高温复杂流场光学特性及其诊断研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代航空、航天、火箭和导弹等技术的飞速发展,迫切需要将复杂流场的全场显示和关键参数的测试技术由低温应用拓展到高温区域。光学计算层析技术作为一种实时、稳定、非接触的光学测量方法,在高温复杂流场的全场显示和关键参数的测量、诊断方面,仍然有其独特的优势。遗憾的是,到目前为止,没有适合高温复杂流场关键参数的光学计算层析诊断理论,这是由于缺乏对此类流场光学特性的研究。针对这一现状,本博士论文将围绕高温复杂流场的光学特性和层析诊断理论展开相关研究,建立起一套适合此类流场光学层析诊断的理论模型与实验测试系统,可望为能够较好地解决此类流场的显示和关键参数的测量、诊断提供有价值的参考。主要工作如下:
     针对高温复杂流场中带电粒子等多种成分对其光学特性的影响,修正了长期用于普通气体流场的G-D公式;提出等效粒子数密度的概念,为普通气体流场和高温复杂流场建立起统一的折射率描述模型。通过比较燃烧火焰和氩弧等离子体两类流场的莫尔条纹偏移量,阐明了决定高温复杂流场折射率梯度的主要因素;在此基础上,对莫尔偏折层析技术用于典型高温复杂流场关键参数诊断的适应性进行了分析。
     通过建立燃烧火焰、火箭发动机尾焰和氩弧等离子体三类典型高温复杂流场的色散本领与其成分、温度和压强以及探测波长之间的关系,详细研究了它们的色散特性。结果发现,燃烧火焰和火箭发动机尾焰的色散本领随温度升高而减小;而氩弧等离子体的色散本领随温度变化呈现出先增大后减小的趋势,1atm下,最大色散本领总在17000K。此外,讨论了三类典型高温复杂流场关键参数的光学计算层析方法的选择问题。
     从复介电常数出发,以电弧等离子体为例,给出了其在可见光和红外波段三个大气窗口内的吸收系数,研究了其吸收特性。比较发现,吸收系数在可见光范围内比其在红外波段三个大气窗口内小1-2个数量级;给定波长时,吸收系数随压强的变化是近似线性的,但却是温度的非线性函数,基于这个非线性关系,指出了决定高温复杂流场出现最大吸收本领的物理本质。研究结果将为此类流场光学诊断波长的选择提供参考,也为分析光通信技术在再入过程中进行应用的可行性提供有价值的参考。
     选取莫尔偏折层析技术对燃烧火焰和氩弧等离子体的关键参数进行测量和诊断,给出了其折射率分布。在系统分析了燃烧火焰成分分布特点的基础上,基于相位分布提出了温度分区重建的理论与方法;通过与现有成分假设模型下的温度重建结果的比较发现,考虑具体成分及分布,使得重建出的温度分布更合理、更符合实际。基于氩弧等离子体温度重建模型的深入推导并考虑到实际条件下压强存在一定空间分布,对其温度进行重建,修正了长期使用的等压假设,并给出了等压假设的适用条件。相关研究结果将为提高光学计算层析技术用于流场关键参数的测量精度提供良好的基础。
     本博士论文的研究成果可望对高温复杂流场的流动显示和光学计算层析技术在其关键参数的测量和诊断中的应用与发展起到积极的推动作用。
With the rapid development of modern aviation, spaceflight, rocket and missile technologies, it urgently requires to visualize and measure the key parameters of complex flow fields from low to high temperature region. By comparison, optical computerized tomography (OCT) technology has its unique advantages in visualizing and measuring key parameters of high-temperature complex flow fields, with the real-time, stable, non-contact characteristics. However, it is a pity, so far, there is no suitable OCT diagnostic theory for high-temperature complex flow fields, which can be attributed to the optical properties of the high-temperature complex flow fields have not been well studied. In response to this actuality, this dissertation will focus on the optical properties and tomography diagnostic theory of such flow fields. Based on these, the complete theoretical models and experimental system, which are adapted to high-temperature complex flow fields'optical computerized tomography diagnosis, will be established and expected to provide valuable reference on better solving such kinds of flow fields'3-D visualization and the key parameters'measurement and diagnosis. In a word, the main tasks are as follows:
     In view of the effect of a variety of charged particles and compositions on the optical properties of high-temperature complex flow fields, the original G-D formula is amended, so as to provide necessary theoretical basis for these flow fields'OCT diagnosis. As a result, a uniform refractive index descriptive model is established for the common gas and high-temperature complex flow fields. Besides, by comparing the moire fringes displacement of the flame and argon arc plasma, the main factor which determines the refractive index gradient of high-temperature flow fields is clarified. According to which, the applicability of moire deflection tomography on high temperature flow fields'diagnosis is analyzed.
     The dependence of dispersive capability on probe wavelength and flow fields'species composition, temperature and pressure is deduced for three typical high-temperature complex flow fields---flame, rocket exhaust and argon arc plasma. Then, the dispersion characteristic of them is studied, which indicates that the dispersive capability of flame and rocket exhaust decreases with the temperature increasing, while that of the argon arc plasma is the non-monotonic function of temperature. If the pressure is latm, the maximal dispersive capability of the argon arc plasma always appears at 17000K. Besides, the choice of suitable optical diagnostic means for three typical high-temperature complex flow fields is discussed.
     Based on the complex dielectric constant. and regarding the arc plasma as an example. the absorption coefficient is given in the visible and infrared's three atmospheric windows regions. The dependence of the absorption coefficient on the wavelength shows that, the absorption coefficient's order of magnitude in the visible range is 1-2 smaller than that in the three atmospheric windows of the infrared. For a certain probe wavelength, the absorption coefficient is approximately a linear function of the pressure, but a nonlinear function of the temperature. Based on the non-linear relation, the physical essence what determines the flow field's maximal absorptive ability is indicated. The above results will supply theoretical reference for choosing the suitable probe wavelength to diagnose these flow fields, meanwhile, they will also provide certain valuable reference for analyzing the feasibility of applying optical communication technology in the reentry process.
     Moire deflection tomography is adopted to display and diagnose the flame and argon arc plasma, and the refractive index distributions of them are given. On the basis of systemically analyzing the species composition distribution characteristic of the flame, the temperature partition reconstruction theory and method is proposed by the phase distribution. By comparison, it is found that the temperature distribution is more reasonable and practical, when the distribution of species composition is considered. On the basis of further deducing the temperature reconstruction model and considering the distribution of pressure for the argon arc plasma, the temperature of it is obtained, which amends the isotonic process hypothesis. The condition, which can be used to determine whether the flow field meets the isotonic pressure hypothesis in the process of temperature reconstruction, is proposed. The involved studies will provide a good foundation for ultimately improving the key parameters' measurement accuracy in flow fields'optical computerized tomography diagnosis.
     This dissertation is expected to play a positive role in the visualization as well as the application and development of OCT in the measurement of the key parameters for the high-temperature complex flow fields.
引文
[1]刘君,超声速流动中燃烧现象的数值模拟方法及应用,长沙:国防科技大学出版社,2008
    [2]朱方,返回舱再入段雷达散射特性研究,兰州:兰州大学,硕士学位论文,2007
    [3]http://rocket.sfo.jaxa.jp/kspc/english/general/panf/images/hiest_e.pdf
    [4]Jerome Hoffman, Control of plasma collision frequency for alleviation of signal degradation, CP65-444 at the 1965 IEEE Communications Convention, Boulder, Colo, 1966,14(3):318-323
    [5]David E. Mather, Jeffrey M. Pasqual, Jamey P. Sillence, and Paul Lewis, Radio Frequency (RF) Blackout During Hypersonic Reentry, AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies, AIAA,2005,2005-3443.
    [6]Clay J. Snaza, Investigation of effects of solid rocket motor propellant composition on plume signature [M]:Master of Science in Astronomical Engineering from the NAVAL Postgraduate School,1994,1-8
    [7]O. P. Ely and R. W. Hockenberger, Rocket Exhaust Effects on Radio Frequency Transmission, J. Spacecraft and Rockets,1966,3(3):310-314
    [8]E. J. Baghdady and O. P. Ely, Effects of Exhaust Plasmas upon Signal Transmission to and from Rocket-Powered Vehicles, Proceed.of the IEEE,1966,54(9):1134-1146
    [9]齐宏,阮立明,菅立川,王俊,导弹尾喷焰红外辐射特性有限元法研究,装备指挥技术学院学报,2007,18(3):72-76
    [10]乐嘉陵,再入物理,北京:国防工业出版社,2005
    [11]R. A. Dobbins, Soot inception temperature and the carbonization rate of precursor particles, Combust. Flame,2002,130:204-214
    [12]D. Y. Zhang and H. C. Zhou, Temperature measurement by holographic interferometry for non-premixed ethylene-air flame with a series of state relationships, Fuel,2007, 86(10-11):1552-1559
    [13]Ajit P. Paranjpe, James P. McVittie, and Sidney A. Self, A tuned Langmuir probe for measurements in rf glow discharges, J.Appl. Phys.,1990,67(11):6718-6727
    [14]J. M. Hendron, C. M. O. Mahony, T. Morrow, and W. G. Graham, Langmuir probe measurements of plasma parameters in the late stages of a laser ablated plume, J. Appl. Phys.,1997,81(5):2131-2134
    [15]I. Weaver, G. W. Martin, W. G. Graham, T. Morrow, and C. L. S. Lewis, The Langmuir probe as a diagnostic of the electron component within low temperature laser ablated plasma plumes, Rev. Sci. Instrum.,1999,70(3):1801-1805
    [16]D. R. Lovejoy, Photometry of the optical pyrometer and its use below 800℃, J. Opt. Soc. Am.,1959,49(3):249-253
    [17]P. Gori Giorgi, Influence of the angular response on Fourier absolute spectrometry the case of COBE-FIRAS, Infrared Phys. Technol.,1995,36(4):749-753
    [18]S. Clausen and L. H. S(?)rensen, Measurement of single moving particle temperatures with an FT-IR spectrometer, Appl. Spectrosc.,1996,50(9):1103-1111
    [19]D. O'Sullivan and M. Cotterell, Temperature measurement in single point turning, J. Mater. Process. Technol.,2001,118(1-3):301-308
    [20]J. Pujana, L. del Campo, R. B. Perez-Saez, M. J. Tello, I. Gallego, and P. J. Arrazola, Radiation thermometry applied to temperature measurement in the cutting process, Meas. Sci. Technol.,2007,18(11):3409-3416
    [21]Takeshi Saito, Satoshi Sakai, Isao Iizawa, Eriko Suda, Kazuhiro Umetani, Katsuya Kaneko, Yoshitsugu Furukawa, and Takahiro Ohkura, A new technique of radiation thermometry using a consumer digital camcorder:Observations of red glow at Aso volcano, Japan, Earth Planets Space,2005,57:e5-e8
    [22]卫成业,燃煤锅炉炉膛火焰温度场和农度场测量及燃烧诊断的研究,浙江:浙江大学,博士学位论文,2001
    [23]周洁,基于光学波动法和相关原理的颗粒测量及多波长火焰温度分析,浙江:浙江大学,博士学位论文,2001
    [24]田辛,用双色法研究内燃机燃烧火焰的温度场及碳烟浓度场,北京:清华大学,硕士学位论文,2004
    [25]周怀春,娄新生,肖教芳等,炉膛火焰温度场图像处理试验研究,中国电机工程学报,1995,15(5):295-300
    [26]曾佳,娄春,程强,罗自学,周怀春等,大型电站锅炉炉内三维燃烧温度场可视化实验研究,工程热物理学报,2004,25(3):523-526
    [27]周怀春,韩曙东,郑楚光,两种辐射温度图象监测方法的模拟比较分析及其适用性评价,中国电机工程学报,2002,22(6):109-114
    [28]范传新,固体火箭羽焰的辐射特性及其温度测量技术述评,固体火箭技术,2004,27(3):238-242
    [29]Richard R. Corwin and Adrianus Rodenburghll, Temperature error in radiation thermometry caused by emissivity and reflectance measurement error, Appl. Opt.,1994, 33(10):1950-1957
    [30]戴景民,多光谱辐射测温技术研究,哈尔滨:哈尔滨工业大学,博士学位论文,1995
    [31]A. Gicquel, K. Hassouni, Y. Breton, M. Chenevier, and J. C. Cubertafon, Gas temperature measurements by laser spectroscopic techniques and by optical emission spectroscopy, Diamond and Related Materials,1996,5(3-5):366-372
    [32]Jeonghoon Lee, Jason Olfert, Igor S. Altman, and Mansoo Choi, Determination of particle temperatures in a silica-generating counterflow flame, International Journal of Heat and Mass Transfer,2010,53(1-3):564-567
    [33]P. E. Best, P. L. Chien, R. M. Carangelo, P. R. Solomon, M. Danchak, and I. Ilovici, Tomographic reconstruction of FT-IR emission and transmission spectra in a sooting laminar diffusion flame:species concentrations and temperatures, Combust. Flame,1991, 85(3-4):309-318
    [34]C. Aragon and J. A. Aguilera, Characterization of laser induced plasmas by optical emission spectroscopy:A review of experiments and methods, Spectrochimica Acta Part B:Atomic Spectroscopy,2008,63(9):893-916
    [35]Anouar Souani, Jean-Pierre Martin, Juan-Carlos Rolon, and Laurent Brenez, Sensitivity of temperature and concentration measurements in hot gases from FTIR emission spectroscopy, Journal of Quantitative Spectroscopy & Radiative Transfer,2002,73(2-5): 317-327
    [36]E. Tatarova, F. M. Dias, H. van Kuijk, and C. M. Ferreir, Emission spectroscopy of a surface wave sustained N2-H2 discharge, Vacuum,2003,69(1):189-193
    [37]N. Benchiheb, M. S. Aida, and N. Attaf, Plasma optical emission spectroscopy diagnostic during amorphous silicon thin films deposition by Rf sputtering technique. Materials Science and Engineering B,2010,172(2):191-195
    [38]P. P. Radi and A. M. Zheltikov, New developments in non-linear optical spectroscopy, J. Raman Spectrosc,2006,37(6):630-632
    [39]Sergey Cheskis, Quantitative measurements of absolute concentrations of intermediate species in flames, Progress in Energy and Combustion Science,1999,25(3):233-252
    [40]方曦,张玉钧,刘文清等,近红外激光吸收光谱测量火焰中CO2气体浓度,大气与环境光学学报,2007,2(1):64-67
    [41]M. T. Donovan, D. L. Hall, P. V. Torek, C. R. Schrock, and M. S. Wooldridge, Demonstration of temperature and OH mole fraction diagnostic in flames using narrow-line UV OH absorption spectroscopy, Proceed. Combust. Institute, 2002,29(2):2635-2643
    [42]Jonathan B. Wills. Michael N. R. Ashfold, Andrew J. Orr-Ewing, Yuri A. Mankelevich. and Nikolay V. Suetin. Number density and temperature of acetylene in hot-filament and arc-jet activated CH4/H2 gas mixtures measured using diode laser cavity ring-down absorption spectroscopy, Diamond and Related Materials,2003,12(8):1346-1356
    [43]A. Farooq, J. B. Jeffries, and R. K. Hanson, High-pressure measurements of CO2 absorption near 2.7 μm:Line mixing and finite duration collision effects, Journal of Quantitative Spectroscopy & Radiative Transfer,2010,111(7-8):949-960
    [44]M. Ribiere and B. G. Cheron, Analysis of relaxing laser-induced plasmas by absorption spectroscopy:Toward a new quantitative diagnostic technique, Spectrochimica Acta Part B:Atomic Spectroscopy,2010,65(7):524-532
    [45]A. E. Klingbeil, J. M. Porter, J. B. Jeffries, and R. K. Hanson, Two-wavelength mid-IR absorption diagnostic for simultaneous measurement of temperature and hydrocarbon fuel concentration, Proceed. Combust. Institute,2009,32:821-829
    [46]Vasili L. Kasyutich, Philip A. Martin, and Robert J. Holdsworth, Effect of broadband amplified spontaneous emission on absorption measurements in phase-shift off-axis cavity enhanced absorption spectroscopy. Chemical Physics Letters,2006,430(4-6): 429-434
    [47]Z. El-Gohary, Theoretical and experimental treatment of the spectral interferences in atomic absorption spectroscopy, Journal of Quantitative Spectroscopy & Radiative Transfer,2002,75(3):389-396
    [48]X. Ouyang and P. L. Varghese, Reliable and efficient program for fitting galatry and voigt profiles to spectral data on multiple lines, Appl. Opt.,1989,28(8):1538-1545
    [49]K. G. P. Sulzmann, Absorption/emission spectroscopy and applications using shock tubes, Journal of Quantitative Spectroscopy & Radiative Transfer,1988,40(3):331-341
    [50]Richard H. Tourin and Burton Krakow, Applicability of Infrared Emission and Absorption Spectra to Determination of Hot Gas Temperature Profiles, Appl. Opt.,1985, 3(2):237-242
    [51]W. M. Pitts and T. Kashiwagi, The application of laser-Induced Rayleigh light scattering to the study of turbulence mixing, J. Fluid Mech.,1984,141:391-429
    [52]C. Arcoumanis, A laser Rayleigh scattering system for scalar transport studies, Exp. Fluids,1985,3(2):103-108
    [53]M. V. Otugen, K. D. Annen, and R. G. Seasholtz, Gas Temperature Measurements Using a Dual-Line Detection Rayleigh Scattering Technique, AIAA,1993,31:2098-2104
    [54]R. G. Bill Jr., I. Namer, L. Talbot, and F. Robben, Density fluctuations of flame in grid turbulence, Combust. Flame,1982,44(1-3):277-285
    [55]R. B. Barat, J. P. Longwell, A. F. Sarofim, S. P. Smith, and E. Bar-Ziv, Laser Rayleigh Scattering for Flame Thermometry in a Torroidal Jet Stirred Combustor, Appl. Opt., 1991,30(21):3003-3010
    [56]B. Shirinzadeh, R. J. Balla, and M. E. Hillard, Rayleigh scattering measurements in supersonic facilities,1996, AIAA,96-2187
    [57]L. Y. Jiang and J. P. Sislian, Rayleigh Scattering in Supersonic High-Temperature Exhaust Plumes, presented at the 38th Aerospace Sciences Meeting and Exhibit, Reno, Nevada,2000, AIAA,2000-0779
    [58]A. B. Murphy and A. J. D. Farmer, Temperature measurement in thermal plasmas by Rayleigh scattering, J. Phys. D:Appl. Phys.,1992,25(4):634-643
    [59]J. N. Forkey, N. D. Finkelstein, W. R. Lempert, and R. B. Miles, Control of experimental uncertainties in filtered Rayleigh scattering measurements, AIAA,1995,33(1):9-12
    [60]M. Volkan Otugen, Uncertainty Estimates of Turbulent Temperature in Rayleigh Scattering Measurements, Experimental Thermal and Fluid Science,1997,15(1):25-31
    [61]R. B. Miles, W. R. Lempert, and J. N. Forkey, Instantaneous velocity fields and background suppression by filtered Rayleigh scattering,29th AIAA Aerospace Sciences Meeting & Exhibit, Reno, Nevada,1991, AIAA-91-0357
    [62]D. Hoffman, K. U. Munch, and A. Leipertz, Two-dimensional temperature determination in sooting flames by filtered Rayleigh scattering, Opt. Lett.,1996,21(7):525-527
    [63]M. Lapp and C. M. Penney, eds., Laser Raman Gas Diagnostics, (Plenum, New York, 1974)
    [64]S. Lederman, The use of laser Raman diagnostics in flow fields and combustion, Prog. Energy Combust. Sci.,1977,3(1):1-34
    [65]R. Bailly, M. Pealat, and J. P. E. Taran, Raman investigation of a subsonic jet, Opt. Commun.,1976,17(1):68-73
    [66]M. C. Drake and G. M. Rosenblatt, Rotational Raman scattering from premixed and diffusion flames, Combust. Flame,1978,33:179-196
    [67]S. Lederman, The Use of Laser Raman Diagnostics in Flow Fields and Combustion, Progress in Energy Combustion Science,1977,3(1):1-34
    [68]M. Lapp, Raman-Scattering Measurements of Combustion Properties. Laser Probes for Combustion Chemistry (D.R. Crosley, Ed.), Amer. Chem. Soc. Symp. Series,1980. Chapt.17,134:207-230
    [69]Wim A. de Groot and Jonathan M. Weiss, Species and temperature measurement in H2/O2 rocket flow fields by means of Raman Scattering diagnostics, AIAA,1992, 92-3353
    [70]Joseph A. Wehrmeyer, Robin J. Osborne, and Huu P. Trinh, Measuring Rocket Engine Temperatures with Hydrogen Raman Spectroscopy, AIP Conf. Proc.,2003,684(1): 837-842
    [71]刘建胜,刘晶儒,张振荣,黄梅生,关小伟,利用拉曼散射测量燃烧场的组分浓度及温度,光学学报,2000,20(9):1263-1267
    [72]P. R. Regnier and J. P. E. Taran, On the Possibility of Measuring Gas Concentrations by Stimulated Anti-Stokes Scattering, Appl. Phys. Lett.,1973,23(5):240-242
    [73]W. B. Roh, P. W. Schreiber, and J. P. E. Taran, Single-Pulse Coherent Anti-Stokes Raman Scattering, Appl. Phys. Lett.,1976,29(3):174-176
    [74]A. C. Eckbreth, BOXCARS:crossed-beam phase-matched CARS generation in gases, Appl. Phys. Lett.,1978,32(7):421-423
    [75]M. Alden, H. Edner, and S. Svanbery, Coherent anti-stokes raman spectroscopy (CARS) applied in combustion probing, Physics Scripta,1983,27(1):29-38
    [76]T. Dreier, B. Lange, J. Wolfrum, and M. Zahn, Determination of temperature and concentration of molecular nitrogen, oxygen and methane with coherent anti-stokes raman scattering, Appl. Phys. B,1988,45(3):183-190
    [77]I. A. Stenhouse, D. R. Williams. J. B. Cole, and M. D. Swords, CARS measurements in an internal combustion engine, Appl. Opt.,1979,18(22):3819-3825
    [78]A. C. Eckbreth, G. M. Dobbs, J. H. Stulflebeam, and P. A. Tellex, CARS Temperature and species measurements in augmented jet engine exhausts, Appl. Opt.,1984,23(9): 1328-1339
    [79]R. P. Lucht, R. E. Teets, R. M. Green, R. E. Palmer, and C. R. Ferguson, Unburned gas temperatures in an internal combustion engine Ⅰ:CARS temperature measurements, Combust. Sci. Tech.,1987,55(1-3):41-61
    [80]D. R. Snelling, R. A. Sawchuk, and G. J. Smallwood, An improved cars spectrometer for single-shot measurements in turbulent combustion, Review of Scientific Instruments, 1992,63(12):5556-5564
    [81]J. P. Singh, F. Y. Yueh, R. L. Cook, J. J. Lee, and J. T. Lineberry, Comparison of CARS temperature profile measurements with flow field model calculations in an MHD diffuser, Appl. Spectrosc.,1992,46(11):1649-1659
    [82]J. H. Stufflebeam and A. C. Eckbreth, CARS temperature and species measurements in propellant flames, in Non-Intrusive Combustion Diagnostics, K. K. Kuo and T. P. Parr, eds. (Begell, New York,1994), pp.115-131
    [83]A. Thumann, T. Seeger, and A. Leipertz, Evaluation of two different gas temperatures and their volumetric fraction from broadband N2 coherent anti-Stokes Raman spectroscopy spectra, Appl. Opt.,1995,34(18):3313-3317
    [84]A. C. Eckbreth and T. J. Anderson, Dual broadband CARS for simultaneous, multiple species measurements, Appl. Opt.,1985,24(16):2731-2736
    [85]M. Pealat, P. Magre, P. Bouchardy, and G. Collin, Simultaneous temperature and sensitive two-species concentration measurements by single-shot CARS, Appl. Opt.,1991,30(10): 1263-1273
    [86]J. P. Singh and F. Y. Yueh. Multiplex CARS for simultaneous measurement of temperature and CO2 and H2 concentrations in a combustion environment, Appl. Opt., 1991,30(15):1967-1975
    [87]J. H. Stufflebeam and A. C. Eckbreth, CARS Diagnostics of Solid Propellant Combustion at Elevated Pressure, Combust. Sci. & Technol.,1989,66(4-6):163-179
    [88]M. C. Weikl, F. Beyrau. J. Kiefer, T. Seeger, and A. Leipertz, Combined coherent anti-Stokes Raman spectroscopy and linear Raman spectroscopy for simultaneous temperature and multiple species measurements, Opt. Lett.,2006,31(12):1908-1910
    [89]赵建荣,俞刚,李春金,杨仕润,李英,宽带USED CARS技术用于超音速燃烧温度测量,推进技术,1997,18(3):108-113
    [90]耿辉,李麦亮,周进,相干反斯托克斯喇曼光谱单脉冲测量火焰温度,上海航天2001,4:19-25
    [91]张振荣,刘晶儒,黄梅生,胡志云,关小伟,叶锡生,单脉冲BOXCARS技术在瞬态燃烧场测温中的应用,强激光与粒子束,2003,15(12):1171-1174
    [92]R. Schieβ1 and U. Maas. Analysis of endgas temperature fluctuations in an SI engine by laser-induced fluorescence, Combust. Flame,2003,133(1-2):19-27
    [93]张杰,固体推进剂燃烧波温度分布测定,固体火箭技术,2005,28(3):228-231
    [94]J. H. Bechtel, Temperature measurement of the hydroxyl radical and molecular nitrogen in premixed laminor flames by laser techniques, Appl. Opt.,1979,18(13):2626-2633
    [95]A. Lozano, B. Yip, and R. K. Hanson, Acetone:a tracer for concentration measurements in gaseous flows by planar laser-induced fluorescence, Exp. Fluids,1992.13(6):369-376
    [96]Akihiro Kido, Shiro Kubota Hideyuki Ogawa, and Noboru Miyamoto. Simultaneous measurements of concentration and temperature distributions in unsteady gas jet by an iodine LIF method, SAE,1998,107(980146):167-175
    [97]Wolfgang G. Bessler, Frank Hildenbrand, and Christof Schulz, Two-line laser-induced fluorescence imaging of vibrational temperatures in a NO-seeded flame, Appl. Opt., 2001,40(6):748-756
    [98]R. Mc Williams and D. Edrich, Laser-induced fluorescence diagnosis of plasma processing sources, Thin Solid Films,2003,435(1-2):1-4
    [99]Tonghun Lee, Jay B. Jeffries, and Ronald K. Hanson, Experimental evaluation of strategies for quantitative laser-induced-fluorescence imaging of nitric oxide in high-pressure flames (1-60 bar), Proc. Combust. Institute,2007,31:757-764
    [100]G. Singla, P. Scouflaire, C. Rolon, and S. Candel, Planar laser-induced fluorescence of OH in high-pressure cryogenic LOX/GH2 jet flames, Combust. Flame,2006,144(1-2): 151-169
    [101]S. G. Nakhate, Sheo Mukund, and S. Bhattacharyya, Radiative lifetime measurements in neutral zirconium using time-resolved laser induced fluorescence in supersonic free-jet, Journal of Quantitative Spectroscopy & Radiative Transfer,2010,111(3):394-398
    [102]M. Orain, X. Mercier, and F. Grisch, PLIF imaging of fuel-vapor spatial distribution around a monodisperse stream of acetone droplets:comparison with modeling, Combust. Sci. & Technol.,2005,177(2):249-278
    [103]D. S. Shringi, B. D. Shaw, and H. A. Dwyer, Laser-induced fluorescence imaging of acetone inside evaporating and burning fuel droplets, Opt. & Lasers Eng.,2009,47(1): 51-56
    [104]张江波,王仕康,用激光诱导BaCl分子热助振动荧光光谱测量燃烧温度,中国激光,1992,19(1):825-831
    [105]关小伟,刘晶儒,黄梅生等,激光诱导预分离荧光法窄带及宽带测温实验研究,光学学报,2001,21(3):348-351
    [106]Hansen, Laser combustion analyse, Lambda Highlights,1987,23(8):56-67
    [107]F. Hildenbrand and C. Schulz, Laser spectroscopic investigation of flow fields and NO formation in a realistic SI engine, SAE,1998,107(980148):205-214
    [108]Philippe Guibert, William Perrard, and Celine Morin, Concentration Measurements in a Pressurized and Heated Gas Mixture Flow Using Laser Induced Fluorescence, J. Fluids Eng.,2002,124(2):512-522
    [109]J. B. Ghandhi, A. G. Bright, and R. E. Herold, Residual gas homogeneity measurements, International Journal of Engine Research,2009,10(2):121-132
    [110]Peter O. Witze and Robert M. Green, LIF and flame-emission imaging of liquid fuel films and pool fires in an SI engine during a simulated cold start, SAE,1997, 106(970866):1291-1305
    [111]J. Reboux, Daniel Puechberty, and F. Dionnet, Study of mixture inhomogeneities and combustion development in a SI engine using a new approach of laser induced fluorescence, SAE,1996,105(961205):1678-1690
    [112]N. Pasquier, B. Lecordier, M. Triniteand and A. Cessou, An experimental investigation of flame propagation through a turbulent stratified mixture, Proceedings of the Combustion Institute,2007,31(1):1567-1574
    [113]Sebastian Kaiser and Christopher M. White, PIV and PLIF to Evaluate Mixture Formation in a Direct-Injection Hydrogen-Fuelled Engine, SAE International Journal of Engines,2009,1(1):657-668
    [114]K. P. Gross and R. L. McKenzie, Single-pulse gas thermometry at low temperatures using two-photon laser-induced fluorescence in NO-N2 mixtures. Opt. Lett.,1983.8(7): 368-370
    [115]B. K. McMillin, J. L. Palmer, and R. K. Hanson, Temporally resolved, two-line fluorescence imaging of NO temperature in a transverse jet in a supersonic cross flow, Appl. Opt,1993,32(36):7532-7545
    [116]范宝春,叶经方,编著,瞬态流场参数测量,哈尔滨:哈尔滨工程大学出版社,2007
    [117]G. D. Kahl and E. H. Wedemeyer, Interferometric Analysis of Axisymmetric Plasma Flow, Phys. Fluids.,1964,7(4):596-601
    [118]A. J. Alcock and S. A. Ramsden, Two wavelength interferometry of a laser-induced spark in air, Appl. Phys. Lett.,1966,8(8):187-188
    [119]C. M. Vest, Interferometry of strongly refracting axisymmetric phase objects. Appl. Opt.,1975,14(7):1601-1606
    [120]Lawrence W. Carr and Yung H. Yu, The Use of interferometry in the study of rotorcraft aerodynamics, Opt. & Lasers Eng.,1992.17(3-5):121-146
    [121]Kamran Akhtar, John E. Scharer, Shane M. Tysk, and Enny Kho. Plasma interferometry at high pressures. Rev. Sci. Instrum.,2003,74(2):996-1001
    [122]R. A. Jeffries. Two-wavelength holographic interferometry of partially ionized plasmas, Phys. Fluids,1970,13(1):210-212
    [123]R. J. Radley, Jr., Two-wavelength holography for measuring plasma electron density, Phys. Fluids,1975,18(2):175-179
    [124]Gregory W. Faris and Robert L. Byer, Beam-deflection optical tomography, Opt. Lett., 1987,12(2):72-74
    [125]Gregory W. Faris and Robert L. Byer. Beam-deflection optical tomography of a flame, Opt. Lett.,1987,12(3):155-157
    [126]Gregory W. Faris and Robert L. Byer, Three-dimensional beam-deflection optical tomography of a supersonic jet, Appl. Opt.,1988,27(24):5202-5212
    [127]Gregory W. Faris and H. Bergstrom, Two-wavelength beam deflection technique for electron density measurements in laser-produced plasmas, Appl. Opt.,1991,30(16): 2212-2218
    [128]Gregory W. Faris, Elizabeth Brinkman, and Jay Jeffries, Density measurements in a DC arc jet using scanned beam deflection tomography. Opt. Express,2000,7(12):447-460
    [129]H. M. Herts, Experimental determination of 2-D flame temperature fields by interferometric tomography, Opt. Commun.,1985,54(3):131-136
    [130]R. Snyder and L. Hesselink, High speed optical tomography for flow visualization, Appl. Opt.,1985,24(23):4046-4051
    [131]R. Snyder and L. Hesselink, Measurement of mixing fluid flows with optical tomography, Opt. Lett.,1988,13(2):87-89
    [132]Arthur J. Decker and Steven H. Izen, Three-dimensional computed tomography from interferometric measurements within a narrow cone of views, Appl. Opt.,1992,31(36): 7696-7706
    [133]D. W. Watt and C. M. Vest, Turbulent flow visualization by interferometric integral imaging and computed tomography. Experiments in Fluids,1990,8(6):301-311
    [134]T. L. Spatz and D. Poulikakos. Holographic interferometry experiments the growth of ice from a horizontal pipe. Int. J. Heat Mass Transfer,1991,34(7):1847-1859
    [135]B. N. Dobbins, S. P. He, K. Jambunathan. S. Kapasi, L. S. Wang, and B. L. Button, Measurement of temperature field in confined jet impingement using phase-stepping video holography, Proc. of SPIE,1991,1554B:586-592
    [136]E. Yu, S. S. Cha, and A. W. Burner, Interferometric tomographic measurement of an Instantaneous flow field under adverse environments, Proc. of SPIE,1995,2546:33-44
    [137]Depang Yan and S. S. Cha, Computational and Interferometric System for Real-Time Limited-View Tomography of Flow Fields, Appl. Opt.,1998,37(7):1159-1164
    [138]贺安之,阎大鹏,倪晓武,三维温度场的激光全息与干涉层析,光学学报,1988,8(6):543-549
    [139]Dapeng Yan, Jiajun Zhang, Anzhi He, Xuehui Mi, and Yi Ge, Automatic extraction and registration of shock wave fronts from series interferograms of a flow field, Appl. Opt., 1994,33(11):2121-2124
    [140]Donglou Wu and Anzhi He, Measurement of three-dimensional temperature fields with interferometric tomography, Appl. Opt.,1999,38(16):3468-3473
    [141]是度芳,肖旭东,正交双物光全息有限角层析技术重建燃烧器温度场,光学学报,1995,15(9):1240-1244
    [142]Dufang Shi, Shaohua Chen, Rong Wang, and Xudong Xiao, Automatic image-processing system and fast-reconstruction technique for holographic-interferometry computer tomography, Appl. Opt.,1995,34(17):3064-3068
    [143]Shaohua Chen, Suyi Huang, and Dufang Shi, Orthographic double-beam holographic interferometry for limited-view optical tomography, Appl. Opt.,1995,34(27): 6282-6286
    [144]高益庆,用全息干涉C-T技术重建三维折射率场,激光杂志,1997,18(6):32-35
    [145]O. Kafri, Noncoherent method for mapping phase objects, Opt. Lett.,1980,5(12): 555-557
    [146]E. Keren, E. Bar-Ziv, I. Glatt, and O. Kafri, Measurements of temperature distribution of flames by moire deflectometry, Appl. Opt.,1981,20(24):4263-4266
    [147]C. M. Vest, Formation of images from projections:Radon and Abel transform, J. Opt. Soc.Am.A.,1974,64(9):1215-1218
    [148]J. Stricker and O. Kafri, A New Method for Density Gradient Measurements in Compressible Flows, AIAA,1982,20(6):820-823
    [149]J. Stricker, E. Keren, and O. Kafri, Axisymmetric Density Field Measurements by Moire Deflectometry, AIAA,1983,21(12):1767-1769
    [150]E. Bar-Ziv, S. Sgulim, O. Kafri, and E. Keren, Temperature mapping in flames by moire deflectometry, Appl. Opt.,1983,22(5):698-705
    [151]J. Stricker, Analysis of 3-D phase objects by moire deflectometry, Appl. Opt.,1984, 23(20):3657-3659
    [152]Yoshiaki Nakano and Kazumi Murata, Measurements of phase objects using the Talbot effect and moire techniques, Appl. Opt.,1984,23(14):2296-2299
    [153]M. Servin, R. Rodriguez-Vera, M. Carpio, and A. Morales, Automatic fringe detection algorithm used for moire deflectometry, Appl. Opt.,1990,29(22),3266-3270
    [154]Da-Peng Yan, An-Zhi He, and Xiao-Wu Ni, New method of asymmetric flow field measurement in hypersonic shock tunnel, Appl. Opt.,1991,30(7):770-774
    [155]李田泽,用莫尔条纹对喷嘴自由喷射的不完全膨胀气流密度的测量,应用激光,17(2),69-73(1997)
    [156]宋肠,相位场的莫尔层析重建理论与算法研究,南京:南京理工大学,博士论文,2006
    [157]Martin Anto and RadomIr Malina, Tomographic system for 3D temperature reconstruction, Proc. of SPIE,2003,5259:160-165
    [158]Wang Xue, Wu Donglou, and Pang Guopei, Use of Moire Tomography to Measure the Temperature Field of the Flame of a Pyrotechnical Composition from Its Infrared Radiation, Combustion, Explosion, and Shock Waves,2001,37(4):440-442
    [159]C. M. Vest, Holographic Interferometry, New York, Wiely,1979
    [160]Paul W. Nugent, Joseph A. Shaw and Sabino Piazzolla. Infrared cloud imaging in support of Earth-space optical communication, Opt. Express,2009,17(10):7862-7872
    [161]Eugent H. Kopp, The Refractive Index of a Lossy Plasma, IEEE Transactions on antennas and propagation, May,1968
    [162]C. Willis, The complex refractive index of particles in a flame, J. Phys. D:Appl. Phys., 1970,3(12):1944-1956
    [163]Khaled S. Abdol-Hamid, S. Paul Pao, Steven J. Massey, and Alaa Elmiligui, Temperature corrected turbulence model for high temperature jet flow. J. Fluids Eng., 2004,126(5):844-850
    [164]W. R. Johnson, C. Guet, and G. F. Bertsch, Optical properties of plasmas based on an average-atom model, J quant. Spectroscra,2006,99(1-7):327-340
    [165]Depang Yan and Soyoung Stephen Cha, Computational and Interferometric System for Real-Time Limited-View Tomography of Flow Fields, Appl. Opt.,1998,37(7): 1159-1164
    [166]Wei Yao and Anzhi He, Application of Gabor transformation to the two-dimensional projection extraction in interferometric tomography. J. Opt. Soc. Am. A,1999,16(2): 258-263
    [167]Yang Song, Bin Zhang and Anzhi He, Algebraic iterative algorithm for deflection tomography and its application to density flow fields in a hypersonic wind tunnel, Appl. Opt,2006,45(31):8092-8101
    [168]薛海涛,李桓等,电弧等离子体折射率的理论计算,机械工程学报,2004,40(8):49-58
    [169]袁行球,李辉等,直流电弧等离子体炬的特性研究,物理学报,2004,53(11):3806-3812
    [170]Haijun Ren, Zhengwei Wu, Jintao Cao and Paul K. Chu, Dispersion of multi-stream instability in quantum magnetized hot plasmas, Physics Letters A,2008,372: 2676-2683
    [171]王菊,火箭喷焰对微波信号衰减的研究,西安:西安电子科技大学,硕士论文,2006
    [172]Xiao-Wu Ni, Jian Lu, and An-Zhi He, Inteferometric diagnosis of laser-produced plasma on an aluminum target, Microwave and optical technology letters,1997,14(5): 271-274
    [173]Allen C W, Astrophysical Quantities (Athlone, London,1963)
    [174]卞荫贵,徐立功.气动热力学.第1版.合肥:中国科学技术大学出版社,1997
    [175]徐家鸾,金尚宪,等离子体物理学.北京:原子能出版社,1981
    [176]R. A. Alpher and D. R. White, Optical refractivity of high-temperature gases. Ⅰ. Effects resulting from dissociation of diatomic gases, Phys. Fluids,1959,2(2):153-161
    [177]R A. Alpher and D. R. White, Optical refractivity of high-temperature gases. Ⅱ. Effects resulting from ionization of monatomic gases, Phys. Fluids,1959,2(2):162-169
    [178]O. Kafri and I. Glatt, Moire deflectometry:a ray deflection approach to optical testing, Opt. Eng.,1985,24:944-960
    [179]朱德忠,热物理激光测试技术,北京:科学出版社,1990
    [180]http://www.engineeringtoolbox.com/flame-temperatures-gases-d_422.html
    [181]F. J. Weinberg, Optics of flames (Buttrtworths, London,1963), Chap.2, p.23.
    [182]S. M. Tieng, W. Z. Lai and T. Fujiwara. Holographic temperature measurement on axisymmetric propane-air, fuel-lean flame, Meas. Sci. Technol.,1992,3(12):1179-1187
    [183]金佑民,樊友三,低温等离子体物理基础,北京:清华大学出版社,1983
    [184]B. Gross, B. Grycz and K. Miklossy, Plasma technology, Iliffe Books, London (1969)
    [185]过增元,赵文华,电弧和热等离子体,北京:科学出版社,1986,第二章,第52页
    [186]汤海滨,祝寿恩,刘宇,10kW固体推进剂燃烧驱动CO2气动激光数据采集系统, 强激光与粒子束,1999,11(2):159-164
    [187]L. Douglas Smoot and Donald L. Underwood, Prediction of microwave attenuation characteristics of rocket exhausts. J. Spacecraft,1966,3(3):302-309
    [188]F. P. Bundy, H. M. Strong, and A. B. Gregg, Measurement of velocity and pressure of gases in rocket flames by spectroscopic methods, J. Appl. Phys.,1951,22(8): 1069-1077
    [189]K. Jamshidi-Ghaleh and N. Mansour, Nonlinear refraction measurements of materials using the moire deflectometry, Opt. Commun.,2004,234(1-6):419-425
    [190]D. E. Jensen and B. E. L. Travers, Flame plasma diagnostic techniques, IUPAC International Symposium on Plasma Chemistry, Kiel, Germany,1973
    [191]Paul W. Nugent, Joseph A. Shaw, and Sabino Piazzolla, Infrared cloud imaging in support of Earthspace optical communication, Opt. Express,2009,17(10):7862-7872
    [192]S. P. Jamison, Jingling Shen, D. R. Jones, R. C. Issac, B. Ersfeld, D. Clark, and D. A. Jaroszynski, Plasma characterization with terahertz time-domain measurements, J. Appl. Phys.,2003,93 (7):4334-4336
    [193]http://www.utdallas.edu/-earle/PlasmaDischargePrimer.ppt#256,1
    [194]凌水顺,等离子体隐身及其用于飞机的可能性,空军工程大学学报(自然科学版),2000,1(2):1-3
    [195]A. Kaminska, B. Lopez, B. Izrar. and M. Dudeck, Modelling of an argon plasma jet generated by a dc arc, Plasma Sources Sci. Technol.,2008,17(3):035018
    [196]D. Sugiyama, M. Nambu and Jun-ichi Sakai, Simulation of electromagnetic emission near the plasma frequency from relativistic electron beams, J Phys. Soc Jpn.,2001, 70(4):977-982
    [197]D. S. Frankel, P. E. Nebolsine, M. G. Miller, and J. M. Glynn, Re-entry plasma induced pseudorange and attenuation effects in a GPS simulator, Proc. of SPIE,2004,5420: 65-74
    [198]H. Uchiyama, M. Nakajima, and S. Yuta, Measurement of flame temperature distribution by IR emission computed tomography, Appl. Opt.,1985,24(23): 4111-4116
    [199]P. V. Farrell and D. L. Hofeldt. Temperature measurement in gases using speckle photography. Appl. Opt.,1984,23(7):1055-1059
    [200]S. M. Tieng, C. C. Lin, Y. C. Wang, and T. Fujiwara, Effect of composition distribution on holographic temperature measurement of a diffuse flame, Meas. Sci. Technol.,1996, 7(4):477-488
    [201]宋肠,陈云云,贺安之,赵志敏,基于相位重建的叠栅层析技术,光学学报,2009,29(5):1232-1239
    [202]H. A. Becker and S. Yamazaki, Entrainment, Momentum Flux and Temperature in Vertical Free Turbulent Diffusion Flames, Combust. Flame,1978,33(2):123-149
    [203]Stephen R. Turns, An introduction to combustion:concepts and applications (Second edition), Publisher:McGraw-Hill companies,2000
    [204]http://zy.swust.net.cn/12/1/hgaqjs/c3/912.html

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700