随机激光辐射特性的理论研究与数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随机介质通常是指一种折射率在光波长尺度内随机变化的介质,光波在这样的介质中表现出许多光学特性,其中随机激光(Random Lasers)是最令人感兴趣的现象。这种随机增益介质中的受激辐射现象,不需要传统的激光腔,而是形成于光子的局域化。对这一现象的研究开辟了光波局域化和激光物理的新领域,而且可能研制出一种新型微腔激光器。本文基于激光物理、固体物理和光波局域化理论,分析了随机激光器的形成机制和光学特性。
    详细介绍了有限时域差分法和传输矩阵法的理论和算法,着重讨论和分析了激励源、PML 吸收边界条件、准态模的测量技术等几个关键问题,这些因素直接影响模拟结果。根据概率论和数理统计的有关知识,我们建立了描述一维、二维ZnO 随机介质统计模型,并用传输矩阵法(TMM),有限时域差分法(FDTD)计算了介质中电场的空间分布和时间演化特性。为了描述电磁场的放大特性,我们采用了几种不同的方法将光学增益引入到模型中,这构成几种不同的模型。我们研究和对比了这几个模型的特点和应用范围。
    基于光波局域化理论,详细地研究了1D 和2D 随机介质中,介电常数的空间涨落对光波空间分布和准态模频谱特性的影响。模拟结果显示,介质中散射微粒的不同分布将形成不同结构的随机介质。这些结构对光波的多重散射,将延长光波在介质中的滞留时间,其作用类似于一个谐振腔。这种类光腔结构随机地分布在介质中,其数量、位置和分布决定于散射微粒的随机结构。准态模的Q 值是和随机激光密切相关的参数。TMM 法模拟的结果显示,在1D 随机介质中准态模的Q 值依赖于随机强度的大小,在某些随机强度下准态模具有很高的Q 值。
    基于激光物理的选模理论,研究了随机激光器的选模技术。几种不同的选模技术,包括局域泵浦、调整增益曲线和改变介质的边界等用于准态模的选择激发。模拟结果显示,这些方法可以有效地控制准态模的放大。
    通过分析随机激光器的阈值,探讨了降低随机激光器阈值的方法和技术。模拟结果显示,局域化较强的准态模有较小的阈值,能够首先激发。双光子泵浦是一种有效
Random media usually refer to electromagnetic media with a random spatial variation of the refractive index in optical wavelength scale. Such a medium possesses much optical characteristics in which random lasing is the most interesting optical phenomenon. This kind of lasing phenomenon does not require a pre-defined physical cavity but originates from photon localization. The study on this phenomenon will open up land of photon localization and new field of laser physics, and expect to develop a kind of new-type micro-cavity laser. In this dissertation, Finite Difference Time Domain (FDTD) and Transfer Matrix Method (TMM) are developed to analyse the feedback mechanism and optical characteristic of random lasers.
    Based on laser physics, solid physics and conventional theory and algorithm of the FDTD method, several models are analyzed in detail,in which their application range and features are discused and compared with each other. The theory and algorithm of TMM and FDTD method are studied in detail and implemented in a unique and efficient approach. Several essential questions including excitation sources, detection techniques and Perfectly Matched Layer (PML) boundary conditions are analyzed to obtain the accurate information from simulations. The combination of the FDTD and TMM method provides a powerful tool for simulation and analysis of random lasers with high performance.
    Based on theory of photon localization, the effects of the dielectric constant fluctuation on the spatial distribution of light waves are investigated in detail in one-dimension and two-dimensional random media. Results show that the fluctuation on dielectric constant results in some special configurations forming in a random medium. Such configurations trap the lightwave and delay relaxation time of the photon in it, and play a role similar to an optical resonator, which results in lasing oscillation in a random
    medium with a pump beam. Such optical resonators distribute randomly in the random medium and their amount and distributing characteristics depend on the strength of the dielectric constant fluctuation. The quality factor is vital to understand the random lasers. Resulsts obtained from TMM method in one-dimensional random media, show that the strength of randomness affects the quality factor of quasi-state modes. It is possible for high quality factor of quasi-state mode to be formed in random medium with some degree of disorder strength. Based on theory of mode selection, the selectively excitation of quasi-state modes is studied in detail. Several mode-selecting techniques,such as the local pumping, adjusting gain curve and changing the shape of the random medium, are applied to mode selcetion. The results show that above techniques affect the excitation of quasi-state modes. Finally, on the basis of analysis of lasing threshold, the low-threshold random lasers are analyzed in detail. Results show that the quasi-state modes with a stronger spatial localization have lower threshold and can be amplified preferentially. The two-photon pump is an effective method to reduce threshold while partially random media serve as another material to realize the low-threshold random laser. Results show that the threshold is closely related to the strength of randomness and the lasing threshold reachs a minimum value at some value of disorder strength.
引文
[1] D. Rafizadeh, J. P. Zhang, S. C. Hagness et al. Waveguide-coupled AlGaAs/ GaAs microcavity ring and disk resonator with high finesse and 21.6-nm free spectral range. Optics Lett. , 1997, 22 (16): 1244~1246
    [2] F. C. Blom, D. R. van Dijk, H. J. W. M. Hoekstra et al. Experimental study of integrated-optics microcavity resonators: Toward an all-optical switching device. Applied Physics Lett. , 1997, 71(6): 747~749
    [3] Y. Yamamoto, R. Slusher Optical process in microcavities, Phys. Today, 1993, 46 (10): 66~77
    [4] S. Fan, P. R. Villeneuve, J.D. Joannopoulos et al. High extraction efficiency of spontaneous emission from slabs of photonic crystals. Phys. Rev. Lett. . 1997, 78 (17): 3294~3297
    [5] T. Baba Photonic crystals and microdisk cavities based on GaInAsP-InP system. IEEE J. Selected Topics in Quantum Electronic, 1997, 3(3): 808~830
    [6] V. S. Letokhov. Generation of light a scattering medium with negative resonance absorption. Sov. Phys. 1968, 26(8): 835~840
    [7] N. M. Lawandy, R. M. Sslschandran, A.S.Lgomes et al. Laser action in strongly scattering media. Nature, 1994(9), 368: 436~438
    [8] D.S.Wiersma, M.P. van Albada, Ad Lagendijk Coherent Backscattering of Light from Amplifying Random Media. Phys. Rev. Lett. 1995, 75(9): 1739~1742
    [9] D.S.Wiersma, A. Lagendijk Light diffusion with gain and random lasers. Phys.Rev. E 1996, 54(4): 4256~4265
    [10] P. Pradhan, N. Kumar Localization of light in coherently amplifying random media. Phys. Rev. B, 1994, 50(13): 9644~9647
    [11] A.Yu. Zyuzin Transmission fluctuations and spectral rigidity of lasing states in a random amplifying medium. Phys.Rev. E, 1995, 51(6): 5274~5278
    [12] S. John. G. Pang Theory of lasing in a multiple-scattering medium, Phys.Rev. A, 1996,54(4): 3642~3652
    [13] G. A. Berger. M. Kempe, A.Z. Genack Dynamics of stimulated emission from random media. Phys.Rev. E, 1997,56(5): 6118~6122
    [14] Z. Q. Zhang Light amplification and localization in randomly layered media with gain. Phys.Rev. B, 1995, 52 (11): 7960~7964
    [15] A.K. Gupta, A.M. Jayannavar Electron wave transport in coherently absorptive random media Phys.Rev. B, 1995, 52(6): 4156~4161
    [16] J. C. J. Paasschens, T. Sh. Misirpashaev. C. W. J. Beenakker Localization of light: Dual symmetry between absorption and amplification. Phys. Rev. B, 1996, 54(17): 11887~11890
    [17] H. Cao, Y. G. Zhao, S. T. Ho et al Random Laser Action in Semiconductor Powder. Phys. Rev. Lett. 1999, 82(11): 2278~2281
    [18] H. Cao, J. Y. Xu, D. Z. Zhang et al Spatial Confinement of Laser Light in Active Random Media. Phys. Rev. Lett. , 2000, 84 (24): 5584~5587
    [19] S. V. Frolov, Z. V. Vardeny, K. Yoshino Stimulated emission in high-gain organic media. Phys. Rev. B, 1999, 59(8): R5284~R5287
    [20] Xunya Jiang, C. M. Soukoulis Time Dependent Theory for Random Lasers. Phys. Rev. Lett. 2000, 85(1): 70~73
    [21] H. Cao, Xunya Jiang, Y. Ling et al Mode repulsion and mode coupling in random lasers. Phys. Rev. B, 2003, 67(16): 161101~161104
    [22] C. M. Soukoulis, Xunya Jiang, J. Y. Xu, H.Cao Dynamic response and relaxation oscillations in random lasers. Phys. Rev. B, 2002,65(4): 041103~041107
    [23] Y. Ling, H. Cao, A. L. Burin, M. A. Ratner ea al Investigation of random lasers with resonant feedback. Phys. Rev. A, 2001, 64(6):063808~063815
    [24] Zhao–Qing Zhang Light amplification and localization in randomly layered media with gain. Phys. Rev. B, 1995, 52(11): 7960~7964
    [25] C. W. J. Beenakker Thermal Radiation and Amplified Spontaneous Emission from a Random Medium. Phys. Rev. Lett.. 1998, 81(9): 1829~1832
    [26] A. L. Burin, H. Cao, M. A. Ratner Two-Photon Pumping of a Random Laser. IEEE Journal of selected topic in quantumelectronics, 2003, 9(1): 124~127
    [27] G. R. Williams, S. B. Bayram, S. C. Rand Laser action in strongly scattering rare-earth-metal-doped dielectric nanophosphors. Phys.Rev.A,2001, 65(1):013807~013812
    [28] S. H. Chang, H. Cao, S. T. Ho Cavity formation and light propagation in partially ordered and completely random one-dimensional systems. IEEE Journal of quantumelectronics, 2003, 39(2): 364~374 M. Bahoura, K.J. Morris, M.A. Nogino Threshold and slope e.ciency of Nd0.5 La0.5 Al3 (BO3) 4ceramic random laser: effect of the pumped spot size, Optics Communication, 2002, 201(1): 405~411
    [29] A. L. Burin, H.Cao, M.A. Ratner Understanding and control of random lasing. Phys. B, 2003, 338:212~214
    [30] Y. Feng, k. I. Ueda, Random stack of resonant dielectric layers as a laser system. Optics express, 2004, 12(15): 3307~3312
    [31] M.N. Shkuov, M.C.Delong, M.E. Raikh Photonic versus random lasing in opal single crystals. Synthetic metals, 2001,116(3): 485~491
    [32] Xunya Jiang, C.M. Soukoulis Localized random modes and a path for observing localization. Phys. Rev. E, 2002, 65(2):025601~025604
    [33] H. Cao, Xunya Jiang, Y. Ling Mode repulsion and mode coupling in random lasers. Phys. Rev. B, 67(16): 161101~161104
    [34] Xunya Jiang, Songlin Feng, C. M. Soukoulis Coupling, competition, and stability of modes in random lasers. Phys. Rev. B, 2004, 69(10): 104202~104208
    [35] V. Perinorv, A Luks, J. Krepelka Quantum and semiclassical models for a random laser. J. Opt. B: Quantum Semiclass. 2004, 6:S104~S110
    [36] B.Liu, A.Yamilov, Y.Ling Dynamic nonlinear effect on lasing in a random medium. Phys. Rev. Lett. , 2003, 91(6):063903~063906
    [37] B.Liu, A.Yamilov, H.Cao Effect of kerr nonlinearity on defect lasing modes in weakly disordered photonic crystals. Appl. Phys. Lett. , 2003, 83(6): 1092~1094
    [38] H.Cao, J.Y.Xu, E.W.Seeling et al Microlaser made by disorder media. Appl. Phys.Lett. 2000, 76(21): 2997~2999
    [39] H.Cao, Y.G.Zhao, H.C.Ong et al Far-field characteristics of random lasers. Phys. Rev. B, 1999, 59(23): 15107~15111
    [40] H.Cao,Y.Ling, J.Y. Xu et al Photon statistics of lasers with resonant feedback. Phys. Rev. Lett. 2001, 86(20): 4524~4527
    [41] H.Cao, Y.G. Zhao, S.T.Ho et al Random laser action in semiconductor power. Phys. Rev. Lett. 1999, 82(11): 2278~2281
    [42] D.S.Wiersma Light diffusion with gain and random lasers. Phys. Rev. E, 1996, 54 (4): 4256~4265
    [43] A. L. Burin M. A. Ratner, H. Cao, et al. Model for a random laser. Phys. Rev. Lett. , 2001, 87 (21): 215503~215506
    [44] A. L. Burin, M.A. Ratner, H. Cao et al. Random laser in one dimension. Phys. Rev. Lett. , 2002, 88 (9): 093904~093907
    [45] N. M. Lawandy, R. M. Balachandran Random laser? Nature 1995, 373(19): 203~204
    [46] Weili. Zhang, Nelson Cue, K. M. Yoo. Effect of random multiple light scattering on the laser action in a binary-dye mixture. Opt. Lett. 1995, 20: 1023~1025
    [47] S. John Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 1987, 58(23):2486~2489
    [48] G. A. Berg, M. Kempe, A. Z. Genack. Dynamics of stimulate emission from random media. Phys. Rev. E. 1997, 56(5): 6118~6124
    [49] G. Van Soest, F. J. Poelwijk, R. Sprik. et al. Dynamics of a random laser above threshold. Phys. Rev. Lett. 2001, 86(8): 1522~1524
    [50] G. Van Soest, Ad Lagendijk. βfactor in a random laser. Phys. Rev. E, 2002 65(4): 047601~047604
    [51] P. W. Anderson. Absence of diffusion in certain random lattices. Phys. Rev. 1958, 109:1492~1505
    [52] P.W. Anderson, D.J. Thouless. E. Abrahams et al New method for a scaling theory of localization.1980, Phys. Rev. B, 22(8), 3519~3526
    [53] S. John Electromagnetic Absorption in a Disordered Medium near a Photon Mobility Edge. Phys. Rev. Lett. 1984,53 (22), 2169~2172
    [54] S. John Localization of light. Phys. Today, 1991,44(5): 32~ 40
    [55] A. Yu. Zyuzin. Transmission fluctuations and spectral rigidity of lasing states in a random amplifying medium Phys. Rev .E, 1995, 51(6): 5274~5278
    [56] W. Deng, D. S. Wiersma. Coherent backscattering of light from random media with inhomogeneous gain coefficient. Phys. Rev. B, 1997, 56(1): 178~181
    [57] A. V. Tutov, A. A. Maradudin, T. A. Leskova. Scattering of light from an amplifying medium bounded by a randomly rough surface. Phys. Rev. B, 1999, 60(18): 12692~12704
    [58] D. S. Wiersma, M. P. van Albada, Ad Lagendijk. Coherent Backscattering of Light from Amplifying Random Media. Phys. Rev. Lett. 1995, 75(9): 1739~1742
    [59] P. C. de Oliveira, A. E. Perkins, N. M. Lawandy. Coherent backscattering from high-gain scattering media. Opt. Lett. 1996, 21:1685~1687
    [60] P. Pradhan and N. Kumar. Localization of light in coherently amplifying random media. Phys. Rev. B, 1994, 50(13): 9644~9647
    [61] A. Yu. Zyuzin. Transmission fluctuations and spectral rigidity of lasing states in a random amplifying medium Phys. Rev .E, 1995, 51(6): 5274~5278
    [62] J. C. J. Paasschens, T. S. Misirpashaev, C. W. J. Beenakker. Localization of light: Dual symmetry between absorption and amplification. Phys. Rev. B, 1996, 54(17):11887~11890
    [63] A. A. Burkov, A. Yu. Zyuzin. Correlations in transmission of light through a disordered amplifying medium. Phys. Rev. B, 1997, 55(9): 5736~5741
    [64] V. Freilikher, M. Pustilnik, I. Yurkevich. Statistical properties of the reflectance and transmittance of an amplifying random medium. Phys. Rev. B, 1997, 56(10): 5974~5977
    [65] Xunya Jiang, C. M. Soukoulis. Transmission and reflection studies of periodic and random systems with gain. Phys. Rev. B, 1999, 59(9): 6159~6166
    [66] Xunya Jiang, C. M. Soukoulis. Symmetry between absorption and amplification in disordered media. Phys. Rev. B, 1999, 59(14): R9007~R9010
    [67] H. Cao, Y. Ling, J. Y. Xu, et al. Probing localized states with spectrally resolved speckle techniques. Phys. Rev. E, 2002, 66(2): R025601~R025604
    [68] C. W. J. Beenakker, J. C. J. Paasschens, and P. W. Brouwer. Probability of Reflection by a Random Laser. Phys. Rev. Lett. 1996, 76(8): 1368~1371
    [69] Y. Ling, H. Cao,1 A. L. Burin et al Investigation of random lasers with resonant feedback.. Phys. Rev. A, 64(6):063808~063815
    [70] H. Cao, J. Y. Xun, S. H. Chang, et al. Transition from amplified spontaneous emission to laser action in strongly scattering media. Phys. Rev. E, 2000, 61(2): 1985~1989
    [71] P. Sebbah, C. Vanneste. Random laser in localized regime. Phys. Rev. B, 2002, 66(14): 144202~144212
    [72] C. Vanneste, P. Sebbah, Selective of localized modes in active random media, Phys. Rev. Lett, 2001, 87(18): 183903~183906
    [73] V. M. Alpalkov, M. E. Raikh, B. Shapiro, Random resonator and prelocalizated mode in disorder dielectric films, Phys. Rev. Lett. 2002, 89(1): 016802~016805
    [74] G. Hackenbroich, C. Viviescas, F. Haake Field quantization for chaotic resonators with overlapping modes. Phys. Rev. Lett. 2002,89(8):083902~083905
    [75] S.M. Dutra, G.Nienhuis Quantized mode of a leaky cavity. Phys. Rev. A, 2000,62(6):063805~063817
    [76] Vladimir M. Shalaev (Ed.), Optical properties of nanostructured random media, (Springer, Berlin), 2001, 303-328.
    [77] 刘劲松,王春,王可嘉,王宏,吕键滔,随机激光器的准态模理论,中国激光,2004, 31(Supp): 26~29
    [78] N. H. Liu, Defect modes of stratified dielectric media, Phys. Rev. B, 1997, 55(7): 4097~4100
    [79] M.M.Sigalas, C.M.Soukoulis, C.T.Chan et al Electromagnetic-wave propagation through dispersive and absorptive photonic-band-gap materials, Phys. Rev. B, 1994,49(16): 11080~11087. M. Sigalas, C. M. Soukoulis, E. N. Economou et al Photonic band gaps and defects in two dimensions: Studies of the transmission coefficient. Phys. Rev. B, 1993, 48(19): 14121~14126
    [80] Bin Shei Lin, Variational analysis for photonic molecules: Application to photonic benzene waveguides, Phys. Rev. E, 2003,68(3):036611~036618
    [81] Pierre R. Villeneuve, Shanhui Fan, J. D. Joannopoulos. Microcavities in photonic crystals: Mode symmetry, tunability, and coupling efficiency. Phys. Rev. B, 1996,54(11): 7837~7842
    [82] Chul-Sik Kee, Jae-Eun Kim, Hae Yong Park et al, Defect modes in a two-dimensional square lattice of square rods, Phys. Rev. E, 1998,58(6), 7908~7912. R. D. Meade, A. M. Rappe, K. D. Brommer et al, Accurate theoretical analysis of photonic band-gap materials, Phys. Rev. B, 1993, 48 (11), 8434~8437
    [83] F.Gadot, A. de Lustrac, J. M. Lourtioz et al High-transmission defect modes in two-dimensional metallic photonic crystals. J. Appl. Phys., 1999, 85(12): 8499~8501
    [84] W.R. Frei, H.T.Johnson, Finite-element analysis of disorder effects in photonic crystals. Phys. Rev. B, 2004, 70(16): 165116~165126
    [85] Shinpei Ogawa, Masahiro Imada, Susumu Noda et al, Analysis of thermal stress in wafer bonding of dissimilar materials for the introduction of an InP-based light emitter into a GaAs-based three-dimensional photonic crystal, Appl. Phys. Lett. , 2003,82(20): 3406 ~3408
    [86] R.Hawkins, J.S.Kallman, Lasing in tilted-waveguide semiconductor laser amplifiers. Optical and Quantum Electronics, 1994, 26(2): S207~S217
    [87] S.C. Hagness, R.M. Joseph, A. Taflove, Subpicosecond electrodynamics of distributed Bragg reflector microlasers: results from finite difference time domain simulations. Radio Science, 1996, 31(4): 931~941
    [88] R.W.Ziolkowski, J.M.Arnold, D.M.Gogny Ultrafast pulse interactions with two-level atom. Phys. Rev. A, 1995, 52(4): 3082~3094
    [89] A.Taflove, C.H. Hagness, Computational electrodynamics: the finite difference time-domain method. Arrech house boston. London, 2000
    [90] J.P.Berenger, A perfectly matched layer for the absorption of electromagnetic waves. J. Computational Physics, 1994, 114(1): 185~200
    [91] J.P.Berenger, Perfectly matched layer for FDTD solution of wave-structure interaction problems. IEEE Trans. Antennas and Propagation, 1996,51(1): 110~117
    [92] J.P.Berenger, A perfectly matched layer for free-space simulations in finite-difference comuter codes. Annales des telecommunications, 1996, 51(1): 36~46
    [93] 葛德彪,闫玉波,电磁波有限使用差分法,西安电子科技大学出版社,2002.31~64
    [94] M. Qiu. S. He Numerical method for computing defect modes in two-dimensional photonic crystals with dielectric or metallic inclusions. Phys. Rev. B. 2000, 61(19): 2871~2876
    [95] S.C. Hagness, R.M. Joseph, A. Taflove, subpicosecond electrodynamics of distributed Bragg reflector microlasers: results from finite difference time domain simulations. Radio Science, 1996, 31(4): 931~941
    [96] S. H.Chang, A.Taflove Finite-difference time-domain model of lasing action in a four-level two-electron atomic system. 2004, Optics Express, 12(16): 3827~3833
    [97] Shangping Guo, S. Albin Numerical techniques for excitation and analysis of defect modes in photonic crystals, Optics Express, 2003, 11(9): 1080~1088
    [98] H. Cao, Y. Ling, J. Y. Xu, A. L. Burin Probing localized states with spectrally resolved speckle techniques. Phys. Rev. E, 2002, 66(2):025601~025603
    [99] R.J.Glauber, M.L.Lewenstein, Quantum optics of dielectric media. Phys. Rev. A, 1991,43(1): 467~491
    [100] C.H.Henry, R.F.Kazarinov, Quantum noise in photonics. Rev. Mod. Phys. 1996,68(4):801~857
    [101] Y. Xu, R.K.Lee, A.Yariv Quantum and the classical analysis of spontaneous emission in a microcavity Phys. Rev. A, 2000,61(3), 033807~033819
    [102] W.h.Press, S.A.Teukolsky, W.T.Vetterling et al Numerical recipes in C. Cambridge University Press, 1995
    [103] R. J. Hawkins, J.S. Kallman,Lasing in tilted-waveguide semiconductor laser amplifiers. Opt. Quantum Electronics, 1994, 26(2): S207~S217
    [104] Qiming Li, K.M.Ho, C.M.Soukoulis Mode distribution in coherently amplifying random media Phys. B, 2001, 296(1):78~84
    [105] K.Y.Bliokh, Y.P.Bliokh, V.D. Freilikher Resonance in one-dimensional disordered system: localization of energy and resonant transmission, Optics B, 2004, 21(1): 113~120
    [106] A.L.Burin, H.Cao High-quality optical modes in low-dimensional arrays of nanoparticles: application to random lasers. , 2004,21(1): 121~131
    [107] Xiaohua H. Wu, A.Yamilov, H.Noh et al Random lasing in closely packed resonant scatters. Optics B, 2004,21(1): 159~167
    [108] M.N.Shkunov, M.C.Delong, M.E.Raikh et al Photonic versus random lasing in opal single crystals. Synthetic Metals, 2001, 116(3): 485~491
    [109] C. D. Moss, F.L. Teixeira, Y Eric Yang et al Finite-difference time-domain simulation of scattering from objects in continuous random media. IEEE Transactions on Geoscience and Remote Sensing. 2002,40(1): 178~186
    [110] J.Ripoll, C.M. Soukoulis, E.N.Economou. Optimal tuning of lasing modes though collective particle resonance. Optics B, 2004,21(1): 141~149
    [111] 周炳琨高以智等,激光原理,清华大学出版社,1995.
    [112] D.S.Wiersma, S.Cavalieri, A temperature-tunable random laser. Nature. 2001,414(13):708~709
    [113] F.N.Nicol Appl. Phys. Lett. 1966, 9:13
    [114] D.M.Bagnall et al Optically pumped lasing of ZnO at room temperature. Appl. Phys. Lett. 1997, 70(17): 2230~2232
    [115] D.C.Reynolds, D.C. Look et al. Optically pumped ultraviolet lasing from ZnO. Solid State Communication. 1966,99(12): 873~878
    [116] F.Robert. Will UV lasers beat the blue? Science. 1997, 52:138
    [117] Chen Yefan, D.M. Bagnall, Koh Hang Jun et al. Plasma assisted molecular beam epitaxy of ZnO on c-place sapphire: Growth characterization. J.Appl. Phys. 1998, 84(7): 3912~3918
    [118] P. Zu, Z.K. Tang, G. K. Wong et al Ultraviolet spontaneous and stimulated emission from ZnO microcrystallite thin film at room temperature. Solid State Communicate. 1997, 103(5): 459~464
    [119] H.Cao, Y.G. Zhao, X. Liu et al. Effect of external feedback on lasing in random media. Appl. Phys. Lett. 1999, 75(9): 1213~1215
    [120] S.H.Bae, S.Y.Lee, B.J.Jin, S.Im. Growth and characterization of ZnO thin films grown by pulsed laser deposition, Applied Surface Science, 2001,169(2): 525~528
    [121] A.Mitra, R.K. Thareja, V.Ganesan, et al Synthesis and characterization of ZnO thin films UV laser Applied Surface Science, 2001,174(5): 232~239
    [122] S.H.Bae, S.Y.Lee, H.Y.Kim, S.Im Comparison of the optical properties of ZnO thin films grown on various substrates by pulsed laser deposition. Applied Surface Science,. 2000,168(4): 332~334
    [123] S.H. Bae, S.Y.Lee, H.Y.Kim, S.Im, Effects of post-annealing treatment on the light emission properties of ZnO thin film on Si. Opt. Mater. 2001,17(4): 327~330
    [124] R.C. Polson, Z.V.Vardeny Random lasing in human tissues. Appl. Phys, Lett. 2004,85(7):1289~1291
    [125] B.Li, G.Williams, S.C.Rand Continuous-wave ultraviolet laser action in strongly scatteringNd-doped alumina. Opt. Lett. 2002, 27(6):394~396

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700