    92 Levi C.G.,Mehrabian R..Heat Flow during Rapid Solidification of Undercooled Metal Droplets.Metallurgical Transactions A,1982,13A:221-234
    93 Clyne T.W..Numerical Treatment of Rapid Solidification.Metallurgical Transactions B,1984,15A:369-381
    94 Perepezko J.H.,Uttormark M.J..Nucleation-Controlled Solidification Kinetics.Metallurgical and Materials Transactions A,1996,27A:533-547
    95 Dirk B.,Udo F.,Klaus B..A Mathematical Model for Cooling and Rapid Solidification of Molten Metal Droplets.Int. J. of Thermal Science,2000,39:53-62
    96 Wang G.X.,Prasad V..Microscale Heat and Mass Transfer and Non-equilibrium Phase Change in Rapid Solidification.Materials Science and Engineering,2000,A292:142-148
    97 GosséS.,Sarou-Kanian V.,Véron E.,Millot F.,Rifflet J.C.,Simon P..Characterization and Morphology of Alumina Particles in Solid Propellant Subscale Rocket Motor Plumes.AIAA Paper 2003-3649,2003
    98 Robinson R.D..Phase Transitions in Metal Oxide Nanoparticles as Studied by Raman Scattering.Dissertation for the Philosophy Doctor Degree,Columbia University,Columbia,2004
    99郭奕玲,沈慧君.物理学史.第二版,北京:清华大学出版社,2005
    100 Modest M.F..Radiative Heat Transfer.2nd ed.New York:Academic Press,2003
    101 Miliauskas G..Regularitues of Unsteady Radiative-Conductive Heat Transfer in Evaporating Semitransparent Liquid Droplets.Int. J. of Heat and Mass Transfer,2001,44:785-798
    102 Kattawar G.W.,Eisner M..Radiation from a Homogeneous Isothermal Sphere.Applied Optics,1970,9 (12):2685-2690
    103 Kong Jin Au著.电磁波理论.吴季等译.北京:电子工业出版社,2003
    104沈学础.半导体光谱和光学性质.第二版,北京:科学出版,2002
    105李景德,沈韩,陈敏.电介质理论.北京:科学出版,2003
    106方容川.固体光谱学.合肥:中国科学技术大学出版社,2001
    107黄昆,韩汝琦.固体物理学.北京:高等教育出版社,1988
    108 Sihvola A..Mixing Rules with Complex Dielectric Coefficients.Subsurface Sensing Technologies and Applications,2000,1 (4):393-415
    109 Rieger T.J..On the Emissivity of Alumina/Aluminum Composite Particles.Journal of Spacecraft and Rockets,1979,16 (6):438-439
    110 Pluchino A.B.,Masturzo D.E..Emissivity of Al2O3 Particles in a Rocket Plume.AIAA Journal,1981,19 (9):1234-1237
    111 Konopka W.L.,Reed R.A.,Calia V.S..Measurements of Infrared Optical Properties of Al2O3 Rocket Particles.Progress in Aeronautics and Astronautics,1984,91:180-197
    112 Nelson L.S.,Richardson N.L..Effects of Oxygen and Argon Atmospheres on Pendant Drops of Aluminum Oxide Melted with Carbon Dioxide Laser Radiation.High Temperature Science,1973,5:138-154
    113 Kraulte K.J.,Bradley H.H.Jr..Combustion of Aluminized Propellants: the Influence of Pressure and Propellant Composition on Formation of Aluminum Combustion Residue.14th JANNAF Combustion Mtg.,CPIA Publication:209-219,1977
    114 Parry D.L.,Brewster M.Q..Optical Constants of Al2O3 Smoke in Propellant Flames.Journal of Thermophysics,1991,5 (2):142-149
    115 Adams J.M..A Determination of the Emissive Properties of a Cloud of Molten Alumina Particles Cloud of Molten Alumina Particles.J. of Quantitative Spectroscopy and Radiative Transfer,2000,7:273-277
    116 Mularz E.J.,Yuen M.C..An Experimental Investigation of Radiative Properties of Aluminum Oxide Particles.J. of Quantitative Spectroscopy and Radiative Transfer,1972,12:1553-1568
    117 Krishnan S.,Weber J.K.R.,Schiffman R.A.,Nordine P.C.,Reed R.A..Refractive Index of Liquid Aluminum Oxide at 0.6328μm.J. of the American Ceramic Society,1991,74 (4):881-883
    118 Nordine P.C.,Weber J.K.R.,Krishnan S.,Anderson C.D..Properties of Liquid Aluminum Oxide.AIAA Paper 1993-2821,1993
    119 Levi C.G.,Jayaram V.,Valencia J.J.,Mehrabian R..Phase Selection in Electrohydro-Dynamic Atomization of Alumina.Journal of Materials Research,1988,3 (5):969-983
    120 Rodionov A.V.,Plastinin Y.A.,Drakes J.A.,Simmons M.A.,Hiers R.S..Modeling of Multiphase Alumina-Loaded Jet Flow Fields.AIAA Paper 1998-3462,1998
    121 Brewster M.Q.,Parry D.L..In-Situ Measurements of Alumina Particle Size and Optical Constants in Composite Solid Propellant Flames.AIAA Paper 1987-1582,1987
    122 Parry D.L.,Brewster M.Q..Optical Constants and Size of Propellant Combustion Aluminum Oxide (Al2O3) Somke.AIAA Paper 1988-3350,1988
    123 Plastinin Y.A.,Karabadzhak G.F.,Khmelinin B.A.,Baula G.G.,Rodionov A.V..Ultraviolet, Visible and Infrared Spectra Modeling for Solid and Liquid-fuel RocketExhausts.AIAA Paper 2001-0660,2001
    124 Plastinin Y.A.,Sipatchev H.P.,Karabadzhak G.F.,Khmelinin B.A.,Khlebnikov A.G.,Shishkin Y.N..Influence of Alumina Particles’Phase Transition on its Radiation in the Middle Infrared and Ultraviolet Regions of Spectrum.AIAA Paper 2000-0735,2000
    125 Plastinin Y.A.,Afanasjev A.,Sipatchev H.,Szhenov E.,Khlebnikov A.,Khmelinin B.,Shishkin Y.,Shesterkin I..Experimental Investigation of Alumina Particles’Phase Transitions.European Office of Aerospace Research and Development,Rept.SPC-95-4023,FPO New York,Dec.,1995
    126 Anfimov N.A.,Karabadzhak G.F.,Khmelinin B.A.,Plastinin Y.A.,Rodionov A.V..Analysis of Mechanisms and Nature of Radition from Alumimum Oxide in Different Phase States in Solid Rocket Exhaust Plumes.AIAA Paper 1993-2818,1993
    127 Voshchinnikov N.V.,Il’in V.B.,Henning T..Modeling the Optical Properties of Composite and Porous Interstellar Grains.The Astronomy and Astrophysics,2005,429 (2):371-381
    128 Rossow U.Optical Characterization of Porous Materials.Physica Status Solid A: Applied Research, 2001,184 (1):51-78
    129 Burt J.M.,Boyd I.D..A Monte Carlo Radiation Model for Simulating Rarefied Multiphase Plume Flows.AIAA Paper 2005-4691,2005
    130 GosséS.,Hespel L.,Gossart P.,Delfour A..Morphological Characterization and Particle Sizing of Alumina Particles in Solid Rocket Motor.Journal of Propulsion and Power,2006,22 (1):127-135
    131 Jung J.Y.,Brewster M.Q..Radiative Heat Transfer Analysis with Molten Al2O3 Dispersion in Solid Rocket Motors.Journal of Spacecraft and Rockets,2008,45 (5):1021-1030
    132帅永,董士奎,刘林华.高温含粒子自由流红外辐射特性的反向蒙特卡罗法模拟.红外与毫米波学报,2005,24 (2):100-104
    133亓雪芹,王平阳,张靖周,单勇,程惠尔.反向蒙特卡罗法模拟波瓣喷管的红外辐射特性.上海交通大学学报,2005,39 (8):1229-1232

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700