具有光电特性的共轭聚合物/ZnO纳米复合材料的制备及其光学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半导体纳米材料由于其独特的光电特性受到人们的极大关注,其中纳米ZnO是当前应用前景较为广泛的高功能无机材料。由于ZnO是一种直接带隙的半导体材料,室温下能隙宽度为3.37 eV,激子束缚能高达60 meV,具有优良的物理和化学性质,其显著的表面效应、量子尺寸效应和宏观量子隧道效应,是目前光电子研究领域的热点。另一方面,由于聚对苯乙炔(PPV)以及聚芴的衍生物在同其它具有光电多功能特性的聚合物相比,自身有很多优点,一直作为共轭聚合物中具有光电多功能特性材料的典型代表而受到科技界的重视。因此,本文利用静电纺丝技术制备了共轭聚合物/ZnO纳米复合材料和其光伏器件,测试了复合材料的光电特性,发现了有意义的新现象,具体研究内容如下:
     (1)在总结了国内外制备纳米ZnO文献资料的基础上,结合下一步实验的需求,确立了以液相直接沉淀法为基础,制备ZnO纳米粒子的工艺。通过对影响ZnO粒子的多种因素的研究,总结出了制备纳米ZnO粒子的适宜工艺条件。产品经过XRD,TEM和TG-DTA表征,发现其晶型单一、完整,纯度高。纳米ZnO粒子大部分呈球形,粒径大小分布均匀,分散性良好平均粒径为25nm。
     (2)在成功制备纳米级氧化锌粒子的基础上,首次报导了通过原位和共混的方法利用静电纺丝技术合成了共轭聚合物PPV中含有ZnO纳米粒子的纳米纤维。这些复合纳米纤维通过荧光显微镜、原子力显微镜、场发射扫描电镜、荧光光谱、傅里叶红外光谱和X射线粉末衍射仪来表征。在ZnO纳米粒子/PPV复合纳米纤维中,ZnO纳米粒子分散均匀且不团聚。另外,ZnO纳米粒子掺入共轭聚合物PPV中增强了PPV纳米纤维的发光量子效应。ZnO纳米粒子/PPV复合纳米纤维的能带结构有利于PPV的激子产生和辐射。这些具有优秀的荧光性能的复合纳米纤维在许多领域有着潜在的应用。
     (3)在发现ZnO纳米粒子掺入共轭聚合物PPV中增强了PPV纳米纤维的发光量子效应后,为了更深入研究其薄膜对光伏器件的影响,我们将ZnO纳米晶引入到一种新型的聚芴衍生物:poly(2,7-(9,9-dioctyl-fluorene)-alt-5,5-(4’,7’-di-2-thienyl-2’,1’,3’,-benzothiadiazole)(PFDTBT)。该单层膜的光伏器件具有非常有意义的光伏效应(具备最佳性能的是含有60 wt%ZnO的器件):光电流密度是:1.17 mA/cm~2,开路电压是:0.81 V,填充因子是:0.09,电源转换效率是:0.009%。这个聚芴衍生物是非常出色的荧光和光伏材料。
     利用现代分析测试手段:场发射扫描电子显微镜(FE-SEM)、透射电子显微镜(TEM)、荧光光谱(PL)等,对由一维共轭聚合物/ZnO复合纳米纤维和薄膜进行表征。探究了其发光和表面光生电荷行为、发光效率、纤维复合结构对发光强度的影响。此项研究不仅丰富了无机半导体纳米粒子的制备方法,而且为设计合成一维结构的聚合物/无机物复合纳米材料提供了实践上的依据,从而加快了聚合物纳米材料的实用化进程。
Semiconductor nanocrystals have attracted much interest due to their electricaland optical properties. Nanoscale Zinc oxide(ZnO) is currently of potentialapplications as a functional inorganic material. Since it has many special mechanical,optical, electrical, magnetic, calorifics and chemical properties which differ from thecorresponding bulk materials due to its size effect, surface effect and quantum effect,as a wide band gap semiconductor material with large exiton binding energy of 60meV at room temperature, it is attractive for many new applications in industry andhigh-tech fields.
     In this thesis, electrospinning technique and photovoltaic device technique wereapplied to prepare polymer-ZnO nano-composite materials, and then the controllableUV luminescence of ZnO was performed. The details are as following:
     (1) On bases of the preparations of ZnO nanoparticles in references, a process ofdirect precipitation approach was established to synthesize ZnO nanoparticles and theeffects of various factors have been investigated. The appropriate process isconcluded. The product was characterized by XRD, TEM and TG-DTA, and theresults show that the product is single crystal type and of high purity. Most of theparticles are ball-shaped and are uniformly-distributed in diameter. The dispersibilityis excellent and the average particle size is less than 25nm.
     (2) Based on the synthesis of the ZnO nano particles, we report for the first timeon the synthesis of ZnO nanoparticles in conjugated polymer(PPV) nanofibers byelectrospinning and the coupling of the in situ and blend methods. These compositenanofibers were characterized by fluorescence microscopy, atomic force microscope(AFM), field emission scanning electron microscopy(FE-SEM), transmissionelectron microscopy(TEM), photoluminescence(PL) spectra, Fourier transforminfrared(FT-IR) spectroscopy, and X-ray powder diffraction(XRD). In ZnOnanoparticles/PPV composite nanofibers, ZnO nanoparticles were distributed uniformly without aggregation. In addition, the incorporation of ZnO nanoparticlesinto the conjugated polymer PPV strengthened the photoluminescence(PL) quantumefficiency of the PPV nanofibers. The band structure of the ZnO nanoparticles/PPVcomposite nanofibers should be in favor of photoexciton generation and radiation ofPPV. These composite nanofibers with excellent fluorescent property are potentiallyinteresting for many applications.
     (3) Since that the incorporation of ZnO nanoparticles into the conjugatedpolymer PPV strengthened the photoluminescence(PL) quantum efficiency of thePPV nanofibers, the ZnO nanoparticles which show perfect crystal character of thewurtzite ZnO were introduced into a new kind of polyfluorene copolymers, poly(2, 7-(9, 9-dioctyl-fluorene)-alt-5, 5-(4', 7'-di-2-thienyl-2', 1', 3',-benzothiadiazole)(PFDTBT),for more in-depth study of its thin film on the impact of photovoltaic devices wereprepared. This single-layer photovoltaic device performs a significant photovoltaicresponse(the best performed device is that containing 60 wt% of ZnO): photocurrentdensity of 1.17 mA/cm~2, open-circuit voltage of 0.81 V, fill factor of 0.09, andpower-conversion efficiency of 0.009%, which shows that polyfluorene derivative isexcellent fluorescence and photovoltaic material.
     One dimensional structure made from conjugated polymer/ZnO compositenanofibers were characterized by modern analysis and testing means(SEM, TEM, PL,etc.). The luminescence, surface photoelectric charge action, luminescence efficiencyand the effect of composite structure of nanofibers on the luminescent intensity wereinvestigated. These investigations not only enriched the synthesis methods forinorganic nanoparticles, but also provided a practical gist for synthesizing 1Dpolymer/inorganic composite nanomaterials. Consequently, practicality course ofpolymer nanomaterials were quicken.
引文
[1] 张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001.
    [2] 白春礼.纳米科学与技术[M].昆明:云南科技出版社,1999.
    [3] D. Li, Y. L. Wang, Y. N. Xia. Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays [J]. Nano. Lett., 2003, 3(8): 1167-1171.
    [4] 张立德,牟季美.纳米材料学[M].沈阳:辽宁科技出版社,1994.
    [5] 徐国财,张立德.纳米复合材料[M].北京:化学工业出版社,2002.
    [6] 王汝敏,郑水蓉,郑亚萍.聚合物基复合材料及工艺[M].北京:科学出版社,2004.
    [7] 张立德.纳米材料[M].北京:化学工业出版社,2000.
    [8] Teo W E, Ramakrishnal S. A reviewon electrospinning design and nanofibre assemblies [J]. Nanotechnology, 2006, 17: 89-106.
    [9] Taylor G I. Instability of jets, threads, and sheets of viscous fluid [C]. Proceedings of the royal society of London, series A, 1969, 313: 453-457.
    [10] Li D, Ouyang G, McCann J T et al. Collecting electrospun nano- fibers with patterned electrodes [J]. Nano. Lett., 2005,5(5): 913-916.
    [11] Taylor G I. Conical free surfaces and fluid interfaces [C]. Proceedings of the royal society of London, series A, 1964, 280: 383-403.
    [12] Cloupeau M, Prunet-Foch B. Electrostatic spraying of liquids-main functioning modes [J]. J. Electrostatics, 1990, 25: 165-184.
    [13] Grace J M, Marijnissen J C M. A review of liquid atomization by electrical means [J].J. Aerosi. Sci., 1994, 25: 1005-1019.
    [14] Reneker D H, Yarin A L, Fong H, Koombhongse S. Bending instability of electrically charged liquid jets of polymer solutions in electrospinning [J]. J. Appl. Phys., 2000, 87: 4531-4547.
    [15] Hohman M M, Shin Y M, Rutledge G C, Brenner M P. Electrospinning and electrically forced jets. I. Stability theory [J]. Physics of Fluids, 2001, 13(8): 2201-2220.
    [16] Pattamaprom C, Hongrojjanawiwat W, Koombhongse P et al. The influence of solvent properties and functionality on the electrospinnablility of polystyrene nano-fibers [J]. Macromol. Mater. & Eng., 2006, 291(7): 840-847.
    [17] 黄春辉,李富有,黄维.有机电致发光材料与器件导论[M].复旦大学出版社,2005.
    [18] Burroughes J H, Bradley D D C, Brown A R, Marks R N, Mackay K, Friend R H, Burns P L, Holmes A B. Light-emitting diodes based on conjugated polymers [J]. Nature, 1990, 347: 539-541.
    [19] Babel A, Li D, Xia Y N, Jenekhe S A. Electrospun nanofibers of blends of conjugated polymers: morphology, optical properties, and field-effect transistors [J]. Macromolecules, 2005, 38(11): 4705-4711.
    [20] Colvin V L, Schlamp M C, Alivisatos A P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer [J]. Nature, 1996, 370(4): 354-357.
    [21] Salafsky J S. Exciton dissociation, charge transport, and recombination in ultrathin, conjugated polymer-TiO_2 nanocrystal intermixed composites [J]. Phys. Rev. B, 1999, 59(16): 10885-10894.
    [22] Zhang J, Wang B J, Liu X, Liu T, Hu T D. New observations on the optical properties of PPV/TiO_2 nanocomposites [J]. Polymer, 2001, 42(8): 3697-3702.
    [23] 周健伟,覃东欢,罗潺,韩丽丽,曹镛.纳米ZnO-共轭聚合物MEH-PPV异质结太阳能电池的制备和研究[J].真空与低温,2006,12(1):9-14.
    [24] 孔祥贵,胡斌,安利民,王新,单桂晔,刘星元.MPD掺杂的共聚合物薄膜的发光特性[J].发光学报,2002,23(6):585-590.
    [25] Lu X F, Zhao Q D, Liu X C, Wang D J, Zhang W J, Wang C, Wei Y. Large-scale synthesis of necklace-like single-crystalline PBTiO_3 nanowires [J]. Macromol. Rapid. Commun., 2006, 27(1): 76-80.
    [26] Luo Y H, Liu H W, Xi F et al. Supramolecular assembly of poly (phenylene vinylene) with crown ether substituents to form nanoribbons [J]. J. Am. Chem. Soc. 2003, 125(21): 6447-6451.
    [27] Kim K, Jeoung S C, Lee J, Hyeon T. Optical absorption and photoluminescence properties of the PPV nanotubes and nanowires [J]. Macromol. Symp. 2003, 201: 119-125.
    [28] W. Hu, H. Nakashima, K. Furukawa et al. A Self-Assembled Nano Optical Switch and transistor based on a rigid conjugated polymer, thioacetyl-end-functionalized poly(para-phenylene ethynylene)[J]. J. Am. Chem. Soc., 2005, 127: 2804-2805.
    [29] 孔凡,黄高山,杨益民,杨昌正,吴兴龙,鲍希茂,袁仁宽.纳米MEH-PPV阵列的光致发光[J].发光学报,2005,26(6):785-788.
    [30] J. Doshi, D. H. Reneker. Electrospinning process and applications of electrospun fibers [J]. J Electrostat, 1995, 35: 151-160.
    [31] Reneker D H, Chun I. Nanometre diameter fibres of polymer, produced by electrospinning [J]. Nanotechnology, 1996, 7:216-223.
    [32] McKee M G, Hunley M T, Layman J M, Long T E. Solution rheological behavior and electrospinning of cationic polyelectrolytes [J]. Macromolecules, 2006, 39: 575-580.
    [33] Reneker D H, Yarin A L, Fong H, Koombhongse S. Bending instability of electrically charged liquid jets of polymer solutions in electrospinning [J]. J. Appl. Phys., 2000, 87: 4531-4535.
    [34] Li D, Xia Y. Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays [J]. Nano. Lett., 2003, 3: 555-558.
    [35] Lu X, Zhao Y, Wang C, Wei Y. Fabrication of CdS nanorods in PVP fiber matrices by electrospinning [J]. Macromol. Rapid. Commun., 2005, 26: 1325-1330.
    [36] Lu X, Zhao Y, Wang C. Fabrication of PbS nanoparticles in polymer-fiber matrices by electrospinning [J]. Adv. Mater., 2005, 17, 2485-2488.
    [37] Lu X, Li L, Zhang W, Wang C. Preparation and characterization of Ag_2S nanoparticles embedded in polymer fibre matrices by electrospinning [J]. Nanotechnology, 2005, 16: 2233-2237.
    [38] Sui X M, Shao C L, Liu Y C. White-light emission of polyvinyl alcohol/ZnO hybrid nanofibers prepared by electrospinning [J]. Appl. Phys. Lett., 2005, 87, 113115.
    [39] Hou H, Reneker D H. Carbon nanotubes on carbon nanofibers: a novel structure based on electrospun polymer nanofibers [J]. Adv. Mater., 2004, 16, 69.
    [40] Hong Y, Li D, Zheng J, Zou G. Sol-gel growth of titania from electrospun polyacrylonitrile nanofibres [J].Nanotechnology, 2006, 17:1986-1993.
    [41] MacDiarmid A G, Jones W E, Norris I D et al. Electrostatically-generated nanofibers of electronic polymers [J]. Synth. Met. 2001, 119: 27-30.
    [42] Pinto N J, Johnson A T, Macdiarmid A G, Mueller C H, Theofylaktos N, Robinson D C, Miranda F A. Electrospun polyaniline/polyethylene oxide nanofiber field-effect transistor [J]. Appl. Phys. Lett., 2003, 83: 4244-4250.
    [43] Yang Q B, Li D M, Hong Y L, Li Z Y, Wang C, Qiu S L, Wei Y. Preparation and characterization of a PAN nanofibre containing Ag nanoparticles via electrospinning [J]. Synth. Met., 2003, 137: 973-974.
    [44] Madhugiri S, Dalton A, Gutierrez J, Ferraris J P, Balkus K J. Electrospun MEH-PPV/SBA-15 Composite Nanofibers Using a Dual Syringe Method [J]. J. Am. Chem. Soc. 2003, 125(47): 14531-14538.
    [45] Xin Y, Huang Z H, Yan E Y, Zhang W, Zhao Q. Controlling poly(p-phenylene vinylene)/poly(vinyl pyrrolidone) composite nanofibers in different morphologies by electrospinning [J]. Appl. Phys. Lett., 2006, 89, 053101.
    [46] Okuzaki H, Takahashi T, Miyajima N, Suzuki Y, Kuwabara T. Spontaneous formation of poly(p-phenylenevinylene) nanofiber yams through electro-spinning of a precursor [J]. Macromolecules, 2006, 39(13): 42764278.
    [47] Tang Z K, Wong G K L, Yu P, Kawasaki M, Ohtomo A, Kninuma H, Segawa Y. Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films [J]. Appl. Phys. Left., 1995, 72(27): 3270-3272.
    [48] Bagnall D M, Chen Y F, Zhu Z, Yao T, Koyama S, Shen M Y, Goto T. Optically pumped lasing of ZnO at room temperature [J]. Appl. Phys. Lett.,1997, 70: 2230-2232.
    [49] Cao H, Zhao Y G, Ong H C, Ho S T, Dal J Y, We J Y, Chang R P H. Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films [J]. Appl. Phys. Lett., 1998, 73(25): 3656-3658.
    [50] Yu P, Tang Z K, Wong G K L, Kawasaki M, Qhtomo A, Koinuma H, Segawa Y. Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature [J]. Solid State Com., 1997, 103(8): 459-463.
    [51] Yu P, Tang Z K, Wong G K L, Kawasaki M, Qhtomo A, Koinuma H, Segawa Y. Room-temperature gain spectra and lasing in microcrystaliine ZnO thin films [J]. J. Crystal Growth, 1998, 184-185: 601-604.
    [52] Bagnall D M, Chen Y F, Zhu Z, Yao T, Shen M Y, Goto T. High temperature excitonic stimulated emission from ZnO epitaxial layers [J]. Appl. Phys. Lett., 1998, 73(8): 1038-1040.
    [53] Hellemans A. Laser light from a handful of dust [J]. Science, 1999, 284: 24-25.
    [54] Service R F. Will UV lasers beat the blues? [J]. Science, 1997, 276: 895-895.
    [55] Tang Z K, Yu P, Wong G K L. Room temperature ultraviolet laser emission from microstructureed ZnO thin films [J]. Nonlinear Optics, 1997, 18(2-4): 355-359.
    [56] 隋晓萌.聚合物.氧化锌纳米复合材料的制备和发光性质研宄[D]长春:中国科学院长春光学精密机械与物理研究所,2006
    [57] Kaeasaki M, Ohtomo A, Ohkubo I. Excitonic ultraviolet laser emission at room temperature from naturally made cavity in ZnO nanoerystal thin films [J]. Mat. Sci.& Eng. B, 1998, 56 (2-3, B): 239-244.
    [58] Yasuda T, Segawa Y, Ohkuba I, Koinuma H, Sakurai Y, Yoshida Y, Ohtomo A, Kawasaki M. Fabrication of alloys and superlattices based on ZnO towards ultraviolet laser [J]. Mat. Sci.& Eng. B, 1998, 56(2-3): 263-266.
    [59] Triboulet R, Ntep T M, Lesson A. Proceedings of the International Workship on Zinc Oxide [C]. Dayton, Ohio, USA, Oct. 1999.
    [60] King S L, Gardeniers J G E, Boyd I W. Pulsed-laser deposited ZnO for device application [J]. Appl. Surf. Sci., 1996, 96-98:811-818.
    [61] Srikant V, Ciarke D R. The optical band gap of zinc oxide [J]. J. Appl. Phys., 1998, 83(10): 5447-5451.
    [62] Jin B J, Bae S H, Lee S Y, Im S. Effects of native defects on optical and electrical properties of ZnO prepared by pulsed laser deposition [J]. Mater. Sci. and Eng. B, 2000, 71(1-3): 303-305.
    [63] 宋词,杭寅,徐军.氧化锌晶体的研究进展[J].人工晶体学报2004,33(1):81-87.
    [64] Fung S, Xu X L, Zhao Y W. Galiumlaluminum interdiffudion between n-GaN and sapphire [J]. J.Appl. Phys., 1998, 84(4): 2355-2359.
    [65] Xu X L, Beling C D, Fung S, Zhao Y W, Sun N F, Sun Y N, Zhang Q L, Zhan H H, Sun B Q, Wang J N, Ge W K, Wong P C. Formation mechanism of a degenerate thin layer at the interfacae of a GaN/sapphire system [J]. Appl. Phys. lett., 2004, 76(2): 152-154.
    [66] 王新强,杜国同,姜秀英,王金忠,杨树人.ZnO薄膜的研究进展[J].半导体光电,2000,4:233-237.
    [67] 柯练,缪熙月,魏彦峰,王杰,王迅.Ⅱ-Ⅵ族半导体激光器的新材料-ZnO量子点[J].物理,1999,1:30-34.
    [68] 王卿璞,张德恒,于永芹,黄柏标.ZnO薄膜材料的发光特性[J].半导体情报2001,4:48-53.
    [69] Riehl N, Ortman O Z. [J]. Electrochem., 1952, 64, 149.
    [70] Bylander E G. Surface effects on the low-energy athodoluminescence of zinc oxide [J]. J. Appl. Phys., 1978, 49: 1188-1195.
    [71] Vanheusden K, Seager C H, Warren W L, Tallant D R, Voigt J A. Correlation between photoluminescence and oxygen vacancies in ZnO phosphors [J]. Appl. Phys. Lett., 1996, 68: 403-405.
    [72] Ghis A, Weyer R, Rambaud R. IEEE Tras. Fluorescent microtip displays [J]. Electron Devices, 1991, 38(10): 2320-2322.
    [73] Bagnall D M, Chen Y F, Zhu Z, Yao T, Koyama S, Shen M Y, Goto T. Optically pumped lasing of ZnO at room temperature [J]. Appl. Phys. lett., 1997, 70: 2230-2232.
    [74] Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides [J]. Science, 2001, 291: 1947-1949,
    [75] Huang M H, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P. Room-temperature ultraviolet nanowire nanolasers [J]. Science, 2001, 292: 1897-1599.
    [76] Kong X Y, Ding Y, Yang R, Wang Z L. Single-crystal nanorings formed by epitaxial self coiling of polar nanobelts [J]. Science, 2004, 303:1348-1351.
    [77] 杨秀健,施朝淑,许小亮.纳米ZnO的研究及其进展[J].无机材料学报,2003.18:1-10.
    [78] Guo L, Yang S, Yang C, Yu F, Wang J, Ge W, Wong G K L. Highly monodisperse polymer-capped ZnO nanoparticles: preparation and optical properties [J]. Appl. Phys. Lett., 2000, 76: 2903-2903.
    [79] Yang C L, Wang J N, Ge W K, Guo L, Yang S H, Shen D Z. Enhanced ultraviolet emission and optical properties in polyvinyl pyrrolidone surface modified ZnO quantum dots [J]. J.Appl. Phys., 2001, 94: 4489-4493.
    [80] Guo L, Cheng J X, Li X Y, Yan Y J, Yang S H, Yang C L, Wang J N, Ge W K. Synthesis and optical properties of crystalline polymer- capped ZnO nanorods [J]. Mat. Sci.& Eug. C, 2001, 16: 123-127.
    [81] Yang Y, Chen H, Zhao B, Bao X. Size control of ZnO nanoparticles via thermal decomposition of zinc acetate coated on organic additives [J]. J. Cryst. Grwoth, 2004, 263: 447-453.
    [82] Kumar R V, Elgamiel R, Koltypin Y, Norwig J, Gedanken A. Synthesis and characterization of a micro scale zinc oxide-PVA composite by ultrasound irradiation and the effect of composite on the crystal growth of zinc oxide [J]. J. Cryst. Grwoth, 2003, 250: 409-417.
    [83] Shim J W, Kim J W, Han S H, Chang I S, Kim H K, Kang H H, Lee O S, Sub K D. Zinc oxidelpolymexthylemthacrylate composite microspheres by in situ suspension polymerization and their morphological study [J]. Colloid. & Surf. A, 2002, 207: 105-111.
    [84] Fan L, Dang Z, Wei G, Nan C W, Li M. Effect of nanosized ZnO on electrical properties of (PEO)_(16)LiC10_4 electrolytes [J]. Mat. Sci.& Eng. B, 2003, 99: 340-343.
    [85] Johnson J C. Single nanowire lasers, [J]. Chem. Eng. News, 2004, 82(25): 25-28.
    [86] Shaheen S E, Ginley D S, Jabbour G E. Organic-based photovoltaics: toward low-cost power generation [J]. MRS Bull, 2005, 30(1): 10-19.
    [87] Sariciftci N S, Smilowitz L, Heeger A J et al. Photoinduced electron transfer from a conducting polymer to buckminsterfullerene [J]. Science, 1992, 258: 1474-1476.
    [88] Sariciftci N S, Braun D, Heeger A Jet al. Semiconducting polymer-buckminsterfullerene heterojunctions: diodes, photodiodes, and photovoltaic cells [J]. Appl. Phys. Lett., 1993, 62(6): 585-587.
    [89] Yu G, Cao J, Heeger A J et al. Polymer light-emitting electrochemical cells [J]. Science, 1995, 270(15): 1789-1791.
    [90] Bozano L, Garter S A, Brock P J et al. Temperature- and field-dependent electron and hole mobilities in polymer light-emitting diodes [J]. Appl.Phys. Lett., 1999, 74: 1132-1134.
    [91] Brabec C J, Winder C, Sariciftci N S et al. Plastic solar cells [J]. Adv. Funct. Mater., 2002, 12(10): 709-712.
    [92] Svensson M, Zhang F L, Veenstra S C et al. Influence of buffer layers on the performance of polymer solar cells [J]. Adv. Mater., 2003, 15(12): 988-991.
    [93] Schilinsky P, Waldauf C, Brabec C J. Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors [J]. Appl. Phys. Lett., 2002, 81(20): 3885-3887.
    [94] Waldo J E B, Martijin M W, Rene A J J. Efficient hybrid solar cells fom zinc oxide nanoparticles and a conjugated polymer [J]. Adv. Mater., 2004, 16: 1009-1013.
    [95] Sargent E H. Infrared quantum dots [J]. Adv. Mater., 2005, 17 (5): 515-522.
    [96] Petrella A, Tamborra M, Agvstiano A et al. TiO_2 nanocrystals MEH-PPV composite thin films as photoactive material [J]. Thin Solid Films, 2004, 451:64-68.
    [97] Kwong C Y, Djurisic A B, Chan W K et al. Influence of solvent on film morphology and device performance of poly(3-hexylthiophene): TiO_2 nanocomposite solar cells [J]. Chem. Phys. Lett., 2004, 384: 372-375.
    [98] Huang M H, Mao S, Yang P et al. Room-temperature ultraviolet nanowire nanolasers [J]. Science, 2001, 292: 1897-1899.
    [99] Wang Z S, Huang C H, Cheng H M. A highly efficient solar cell made from a dye-modified ZnO-covered TiO_2 nanoporous electrode [J]. Chem. Mater. 2001, 13(2): 678-682.
    [100] Westermark K, Rensmo H, Sieghalm H J et al. Electron spectroscopic studies of bis-(2,2'-bipyridine)-(4,4'- dicarboxy-2,2 '-bipyridine)-ruthenium (Ⅱ) and bis-(2,2 '-bipyridine)-(4,4'-dicarboxy-2,2 '-bipyridine)-osmium(Ⅱ) adsorbed on nanostructured TiO_2 and ZnO surfaces [J]. J. Phys. Chem. B, 2002, 106 (39): 10108-10113.
    [101] Yoshihara T, Katoh R et al. Quantitative estimation of the efficiency of electron injection from excited sensitizer dye into nanocrystalline ZnO film [J]. J. Phys. Chem. B, 2004, 108 (8): 2643-2647.
    [102] Beek W J E, Wienk M M, Kemerink M, Yang X et al. Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells [J]. J. Phys. Chem. B, 2005, 109(19): 9505-9516.
    [103] Roest A L, Kelly J J, Meulenkamp E A et al. Staircase in the electron mobility of a ZnO quantum dot assembly due to shell filling [J]. Phys. Rev. Lett., 2002, 89: 036801.
    [104] Pacholski C, Kornowski A, Weller H. Self-assembly of ZnO: from nanodots to nanorods [J]. Anger. Chem. Int. Ed., 2002, 41(7): 1188-1191.
    [105] 周健伟,覃东欢,罗潺,曹墉.无机纳米晶-共扼聚合物异质结光电池研究进展[J].化学通报,2006,5:323-330.
    [106] 马金鑫,朱国凯.扫描电子显微镜入门[M].北京:科学出版社,1985,49-51.
    [107] 方容川.固体光谱学[M].合肥:中国科学技术大学出版社,231-236.
    [108] Li B S, Liu Y C, Shen D Z, Lu Y M, Zhang J Y, Kong X G, Fan XW, Zhi Z Z. Growth of stoichiometric (002) ZnG thin films on Si (001) substrate by using plasma enhanced chemical vapor deposition [J].J. Vac. Sci. Technol., 2002, 20(5): 1779-1783.
    [109] 夏建白.现代半导体物理[M].北京:北京大学出版社,162-166.
    [1] 斯琴高娃,照日格图,姚红霞,嘎日迪.直接沉淀法纳米氧化锌的制备及表征[J].内蒙古师范大学学报,2006,35(1):70-73.
    [2] 陈四海,任新民.乙醇溶液中ZnO纳米粒子的形成机理研究[J].无机化学学报,1999,(2):171-173.
    [3] 王文亮,李东升,侯向阳等.超声辐射沉淀法纳米ZnO的制备与表征[J].化学研究与应用,2001,13(2):157-159.
    [4] 丁士文,张绍岩,刘淑娟等.直接沉淀法制备纳米ZnO及其催化性能[J].无机化学学报,2002,18(10):1015-1018.
    [5] 张永康,刘建本,易保华.常温固相反应合成纳米氧化锌[J].精细化工,2000,17(6):343-344.
    [6] 王久亮.纳米级氧化锌制备技术研究进展[J].硅酸盐通报,2004,5:58-60.82.
    [7] 叶红勇,赖宏伟,吴淑杰,崔湘浩,阚秋斌.常温直接沉淀法制备ZnO纳米棒[J].高等学校化学学报,2007,28(2):312-315.
    [8] 叶红勇.纳米氧化锌的制备与表征[D].吉林:吉林大学,2006.
    [9] 日本化学会编.无机固态反应[M].北京:科学出版社.1985.
    [10] 俞平,房鼎叶.纳米氧化锌的制备[J].化学世界,2000,11(6):293-294
    [11] 徐甲强,潘庆谊,孙雨安.纳米氧化锌的乳液合成、结构表征与气敏性能[J].无机化学学报,1998,14(3):355-359.
    [1] Madhugiri S, Dalton A, Gutierrez J, Ferraris J P, Balkus K J Jr. Electrospun MEH-PPV/SBA-15 composite nanofibers using a dual syringe method [J]. J Am Chem Soc, 2003, 125: 14531-14538.
    [2] MacDiarmid A G, Jones W E, Norris I D, Gao J, Johnson A T Jr, Pinto N J, Hone J, Han B, Ko F K, Okuzaki H, Llaguno M. Electrostatically-generated nanofibers of electronic polymers [J]. Synth. Met., 2001, 119: 27-30.
    [3] Xin Y, Huang Z H, Yan E Y, Zhang W, Zhao Q. Controlling poly(p-phenylene vinylene)/poly(vinyl pyrrolidone) composite nanofibers in different morphologies by electrospinning [J]. Appl Phys Lett, 2006, 89: 053101-053103.
    [4] Doshi J, Reneker D H. Electrospinning process and applications of electrospun fibers [J]. J Electrost, 1995, 35: 151-160.
    [5] Zhang J, Wang B J, Liu X, Liu T, Hu T D. New observations on the optical properties of PPV/TiO_2 nanocomposites [J]. Polymer, 2001, 42: 3697-3699.
    [6] Djurisic A B, Leung Y H. Optical properties of ZnO nanostructures [J]. Small, 2006,2:944-961.
    [7] Burroughes J H, Bradley D D C, Brown A R, Marks R N, Mackay K, Friend R H, Burns P L, Holmes A B. Light-emitting diodes based on conjugated polymers [J]. Nature, 1990, 347: 539-541.
    [8] Salafsky J S. Exciton dissociation, charge transport and recombination in ultrathin, conjugated polymer-TiO_2 nanocrystal intermixed composites [J]. Phys RevB, 1999, 59: 10885-10894.
    [9] Stichtenoth D, Ronning C, Niermann T, Wischmeier L, Voss T, Chien C, Chang P, Lu J. Optical size effects in ultrathin ZnO nanowires [J]. Nanotechnolgy, 2007, 18:435701-435705.
    [10] Pearton S J, Norton D P, Ip K, Heo Y W, Steiner T. Recent progress in processing and properties of ZnO [J]. Prog Mater Sci, 2005, 50: 293-340.
    [11] Law M, Greene L E, Johnson J C, Saykally R, Yang P. Nanowire dye-sensitized solar cells [J]. Nat Mater, 2005, 4: 455-459.
    [12] Patolsky F, Gill R, Weizmann Y, Mokari T, Banin U, Willner I. Lighting-up the dynamics of telomerization and DNA replication by CdSe-ZnS quantum dots [J]. J Am Chem Soc, 2003, 125: 13918-13919.
    [13] Colvin V L, Schlamp M C, Alivisatos A P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer [J]. Nature, 1994, 370: 354-357.
    [14] Wang W, Wu H, Yang C, Luo C, Zhang Y, Chen J, Cao Y. High-efficiency polymer photovoltaic devices from regioregular-poly(3-hexylthiophene-2,5-diyl) and [6,6]-phenyl-C61-butyric acid methyl ester processed with oleic acid surfactant [J]. Appl Phys Lett, 2007, 90: 183512-183514.
    [15] Huang Z M, Zhang Y Z, Kotaki M, Ramakrishn S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites [J]. Compos Sci Technol, 2003, 63: 2223-2253.
    [16] Reneker D H, Chun I. Nanometre diameter fibres of polymer, produced by electrospinning [J]. Nanotechnology, 1996, 7: 216-223.
    [17] Theron A, Zussman E, Yarin A L. Electrostatic field-assisted alignment of electrospun nanofibres [J]. Nanotechnology, 2001, 12: 384-390.
    [18] Larsen G, Spretz R, Velarde-Ortiz R. Use of coaxial gas jackets to stabilize taylor cones of volatile solutions and to induce particle-to-fiber transitions [J]. Adv Mater, 2004, 16: 166-169.
    [19] Jayaraman K, Kotaki M, Zhang Y, Mo X, Ramakrishna S. Recent Advances in Polymer Nanofibers [J]. J Nanosci Nanotechno, 2004, 4: 52-65.
    [20] Schiffman J D, Caroline L, Schauer. A Review: Electrospinning of Biopolymer Nanofibers and their Applications [J]. Polym Rev, 2008, 48:317-352.
    [21] Li D, Xia Y. Electrospinning of nanofibers: reinventing the wheel [J]. Adv Mater, 2004, 16: 1151-1170.
    [22] Greiner A, Wendorff J H. Electrospinning: A Fascinating Method for the Preparation of Ultrathin Fibers [J]. Angew Chem Int Ed, 2007, 46: 5670-5703.
    [23] Zhang W, Huang Z, Yan E, Wang C, Xin Y, Zhao Q, Tong Y. Preparation of poly(phenylene vinylene) nanofibers by electrospinning [J]. Mater Sci Eng A, 2007, 443: 292-295.
    [24] Huang Z H. The nanofibers of Poly(phenylene vinylene) and its preparation method [P]. CN patent No. ZL 200510016569.8.
    [25] Okuzaki H, Takahashi T, Miyajima N, Suzuki Y, Kuwabara T. Spontaneous formation of poly(p-phenylenevinylene) nanofiber yarns through electro-spinningof a precursor [J]. Macromolecules, 2006, 39: 4276-4278.
    [26] He S, Maeda H, Uehara M, Miyazaki M. Direct synthesis of well dispersed ZnO nanorods without using additional surfactant [J]. Mater Lett, 2007, 61: 626-628.
    [27] Ogawa H, Abe A. Preparation of tin oxide films from ultrafine particles [J]. J Electrochem Soc, 1981, 128: 685-689.
    [1] Bernius M T, Inbasekaran M, O'Brien J, Wu W S. Progress with light- emitting polymers [J]. Adv. Mater., 2000, 12(23): 1737-1750.
    [2] Neher D. Polyfluorene homopolymers: conjugated liquid-crystalline polymers for bright blue emission and polarized electroluminescence [J]. Macromol. Rapid Commun., 2001, 22(17): 1365-1385.
    [3] Scherf U, List E J W. Semiconducting polyfluorenes-towards reliable structure-property relationships [J]. Adv. Mater., 2002, 14(7): 477-487.
    [4] Miteva T, Meisel A,. Knoll W, Nothofer H G, Scherf U, Muller D C, Meerholz K, Yasuda A, Neher D. Improving the performance of polyfluorene-based organic light-emitting diodes via end-capping [J]. Adv. Mater., 2001,13(8): 565-570.
    [5] Inbasekaran M, Woo E P, Wu W, Bernius M T. Fluorene copolymers and devices made therefrom [P]. Patent number: 6353083.
    [6] Bolink H J, Buechel M, Jacobs B, Kok M D, Ligter M, Meulenkamp E A, Vulto S, Weijer P V D. Status of red, green and blue light emitting polymers for passive matrix displays [J]. Proc. SPIE, 2003,4800, 1.
    [7] Ego C, Marsizky D, Backer S, Zhang J, Grimsdale A C, Mullen K, Mackenzie J D, Silva C, Friend R H. Attaching perylene dyes to polyfluorene: three simple, efficient methods for facile color tuning of light-emitting polymers [J]. J. Am. Chem. Soc, 2003, 125(2): 437-443.
    [8] Chen X, Liao J L, Liang Y et al. High-efficiency red-light emission from polyfluorenes grafted with cyclometalated iridium complexes and charge transport moiety [J]. J. Am. Chem. Soc, 2003, 125(3): 636-637.
    [9] Luo J, Peng J B, Cao Y, Hou Q. High-efficiency red light-emitting diodes based on polyfluorene copolymers with extremely low content of 4,7-di-2-thienyl-2,l,3-benzothiadiazole-comparative studies of intrachain and interchain interaction [J]. Appl.Phys.Lett.,2005,87,262203.
    [10] Chan L H, Lee Y D, Chen C T. Synthesis and characterization of 3,4-diphenylmaleimide copolymers that exhibit orange to red photoluminescence and electroluminescence [J]. Macromolecules, 2006, 39(9):3262-3269.
    [11] Cho N S, Park J H et al. Facile synthesis, large optical nonlinearity, and excellent thermal stability of hyperbranched poly(aryleneethynylene)s containing azobenzene chromophores [J]. Macromolecules, 2006, 39(4): 1436-1442.
    [12] Millard I S. High-efficiency polyfluorene polymers suitable for RGB applications [J]. Synth. Met., 2000, 111-112(1): 119-123.
    [13] Godovsky D Y. Device applications of polymer-nanocomposites [M]. Adv. Polym. Sci., 2000, 153:163-205.
    [14] Prasad P N. Polymer science and technology for new generation photonics and biophotonics [J]. Current Opinion in Solid State and Materials Science, 2004,
    [15] Sudeep P K, Emrick T. Polymer-nanoparticle composites: preparative methods and electronically active materials [J]. Polym. Rev., 2007,47(2):155-163.
    [16] Svensson M, Zhang F, Veenstra S C, Verhees W J H, Hummelen J C, Kroon J M, Inganas O, Andersson M R. High-performance polymer solar cells of an alternating polyfluorene copolymer and a fullerene derivative [J]. Adv. Mater., 2003, 15(12), 988-991
    [17] Hou Q, Xu Y, Yang W, Yuan M, Peng J, Cao Y. Novel red-emitting fluorine-based copolymers [J]. J. Mater. Chem., 2002, 12(10): 2887-2892
    [18] He S, Maeda H, Uehara M, Miyazaki M . Direct synthesis of well dispersed ZnO nanorods without using additional surfactant [J]. Mater. Lett., 2007, 61(3): 626-628.
    [19] Ogawa H, Abe A. Electrical properties of tin oxide ultrafine particle films [J]. J. Electrochem. Soc, 1981, 128(9): 2020-2025.
    [20] Wang M, Wang X. PPV/TiO_2 hybrid composites prepared from PPV precursor reaction in aqueous media and their application in solar cells [J]. Polymer, 2008, 49: 1587-1593.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700