光锥分布振幅及其在非微扰QCD中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光锥分布振幅不但能够反映强子内部结构的动力学信息,而且是硬遍举过程和光锥求和规则中的基本参量,是光锥求和规则应用当中需要首先解决的问题。本文的主要目的和任务是求解基态八重态重子的光锥分布振幅,以及研究其在光锥求和规则中的应用。
     本文给出了基态八重态重子∑±,Λ,Ξ扭曲度至6的光锥分布振幅。我们首先在SU(3)味道对称性近似下,给出基态八重态重子光锥分布振幅的一般定义,并运用各种对称性关系将独立不变分布振幅的个数进行约减;然后利用QCD无质量拉氏量的共形对称性,对分布振幅进行共形分波展开,同时借助于运动方程,将共形展开的系数和一些非微扰的耦合系数联系起来;最后在QCD求和规则框架内定出所需非微扰参数,并给出∑±,Λ,Ξ重子分布振幅的具体形式。在研究当中,我们考虑了SU(3)味道破缺效应对分布振幅的修正,而在做共形展开时,精确到领头阶共形自旋。
     本文所得到的光锥分布振幅使得应用光锥求和规则对重子的一些特征参数及相关物理过程进行研究成为可能。作为实例,我们使用光锥求和规则方法计算了∑±,Λ,Ξ重子的电磁形状因子在中等动量转移情况下的物理特性,并利用对其磁形状因子的双极点公式拟合估算了其磁矩;通过计算重重子Λc和Ξc的弱跃迁形状因子,给出了半轻衰变Λc→Λl+vl和Ξc→Ξe+ve过程的衰变宽度和分支比;计算了零动量转移情况下稀有衰变过程Λb→Λγ的相关形状因子,预言了其衰变宽度和分支比。
     为看清不同内插流对光锥求和规则的影响,我们应用Ioffe-型内插流计算了相关重子的电磁形状因子及弱跃迁形状因子,并重新估计了Λc和Ξc重子半轻衰变过程的衰变宽度和分支比。我们的计算表明,对于电磁形状因子及磁矩的估计,除了一些特殊情况外,两种内插流并无明显差别。然而对于Λc和Ξc重子的半轻衰变,选择Ioffe-型内插流给出了更为合理的结果。
Light-cone distribution amplitudes of hadrons, which are the fundamental parameters in hard exclusive processes and the light-cone QCD sum rules, contain information of the hadron structure and play an essential role in applications of the light-cone QCD sum rules. The main aims of this thesis are to examine the distribution amplitudes of the octet baryons, and to investigate their applications.
     The light-cone distribution amplitudes ofΣ±,ΛandΞbaryons are presented up to twist 6. We first give the general definitions of the octet baryon distribution amplitudes in the SU(3) flavor symmetry limit. The number of the independent distribution amplitudes is reduced with the aid of some symmetry relationships. By considering the conformal symmetry of the massless QCD Lagrangian, the distribution amplitudes are expanded by the conformal partial waves to the leading order of the conformal spin accuracy. With the help of the equation of motion, the coefficients of the conformal expansion are related to some other nonperturbative parameters, which are determined in the framework of QCD sum rules. We then give the explicit expressions of the distribution amplitudes ofΣ±,ΛandΞ. In the calculation, we take into account contributions from SU(3) flavor symmetry breaking effects as corrections.
     The distribution amplitudes obtained in this thesis make it possible to study some parameters and physical processes related to the baryons with the light-cone QCD sum rules. As applications, we calculate the electromagnetic form factors ofΣ±, A andΞbaryons in the intermediate momentum transfer. The magnetic moments of the baryons are estimated from the assumption that the magnetic form factors can be fitted by the dipole formula. We also predict the decay widths and branching ratios of the semileptonic decay modesΛc→Λl+vl andΞc→Ξe+ve with the light-cone sum rules of the related weak transition form factors, as well as exclusive rare decay processΛb→Λγ.
     In addition, we recalculate the same electromagnetic form factors and the semilep-tonic decay modes with an alternative interpolating currents. Our results show that the choice of the interpolating currents does not lead to obvious difference but for the A baryon, while the Ioffe-type currents give more reliable predictions for the semileptonic decay processes.
引文
[1]Bjorken J B. Asymptotic Sum Rules at Infinite Momentum[J]. Phys. Rev.,1969, 179:1547.
    [2]Friedman J, Kendall H. Deep Inelastic Electron Scattering[J]. Ann. Rev. Nucl. Sci., 1972,22:203.
    [3]Taylor RE. Deep Inelastic Scattering:The Early Years[J]. Rev. Mod. Phys.,1991, 63:573.
    [4]Kendall H W. Deep Inelastic Scattering:Experiments on the Proton and the Ob-servation of Scaling[J]. Rev. Mod. Phys.,1991,63:579.
    [5]Friedman J. Deep Inelastic Scattering:Comparisons with the Quark Model [J]. Rev. Mod. Phys.,1991,63:615.
    [6]Gell-Mann M. A Schematic Model of Baryons and Mesons[J]. Phys. Lett.,1964, 8(3):214.
    [7]Zweig G.1964. Preprint CERN-TH-401.
    [8]Greiner W, Schafer A. Quantum Chromodynamics[M].2.[S.l.]:Springer,1995.
    [9]Muta T. Foundations of Quantum Chromodynamics[M].2.[S.l.]:World Scientific, 2002.
    [10]戴元本.相互作用的规范理论[M].2.[S.l.]:科学出版社,2005.
    [11]Greiner W, Reinhardt J. Quantum Electrodynamics[M].2.[S.l.]:Springer,1994.
    [12]Greiner W, Reinhardt J. Field Quantization[M].[S.l.]:Springer,1996.
    [13]Gross D J, Wilczek F. Ultraviolate Behavior of Non-Abelian Gauge Theories[J]. Phys. Rev. Lett.,1973,30(26):1343.
    [14]Gross D J, Wilczek F. Asymptotically Free Gauge Theories. Ⅰ[J]. Phys. Rev. D., 1974,8(10):3633.
    [15]Gross D J, Wilczek F. Asymptotically Free Gauge Theories. Ⅱ[J]. Phys. Rev. D., 1974,9(4):980.
    [16]Politzer H D. Reliable Perturbative Results for Strong Interactions?[J]. Phys. Rev. Lett,1973,30(26):1346.
    [17]M. A. Shifman A I V, Zakharov V I. QCD and Resonance Physics.Theoretical Foundations[J]. Nucl. Phys. B,1979,147:385.
    [18]Shifman M A, Vainshtein A I, Zakharov V I. QCD and Resonance Physics.Applications[J]. Nucl. Phys. B,1979,147:448.
    [19]Novikov V A, Shifman M A, Vainshtein A I, et al. QCD and Resonance Physics.Applications[J]. Fortschr. Phys.1984,32:11.
    [20]Dominguez C A, Rafael E D. Light Quark Masses in QCD from Local Duality[J]. Ann. Phys.,1987,174(2):372.
    [21]Chetyrkin K G, Dominguez C A, Pirjol D, et al. Mass Singularities in Light Quark Correlators:The Strange Quark Case[J]. Phys. Rev. D,1995,51(9):5090.
    [22]Jamin M, Munz M. The Strange Quark Mass from QCD Sum Rules[J]. Z. Phys. C,1995,66:633.
    [23]Chetyrkin K G, Pirjol D, Schilcher K. Order-αs3 Determination of the Strange Quark Mass[J]. Phys. Lett. B,1997,404:337.
    [24]Colangelo P, Fazio F D, Nardulli G, et al. On the QCD Sum Rule Determination of the Strange quark mass[J]. Phys. Lett. B,1997,408:340.
    [25]Maltman K. The Strange Quark Mass from Finite Energy Sum Rules[J]. Phys. Lett. B,1999,462:195.
    [26]Dominguez C A, Pirovano L, Schilcher K. Determination of the Strange-quark Mass from QCD Pseudoscalar Sum Rules[J]. Nucl. Phys. B (Proc. Suppl.),1999, 74:313.
    [27]Dominguez C A, Gluckman G R, Paver N. Mass of the Charm-quark from QCD Sum Rules[J]. Phys. Lett. B,1994,333:184.
    [28]Jimin M. The Strange-quark Mass from scalar Sum Rules updated[J]. Nucl. Phys. B (Proc. Suppl.),1998,64:250.
    [29]Dominguez C A, Paver N. New Determination of the Beauty-quark Mass[J]. Phys. Lett. B,1992,293:197.
    [30]Voloshin M A. Precision Determination of αs and mb from QCD Sum Rules for bb[J]. Int. J. Mod. Phys. A,1995,10:2865.
    [31]Penin A A, Pivovarov A A. Bottom Quark Mass and |Vcb| Matrix Element from R(e+e-→bb) and Γs1(b→clvl) in the next-to-next-to-leading order[J]. Nucl. Phys. B,1999,549:217.
    [32]Dominguez C A, Paver N. Leptonic Decay Constants of Charm and Beauty Mesons in QCD[J]. Phys. Lett. B,1987,197:423.
    [33]Reinders L J, Rubinstein H, Yazaki S. Hadron Properties from QCD Sum Rules[J]. Phys.Rept,1985,127(1):1.
    [34]Ioffe B L, Similga A V. Meson Width and Form Factors at Intermediate Momentum Transfer in Non-perturbative QCD[J]. Nucl. Phys. B,1983,216:373.
    [35]Nesterenko V A, Radyushkin A V. Sum Rules and the Pion Form Factor in QCD[J]. Phys. Lett. B,1982,115:410.
    [36]Khodjamirian A Y. Dispersion Sum Rules for the Amplitudes of Radiative Transi-tions in Quarkonium[J]. Phys. Lett. B,1980,90:460.
    [37]Beilin V A, Radyushkin A V. Quantum Chromodynamics Sum Rules and J/Ψ→ ηγ Decay [J]. Nucl. Phys. B,1985,260:61.
    [38]Ball P, Braun V M, Dosch H G, et al. Sum Rule Analysis of the Decay D+→ K*oe+ve[J]. Phys. Lett. B,1991,259:481.
    [39]Ball P, Braun V M, Dosch H G. Form Factors of Semileptonic D Decay from QCD Sum Rules[J]. Phys. Rev. D,1991,44:3567.
    [40]Colangelo P, Dominguez C A, Nardulli G, et al. Radiative B→K*γ Transition in QCD[J]. Phys. Lett. B,1993,317:183.
    [41]Colangelo P, Fazio F D, Santorelli P, et al. QCD Sum Rule Analysis of the Decay B→Kl+l-and B→K*l+l-[J]. Phys. Rev. D,1996,57:3672.
    [42]Colangelo P, Fazio F D, Santorelli P, et al. Rare B→K+vv Decays at B Facto-ries[J]. Phys. Lett. B,1997,395:339.
    [43]Fazio F D, Pennington M R. Radiative φ-meson Decays and η-η' Mixing:A QCD Sum Rule Analysis[J]. JHEP,2000,0007:051.
    [44]Ioffe B L, Similga A V. Nucleon Magnetic Moments and Magnetic Properties of the Vacuum in QCD[J]. Nucl. Phys. B,1984,232:109.
    [45]Balitsky II, Yung A V. Proton and Neutron Magnetic Moments from QCD Sum Rules[J]. Phys. Lett. B,1983,129:328.
    [46]Pasupathy J, Singh J P. Determination of the Λ Magnetic Moment by QCD Sum Rules[J]. Phys. Rev. D,1987,36(5):1442.
    [47]Wilson S L, Pasupathy J, Chiu C B. Gluon-field Contribution in QCD Sum Rules for the Magnetic Moments of the Nucleons[J]. Phys. Rev. D,1987,36(5):1451.
    [48]Chiu C B, Pasupathy J, Wilson S J. Determination of Baryon Magnetic Moments from QCD Sum Rules[J]. Phys. Rev. D,1986,33(7):1961.
    [49]Lee F X. Magnetic Moments of △++and Ω-from QCD Sum Rules[J]. Phys. Lett. B,1998,419(14).
    [50]Lee F X. Determination of Decuplet Baryon Magnetic Moments from QCD Sum Rules[J]. Phys. Rev. D,1998,57:1801.
    [51]Wang L, Lee F X. Octet Baryon Magnetic Moments from QCD Sum Rules[J]. Phys. Rev. D,2008,78:013003.
    [52]Zhu S L, Hwang W Y P, Yang Z S. The Ω and Σ0-Λ Transition Magnetic Moments in QCD Sum Rules[J]. Phys. Rev. D,1998,57:1527.
    [53]Samsonov A. Magnetic Moment of the p-meson in QCD Sum Rules:Perturbative corrections[J]. JHEP,2003,0312:061.
    [54]Samsonov A. Magnetic Moment of the p-meson in QCD Sum Rules[J]. Phys. Atom. Nucl.,2005,68:114.
    [55]Zhu S L. Understanding Pentaquark States in QCD[J]. Phys. Rev. Lett.,2003, 91:232002.
    [56]Sugiyama J, Doi T, Oka M. Penta-Quark Baryon from the QCD sum Rules[J]. Phys. Lett. B,2004,581:167.
    [57]Eidemuller M. Pentaquark and Diquark-diquark clustering:A QCD sum Rule ap-proach[J]. Phys. Lett. B,2004,579:314.
    [58]Kim H C, Lee S H, Oh Y. Anti-charmed Pentaquark (?)c(3099) from QCD Sum Rules[J]. Phys. Lett. B,2004,595:293.
    [59]Lee H J, Kochelev N I, Vento V. A QCD sum Rule Analysis of the Pentaquark[J]. Phys. Rev. D,2006,73:014010.
    [60]Navarra F S, Nielsen M, Tsushima K. A QCD sum Rule Study of (?)+ in Nuclear Matter[J]. Phys. Lett. B,2005,606:335.
    [61]Lee H J, Kochelev N I, Vento V. Triquark Correlations and Pentaquarks in A QCD Sum Rule Approach[J]. Phys. Lett. B,2005,610:50.
    [62]Eidemuler M, Navarra F S, Nielsen M. A QCD sum Rule Analysis of the Pen-taquark[J]. Phys. Rev. D,2005,72:034003.
    [63]Manohar A V, Wise M B. Heavy Quark Physics[M].[S.l.]:Cambridge University Press,2000.
    [64]Isgur N, Wise M B. Weak Decays of Heavy Mesons in the Static Quark Approxi-mation[J]. Phys. Lett. B,1989,232:113.
    [65]Isgur N, Wise M B. Weak Transition Form Factors Between Heavy Mesons[J]. Phys. Lett. B,1990,237:527.
    [66]Grinstein B. The Static Quark Effective Theory[J]. Nucl. Phys. B,1990,339:253.
    [67]Georgi H. An Effective Field Theory for Heavy Quarks at Low Energies[J]. Phys. Lett. B,1990,240:447.
    [68]Falk A F, Georgi H, Grinstein B, et al. Heavy Meson Form Factors from QCD[J]. Nucl. Phys. B,1990,343:1.
    [69]Neubert M. Heavy-Quark Symmetry [J]. Phys. Rept.,1994,245:259.
    [70]Mannel T. Recent Progress in the Teory of Heavy Flavor Decays[J]. J. Phys. G, Nucl. Part. Phys.,1995,21:1007.
    [71]Lepage G P, Brodsky S J. Exclusive Processes in Quantum Chromodynamics:The Form Factors of Baryons at Large Momentum Transfer[J]. Phys. Rev. Lett.,1979, 43(8):545.
    [72]Lepage G P, Brodsky S J. Erratum[J]. Phys. Rev. Lett.,1979,43:1625.
    [73]Brodsky S J, Lepage G P, Zaidi A A. Weak and Electromagnetic Form Factors of Baryons at Large Momentum Transfer[J]. Phys. Rev. D.,1981,23(5):1152.
    [74]Brodsky S J, Lepage G P. Helicity Selection Rules and Test of Gluon Spin in Ex-clusive Quantum-Chromdynamic Processes[J]. Phys. Rev. D.,1981,24(11):2848.
    [75]Efremov A V, Radyushkin A V. Factorization and Asymptotic Behaviour of Pion Form Factor in QCD[J]. Phys. Lett. B,1980,94:245.
    [76]Lepage GP, Brodsky S J. Exclusive Processes in Quantum Chromodynamics:Evo-lution Equations for Hadronic Wave Functions and the Form Factors of Mesons[J]. Phys. Lett. B,1979,87(4):359.
    [77]Brodsky S J, Lepage G P. Exclusive Processes in Perturbative Quantum Chromo-dynamics [J]. Phys. Rev. D.,1980,22(9):2157.
    [78]Colangelo P,Khodjamirian A. QCD Sum Rules, A Modern Perspective[J]. CERN-TH,2000:296.
    [79]Balitsky II, Braun VM, Kolesnichenko A V. Radiative Decay σ→pγ in Quantum Chromodynamics[J]. Nucl. Phys. B,1989,312:509.
    [80]Balitsky II, Braun V M, Kolesnichenko A V. σ+→pγ Decay in QCD[J]. Sov. J. Nucl. Phys.,1986,44:1028.
    [81]Balitsky II, Braun V M, Kolesnichenko A V. QCD Sum Rules for the Decay σ+→pγ[J]. Sov. J. Nucl. Phys.,1988,48:546.
    [82]Braun V M, Filyanov IE. QCD Sum Rules in Exclusive Kinematics and Pion Wave Function[J]. Z. Phys. C,1989,44:157.
    [83]Chernyak V L, Zhitnitskii IR.B-meson Exclusive Decays into Baryons[J]. Nucl. Phys.B,1990,345:137.
    [84]Braun V M, Halperin I. Soft Contribution to the Pion Form Factor from Light-cone QCD Sum Rules[J]. Phys. Lett. B,1994,328:457.
    [85]Belyaev V M. π-A1 Electromagnetic Form Factors and Light-cone QCD Sum Rules[J]. Z. Phys. C,1995,65:93.
    [86]Belyaev V M, Braun V M, Khodjamirian A, et al. D*Dπ and B*Bπ Coupling in QCD[J]. Phys. Rev. D,1995,51:6177.
    [87]Aliev T M, Demir D A, Iltan E, et al. gB*Bρ and gD*Dρ Coupling Constants in Light-cone QCD Sum Rules[J]. Phys. Rev. D,1996,53:355.
    [88]Zhu S L, Dai Y B. ρ Decay width of Excited Heavy Mesons from Light-cone QCD Sum Rules in the Leading Order of HQET[J]. Phys. Rev. D,1998,58:094003.
    [89]Khodjamirian A, Ruckl R, Weinzierl S, et al. Predictions on B→πlv, D→ πlv, and D→Klv from QCD Light-cone Sum Rules[J]. Phys. Rev. D,2000, 62:114002.
    [90]Braun V M, Khodjamirian A, Maul M. Pion Form Factor in QCD at Intermediate Momentum Transfers[J]. Phys. Rev. D,2000,61:073004.
    [91]Korner J G, Liu C, Yan C T. Light-cone Heavy Quark Effective Theory Sum Rules for the B→π Transition with 1/mQ Corrections[J]. Phys. Rev. D,2002, 66:076007.
    [92]Aliev T M, Kanik I, Savci M. Magnetic Moment of the p Meson in QCD Light Cone Sum Rules[J]. Phys. Rev. D,2003,68:056002.
    [93]Ball P, Zwichy R. New Results on B→π, K, η Decay Form Factors from Light-cone Sum Rules Reexamined[J]. Phys. Rev. D,2005,71:014015.
    [94]Khodjamirian A, Mannel T, Offen N. Form Factors from Light-cone Sum Rules with B-Meson Distribution Amplitudes[J]. Phys. Rev. D,2007,75:054013.
    [95]Duplancic G, Melic B. B,Bs→ K Form Factors:An Update of Light-cone Sum Rule Results[J]. Phys. Rev. D,2008,78:054015.
    [96]Braun V M, Lenz A, Mahnke N, et al. Light-cone Sum Rules for the Nucleon Form Factors[J]. Phys. Rev. D,2002,65:074011.
    [97]Lenz A, Wittmann M, Stein E. Improved Light-cone Sum Rules for the Electro-magnetic Form Factors of the Nucleon[J]. Phys. Lett. B,2004,581:199.
    [98]Braun V M, Lenz A, Wittmann M. Nucleon Form Factors in QCD[J]. Phys. Rev. D,2006,73:094019.
    [99]Huang M Q, Wang D W. Light-cone QCD Sum Rules for the Semileptonic Decay Λb→plv[J]. Phys. Rev. D,2004,69:094003.
    [100]Wang Y M, Li Y, Lu C D. Rare Decays of Λb→Λ+γ and Λb→Λ+l+l-in the Light-cone Sum Rules[J]. Eur. Phys. J. C,2009,59:861.
    [101]Aliev T M, Azizi K, Ozpineci A, et al. Nucleon Electromagnetic Form Factors in QCD[J]. Phys. Rev. D,2008,77:114014.
    [102]Wang Z G, Wan S L, Yang W M. Scalar Form-factor of the Proton with Light-cone QCD Sum Rules[J]. Phys. Rev. D,2006,73:094011.
    [103]Wang Z G, Wan S L, Yang W M. Axial Form-factor and Induced Pseudoscalar Form-factor of the Nucleons[J]. Eur. Phys. J. C,2006,47:375.
    [104]Ball P, Talbot A N. Models for Light-Cone Meson Distribution Amplitudes[J]. JHEP,2005,0506:063.
    [105]Chernyak V L, Zhitnitsky A R. Asymptotic Behaviour of Exclusive Processes in QCD[J]. Phys. Rept.,1984,112(3 and 4):173.
    [106]Braun V M, Filyanov I B. Conformal Invariance and Pion Wave Functions of Nonleading Twist[J]. Z. Phys. C,1990,48:239.
    [107]Ball P. Theoretical Update of Pseudoscalar Meson Distribution Amplitudes of Higher Twist:The Nonsinglet Case[J]. JHEP,1999,9901:010.
    [108]Ball P, Braun V M, Koider Y, et al. Higher Twist Distribution Amplitudes of Vector Mesons in QCD:Formalism and Twist Three Distributions[J]. Nucl. Phys. B,1998, 529:323.
    [109]Ball P, Braun V M. Higher Twist Distribution Amplitudes of Vector Mesons in QCD:Twist-4 Distributions and Meson Mass Corrections[J]. Nucl. Phys. B,1999, 543:201.
    [110]Yang K C. Light-cone Distribution Amplitudes of Axial-vector Mesons[J]. Nucl. Phys. B,2007,776:187.
    [111]Ball P, Zwicky R. Bd,s→ρ,ω,K*,φ Decay Form Factors from Light-cone Sum
    Rules Reexamined[J]. Phys. Rev. D,2005,71:014029.
    [112]Kawamura H, Kodaira J, Qiao C F, et al. B Meson Light-cone Distribution Am-plitudes in the Heavy-quark Limit[J]. Phys. Lett. B,2001,523:111.
    [113]Descotes-Genon S, Sachrajda C T. Factorization, the Light-Cone Distribution Am-plitude of the B-Meson and the Radiative Decay B→γlνl[J]. Nucl. Phys. B,2003, 650:356.
    [114]Braun V M, Ivanov D Y, Korchemsky G P. The B-Meson Distribution Amplitudes in QCD[J]. Phys. Rev. D,2004,69:034014.
    [115]Khodjamirian A, Mannel T, Offen N. B-Meson Distribution Amplitude from the B→π Form Factor[J]. Phys. Lett. B,2005,620:52.
    [116]Lee S J, Neubert M. Model-Independent Properties of the B-Meson Distribution Amplitude[J]. Phys. Rev. D,2005,72:094028.
    [117]Huang T, Zou F. Semileptonic Bc Decays and Charmonium Distribution Ampli-tude[J]. Eur. Phys. J. C,2007,51:833.
    [118]Geyer G, Witzel O. Heavy Meson Distribution Amplitudes of Definite Geometric Twist with Contribution of 3-Particle Distribution Amplitudes[J]. Phys. Rev. D, 2007,76:074022.
    [119]Yaouanc A L, Oliver L, Raynal J C. Relation between Light Cone Distribution Amplitudes and Shape Function in B mesons[J]. Phys. Rev. D,2008,77:034005.
    [120]Hwang C W. Study of Quark Distribution Amplitudes of 1S and 2S Heavy Quarko-nium States[J]. Eur. Phys. J. C,2009,62:499.
    [121]Ball P, Zwicky R. p Meson Light-cone Distribution Amplitudes of Leading Twist reexamined[J]. Phys. Rev. D,1996,54(3):2182.
    [122]Ball P, Boglione M.SU(3) Breaking in K and K* Distribution Amplitudes[J]. Phys. Rev. D,2003,68:094006.
    [123]Ball P, Braun VM, Kivel N. Photo Distribution Amplitudes in QCD[J]. Nucl. Phys. B,2003,649:263.
    [124]Dorokhov A E, Broniowski W, Arriola E R. Photon Distribution Amplitudes and Light-cone Wave Functions in Chiral Quark Models[J]. Phys. Rev. D,2006, 74:054023.
    [125]Friot S, Pire B, Szymanowski L. Deeply Virtual Compton Scattering on a Photon and Generalized Parton Distributions in the Photon[J]. Phys. Lett. B,2007,645:153.
    [126]Courtoy A, Nogguera S. The Pion-Photon Transition Distribution Amplitudes in the Nambu-Jona Lasinio Model[J]. Phys. Rev. D,2007,76:094026.
    [127]Beiyad M E, Pire B, Szymanowski L, et al. Diphoton Generalized Distribution Amplitudes[J]. Phys. Rev. D,2008,78:034009.
    [128]Polyakov M V, Weiss C. Two-pion Light-cone Distribution Amplitudes from the Instanton Vacuum[J]. Phys. Rev. D,1999,59:091502.
    [129]Maul M. Semi-leptonic B-decays and the Two-pion Distribution Amplitudes[J]. Eur. Phys. J.C,2001,21:115.
    [130]Chen C H, Li H N. Vector-pseudoscalar Two-meson Distribution Amplitudes in Three-body B Meson Decays[J]. Phys. Rev. D,2004,70:054006.
    [131]Lu Z, Schmidt I. Generalized Distribution Amplitudes at the Z pole[J]. Phys. Rev. D,2006,73:013012.
    [132]Chernyak V L, Ogloblin A A, Zhitnitsky IR. On The Nucleon Wave Function[J]. Sov. J. Nucl. Phys,1988,48:536.
    [133]Chernyak V L, Ogloblin A A, Zhitnitsky IR. Wave Functions Of Octet Baryons[J]. Z. Phys. C,1989,42:569.
    [134]Braun V M, Fries R J, Mahnke N, et al. Higher Twist Distribution Amplitudes of the Nucleon in QCD[J]. Nucl. Phys. B,2000,589:381.
    [135]Braun V M, Derkachov S E, Korchemsky G P, et al. Baryon Distribution Ampli-tudes in QCD[J]. Nucl. Phys. B,1999,553:355.
    [136]Ball P, Braun V M, Gardi E. Distribution Amplitudes of the Ab Baryon in QCD[J]. Phys. Lett. B,2008,665:197.
    [137]Bergmann M, Stefanis N G. Heterotic Approach to the Nucleon Distribution Am-plitude[J]. Phys. Lett. B,1994,325:183.
    [138]Braun VM. Baryon Wave Functions in QCD and Integrable Models[J]. Nucl. Phys. Proc. Suppl.,2000,90:14.
    [139]Ji X D, Ma J P, Yuan F. Three-Quark Light-Cone Amplitudes of the Proton and Quark-Orbital-Motion Dependent Observables[J]. Nucl. Phys. B,2003,625:383.
    [140]Pobylitsa P V. Baryon Distribution Amplitude:Large-NC Factorization, Spin-flavor Symmetry and Soft-pion Theorem[J]. Phys. Rev. D,2005,72:016001.
    [141]Gockeler M, et al.. Nucleon Distribution Amplitudes from Lattice QCD[J]. Phys. Rev. Lett,2008,101:112002.
    [142]Braun VM, Manashov AN, Rohrwild J. Baryon Operators of Higher Twist in QCD and Nucleon Distribution Amplitudes[J]. Nucl. Phys. B,2009,807:89.
    [143]Liu Y L, Huang M Q. Distribution Amplitudes of Σ and Λ and Their Electromag-netic Form Factors[J]. Nucl. Phys. A,2009,821:80.
    [144]Liu Y L, Huang M Q. Light-cone Distribution Amplitudes of Ξ and Their Appli-cations[J]. Phys. Rev. D,2009,80:055015.
    [145]Liu Y L, Huang M Q, Wang D W. Light-cone QCD sum rules for the A baryon electromagnetic form factors and its magnetic moment[J]. Eur. Phys. J. C,2009, 60:593.
    [146]Liu Y L, Huang M Q, Wang D W. Improved Analysis on the Semi-leptonic Decay Λc→Λl+v from QCD Light-cone Sum Rules[J]. Phys. Rev. D,2009,80:074011.
    [147]Liu Y L, Huang M Q. Electromagnetic form factors of the A and Σ baryons in an alternative baryonic current approach[J]. Phys. Rev. D,2009,79:114031.
    [148]Liu Y L, Huang M Q. In preparation.
    [149]Kogut J, Soper D. Quantum Electrodynamics in the Infinite-Momentum Frame[J]. Phys. Rev. D,1977,1:2901.
    [150]Jaffe R L, Ji X D. Chiral-Odd Parton Distributions and Drell-Yan Processes[J]. Nucl. Phys. B,1992,375:527.
    [151]Francesco P D, Mathieu P, Senechal D. Conformal Field Theory[M].[S.l.]: Springer,1996.
    [152]Braun V M, Korchermsky G P, Muller D. The Use of Conformal Symmetry in QCD[J]. Prog. Part. Nucl. Phys.,2003,51(2):311.
    [153]Balitsky 11, Braun V M. Evolution Equations for QCD String Operators[J]. Nucl. Phys.B,1989,311:541.
    [154]张礼等.近代物理学进展[M].1.[S.l.]:清华大学出版社,1997.
    [155]Bjorken J D. Asymptotic Sum Rules at Infinite Momentum[J]. Phys. Rev.,1969, 179:1547.
    [156]Bebek CJ,et al.. Further Measurements of Forward-Charged-Pion Electroproduc-tion at Large k2[J]. Phys. Rev. D,1974,9:1229.
    [157]Bebek C J,et al..Determination of the Pion Form Factor up to Q2=4GeV2 from Single-Charged-Pion Electroproduction[J]. Phys. Rev. D,1976,13:25.
    [158]Dally E B. Direct Measurement of the π-Form Factor[J]. Phys. Rev. Lett.,1977, 39:1176.
    [159]Bebek C J,et al..Electroproduction of Single Pions at Low ∈ and A Measurement of the Pion Form Factor up to Q2=10 GeV2[J].Phys.Rev.D,1978,17:1693.
    [160]Molzon W R,et al. Ks Regeneration on Electrons from 30 to 100(GeV/c):A Measurement of the K0 Charge Radius[J].Phys.Rev.Lett.,1978,41:1213.
    [161]Dally E B,et al.Direct Measurement of the Negative-Kaon Form Factor[J].Phys. Rev.Lett.,1980,45:232.
    [162]Dally E B,et al.Elastic-Scattering Measurement of the Negative-Pion Radius[J]. Phys.Rev.Lett.,1982,48:375.
    [163]Volmer J,et al.Measurement of the Charged Pion Electromagnetic Form Factor[J]. Phys.Rev.Lett.,2001,86:1713.
    [164]Horn T,et al.Determination of the Pion Charge Form Factor at Q2=1.60 and 2.45(GeV/c)2[J].Phys.Rev.Lett,2006,97:192001.
    [165]Tedevosyan V, et al. Determination of the Pion Charge Form Factor for Q2 0.60-1.60 GeV2[J].Phys.Rev.C,2007,75:055205.
    [166]Bosted P E,et al.Measurement of the Electric and Magnetic Form Factors of the Proton from Q2=1.75 to 8.83(GeV/c)2[J].Phys.Rev.Lett.,1992,29:3841.
    [167]Lung A,et al. Measurement of the Electric and Magnetic Form Factors of the Proton from Q2=1.75 to 8.83(GeV/c)2[J].Phys.Rev.Lett.,1993,70:718.
    [168]Walker R C,et al.Measurement of the Proton Elastic Form Factors for 1≤Q2≤ 3(GeV/c)2 at SLAC[J].Phys.Rev.D,1994,49:5671.
    [169]Andivahis L,et al.Measurement of the Electric and Magnetic Form Factors of the Proton from Q2=1.75 to 8.83(GeV/c)2[J].Phys.Rev.D,1994,50:5491.
    [170]Anklin H,et al.Precise Measurement of the Neutron Magnetic Form Factor[J]. Phys.Lett.B,1998,428:248.
    [171]Kubon G,et al.Precise Neutron Magnetic Form Factors[J].Phys.Lett.B,2002, 524:26.
    [172]Christy ME,et al.Measurement of Electro-Proton Elastic Cross Sections for 0.4< Q2<5.5(GeV/c)2[J].Phys.Rev.C,2004,70:015206.
    [173]Qattan I A,et al.Precision Rosenbluth Measurement of the Proton Elastic Form Factors[J].Phys.Rev.Lett.,2005,94:142301.
    [174]Bourgeois P,et al. Measurement of the Generalized Electric and Magnetic Po-
    larizabilities of the Proton at Low Q2 Using the Virtual-Compton-Scattering Reac-tion[J]. Phys. Rev. Lett.,2006,97:212001.
    [175]Lenz A, Gokeler M, Kaltenbrunner T, et al. The Nucleon Distribution Amplitudes and Their Application to Nucleon Form Factors and the N→△ Transition at Intermediate Value of Q2[J]. Phys. Rev. D,2009,79:093007.
    [176]Ernst F J, Sachs R G, Wali K G. Electromagnetic Form Factors of the Nucleon[J]. Phys. Rev.,1960,119:1105.
    [177]Braun V M. Light-Cone Sum Rules[J]. arXiv,1998, hep-ph/9801222.
    [178]Chernyak V L, Zhitnitsky IR. Nucleon Wave Function and Nucleon Form-Factors in QCD[J]. Nucl. Phys. B,1984,246:52.
    [179]Amsler C, et al. Review of Particle Physics[J]. Phys. Lett. B,2008,667:1.
    [180]Kubis B, Hemmert T R, Meissner U G. Baryon Form Factors[J]. Phys. Lett. B, 1999,456:240.
    [181]Kubis B, Meissner U G. Baryon Form Factors in Chiral Perturbation Theory[J]. Eur. Phys. J. C,2001,18:747.
    [182]Kebikov B O, Simonov Y A. Baryon Magnetic Moments in the QCD String Ap-proach[J]. Phys. Rev. D,2000,62:093016.
    [183]Puglia S J, Ramsey-Musolf M J. Baryon octet magnetic moments in chiral per-turbation theory:More on the importance of the decuplet[J]. Phys. Rev. D,2000, 62:034010.
    [184]Franklin J. Phenomenological quark model for baryon magnetic moments and beta decay ratios GA/GV[J]. Phys. Rev. D,2002,66:033010.
    [185]Park N W, Weigel H. Static Properties of Baryons from an SU(3) Pseudoscalar Vector Meson Lagrangian [J]. Nucl. Phys. A,1992,541:453.
    [186]Contreras J G, Huerta R, Quintero L R. The Baryon Magnetic Moments of the Octet and the Decuplet Using Different Limits of the SU(3) Flavor Group[J]. Rev. Mex. Fis.,2004,50(5):490.
    [187]Simonov Y A, Tj on J A, Weda J. Baryon Magnetic Moments in the Effective Quark Lagrangian Approach[J]. Rev. Rev, D,2002,65:094013.
    [188]Bartelski J, Tatur S. Magnetic Moments of Octet Baryons and Sea Antiquark Po-larizations[J]. Rev. Rev, D,2005,71:014019.
    [189]Aliev T M, Kanik I, Savci M. Magnetic moment of the p meson in QCD light cone sum rules[J], Rev. Rev, D,2003,68:056002.
    [190]Aliev T M, Ozpineci A, Savci M. Octet baryon magnetic moments in light cone QCD sum rules[J]. Phys. Rev. D,2002,66:016002.
    [191]Aliev T M, Ozpineci A, Savci M. Errantum[J]. Phys. Rev. D,2003,67:039901.
    [192]Aliev T M, Ozpineci A, Savci M. ΣQΛQ transition magnetic moments in light cone QCD sum rules[J], Phys. Rev. D,2002,65:096004.
    [193]Aliev T M, Ozpineci A, Savci M. The Magnetic Moments of Λb and Λc Baryons in Light Cone QCD Sum Rules[J]. Phys. Rev. D,2002,65:056008.
    [194]Aliev T M, Kanik I, Savci M. Magnetic moments of decuplet baryons in light cone QCD[J]. Phys. Rev. D,2000,62:053012.
    [195]Aliev TM, Azizi K, Ozpineci A. Magnetic Moments of Heavy ΞQ Baryons in Light Cone QCD Sum Rules[J]. Phys. Rev. D,2008,77:114006.
    [196]Weisenpacher P. Origin of the Nucleon Electromagnetic Form Factors Dipole For-mula[J]. Czech. J. Phys.,2001,51:785.
    [197]Perez-Mzrcial R, Huerta R, Garcia A, et al. Predictions for Semileptonic Decays of Charm Baryons. Ⅱ. Nonrelativistic and MIT Bag Quark Models[J]. Phys. Rev. D,1989,40:2955.
    [198]Singleton R. Semileptonic Baryon Decays with a Heavy Quark[J]. Phys. Rev. D, 1991,43:2939.
    [199]Hussain F, Korner J G. Semi-leptonic Charm Baryon Decays in the Relativistic Spectator Quark Model [J]. Z. Phys. C,1991,51:607.
    [200]Cheng H Y, Tseng B.1/M Corrections to Baryonic Form Factors in the Quark Model[J]. Phys. Rev. D,1996,53:1457.
    [201]Ivanov M A, Lyubovitskij V E, Kroll P. Heavy Baryon Transitions in a Relativistic Three-quark Model [J]. Phys. Rev. D,1997,56:348.
    [202]Migura S, Merten D, Metsch B, et al. Semileptonic Decays of Baryons in A Rela-tivistic Quark Model [J]. Eur. Phys. J. A,2006,28:55.
    [203]Dosch H G, Ferreira E, Nielson M, et al. QCD Sum Rules Calculation of Heavy A Semileptonic Decay[J], Phys. Lett. B,1998,431:173.
    [204]de Carvalho R S M, Navarra F S, Nielson M, et al. Form factors and decay rates for heavy A semileptonic decays from QCD sum rules[J]. Phys. Rev. D,1999, 60:034009.
    [205]Alexander J P, et al. First Observation of the Decay ΞC+→Ξ0e+ve and an Estimate of the Ξc+/Ξc0 Lifetime Ratio[J]. Phys. Rev. Lett.,1995,74:3113.
    [206]Alexander J P, et al. ibid[J]. Phys. Rev. Lett.,1995,75:4155.
    [207]Ammar R, et al (CLEO Collaboration). Evidence for Penguin-diagram Decays: First Observation of B→K(892)γ[J]. Phys. Rev. Lett.,1993,71:674.
    [208]Coan T E, et al (CLEO Collaboration). Study of Exclusive Radiative B Meson Decays[J]. Phys. Rev. Lett.,2000,84:5283.
    [209]Aubert B, et al (BaBar Collaboration). Measurement of B→Kγ Branching Fractions and Charge Asymmetries[J]. Phys. Rev. Lett.,2002,88:101805.
    [210]Aubert B, et al (BaBar Collaboration). Measurement of Branching Fractions and CP Isospin Asymmetries for B→Kγ[J]. Phys. Rev. D,2004,70:112006.
    [211]Aubert B, et al (BaBar Collaboration). Measurement of B→Xsγ Branching Fractions and Photon Spectrum from A Sum of Exclusive Final States[J]. Phys. Rev. D,2005,72:052004.
    [212]Nakao M, et al (Belle Collaboration). Measurement of the B→Kγ Branching Fractions and Asymmetries[J]. Phys. Rev. D,2004,69:112001.
    [213]Koppenburg P, et al (Belle Collaboration). Inclusive Measurement of the Photon Energy Spectrum in b→sγ Decays[J]. Phys. Rev. Lett.,2004,93:061803.
    [214]Mannel T, Recksiegel S. Flavor-Changing Neutral Current Decays of Heavy Baryons. The Case Λb→Λγ[J]. J. Phys. G,1998,24:979.
    [215]Mohanta R, Gin A K, Khanna M P, et al. Weak Radiative Decay Λb→Λγ and Quark-confined Effects in the Covariant Oscillator Quark Model [J]. Prog. Theor. Phys.,1999,102:645.
    [216]Cheng H Y, Lin C L, Lin Y C, et al. Effective Lagrangian Approach to Weak Radiative Decays of Heavy Hadrons[J]. Phys. Rev. D,1995,51:1199.
    [217]Cheng H Y, Chua C K. Covariant Light-front Approach for B→Kγ,K1γ,k2γ Decays[J]. Phys. Rev. D,2004,69:094007.
    [218]Chua C K, He X G, Hou W S. CP violating b→sγ Decay in Supersymmetric Models[J]. Phys. Rev. D,1999,60:014003.
    [219]Huang C S, Yan H G. Study of Bc→l+vlγ Decays in the Light Front Model [J]. Phys. Rev. D,1995,59:114002.
    [220]He X G, Li T, Li X Q, et al. Perturbative QCD Calculation for Λb→Λγ in the Standard Model[J]. Phys. Rev. D,2006,74:034026.
    [221]Ioffe B L. Calculation of Baryon Masses in Quantum Chromodynamics[J]. Nucl. Phys.B,1981,188:317.
    [222]Ioffe B L. On the Choice of Quark Currents in the QCD Sum Rules for Baryon Masses[J]. Z. Phys. C,1983,18:67.
    [223]Belyaev V M, Blok B Y. Charmed Baryons in Quantum Chromodynamics[J]. Z. Phys. C,1983,30:151.
    [224]Chung Y, Dosch H G, Kremer M, et al.Baryon Sum Rules and Chiral Symmetry Breaking[J], Nucl. Phys. B,1982,197:55.
    [225]Groote S, Korner J G, Yakovlev O I. Two-loop anomalous dimensions of heavy baryon currents in heavy quark effective theory[J]. Phys. Rev. D,1996,54:3447.
    [226]Ivanov M A, Korner J G, Lyubovitskij V E, et al. Choice of heavy baryon currents in the relativistic three-quark model[J]. Phys. Rev. D,2000,61:114010.
    [227]Wang D W, Huang M Q. Choice of heavy baryon currents in QCD Sum Rules[J]. Phys. Rev. D,2003,67:074025.
    [228]Wang L, Lee F X. Octet Baryon Magnetic Moments from QCD Sum Rules[J]. Phys. Rev. D,2008,78:013003.
    [229]Cauteren T V, Merten D, Corthals T, et al. Electric and Magnetic Form Factors of Strange Baryons[J]. Eur. Phys. J. A,2004,20:283.
    [230]Kim H C, Blotz A, Polyakov M V, et al. Electromagnetic Form Factors of the SU(3) Octet baryons in the Semibosonized SU(3) Nambu-Jona-Lasinio Model[J]. Phys. Rev. D,1996,53:4013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700