用户名: 密码: 验证码:
单光源双光阱光镊设计及光阱效应分析和数值仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光生物学是一个多学科交叉的新兴学科,其中以激光微束的光阱效应为基础的光镊技术是生命科学和生物工程研究的有力工具。高度聚焦的激光微束所形成的梯度力可以将大小从nm到μm级的电介质材料的中性粒子捕陷于其焦点上。由于光镊可实现生物活体样品的非实体接触无损伤操纵,光镊技术已成为当前生物物理学中新方法和新仪器的研究热点之一。
    本课题内容包括基于激光微束的光镊原理、光阱力的定量计算和数值仿真及分析、单光阱光镊仪器和单光源双光阱光镊仪器的设计以及双光阱系统在三维方向上对光阱位置进行操纵时,系统的稳定性和操纵的有效性等关键技术的研究。
    在光阱力的定量计算方面,本文基于几何光学原理,以射线光学计算模型为基础,对几何尺寸远大于光波长的米氏球状粒子所受轴向沿z轴方向和横向沿y轴方向的光阱力进行了计算。在给定参数条件下,进行了数值仿真,并根据仿真结果,讨论了光束束腰半径、相对折射率、激光波长及功率等系统主要参数与光阱品质特性的关系。对显微镜物镜浸油与媒质水溶液折射率不同所产生的球差对光阱力的影响进行了定量计算与数值分析。通过改善激光束形状,在保证轴向光阱力的同时,可有效提高光镊系统横向稳定性,提高对光阱横向位置操纵的速度。对几何尺寸远小于光波长的瑞利球状粒子,描述了基于电磁场理论的EM光阱力计算模型为基础的计算结果。
    在仪器设计方面,设计了单光阱光仪器系统,并在此基础上设计了单光源双光阱光镊仪器系统。双光阱微操纵系统在三维方向上对光阱位置进行调节时,对光阱的特性和系统的稳定性以及操纵的有效性进行理论论证。
    本文为三维独立可调双光阱光镊仪器的研制做了理论和技术的前期准备工作,对光镊仪器的设计以及在生命科学与生物技术中的推广应用具有促进作用和重要参考价值。
Laser Biography is a multi-discipline crossed new area, and the optical tweezers technology based on microbeam laser is an effective tool in the research of life science and bioengineering. The gradient force formed by a strongly focused laser beam can capture the dielectric neutral particles on its focus point, the size of the particles ranges from nm to μm. Optical tweezers can be used to manipulate biological animate specimens without physical contact and invasion. It has now become one of the research hot spot of new method and new instrument in biophysics.
    In this thesis, the theory of optical tweezers based on microbeam laser is described. The quantitative calculation and simulation results and analysis of optical trapping force is given. The optical tweezers instrument with one optical trap and two optical traps is designed respectively. The stability and effective of the system are also studied.
    By using the RO model, which is based on the theory of geometric optics, the optical trapping force on the microsphere particles in the Mie scattering field is calculated quantitatively. The simulation results under given parameters are described. According to the simulation results, the relations between the optical trapping force and the main parameters of the system, including focus spot radius, the relative refractive index, the laser wave-length and power and so on, is discussed. Effects of spherical aberration caused by the refractive mismatch between objective oil and medium water on optical trapping force is calculated quantitatively and also analyzed. The transverse trapping force can be increased effectively by modifying laser profile, while the longitudinal stability of the system is still assured. It will improve the steering speed of optical trap. For the particles in the Rayleigh scattering field, the optical trapping force calculation result based on the theory of electromagnetic field is also described.
    In the apparatus design aspect, at first we design an optical tweezers instrument with one optical trap. On this basis, then we design an optical
    
    
    tweezers instrument with two optical traps using a single light. We described the stability and effective of this system of each optical trap in detail when steering the optical trap in three dimension independently.
    This paper is a preparatory job in terms of theory and technology for constructing a fully steerable dual optical trap tweezers. It is of importance reference value to optical tweezers research in instrument design and its wider application in life science and biography technology.
引文
A.Ashkin. Observation of Radiation-Pressure Trapping of Particles by Alternatings Light Beams. Phys. Rev. Lett, 1985, 54: 1328-1336
    A.Ashkin, J.M.Dziedzic, J.E.Bjorkholm. Observation of a Single-Beam Gradient Force Optical Trap for Dielectrical Particles. Optics Letters, 1986, 11: 288-290
    K.Svoboda, S.K.Block. Biological Application of Optical Forces. Annu. Rev. Biophys. Biomol.Struct, 1994, 23: 247-285
    A.Ashkin. Acceleration and Trapping of Particles by Radiation Pressure. Phys. Rev. Lett, 1970, 24: 156-159
    A.Ashkin. Trapping of Atoms by Resonance Radiation Pressure. Phys. Rev. Lett, 1978, 40: 729-732
    G.Weber. Uptake of DNA in Chloroplasts of Brassicanapus Facilitated by a UV Laser Microbeam. Eur. J. Cell. Boil, 1989, 49: 4658-4662
    S.Seeger, S.Monajembashi, K.J.Hutter, et al., Application of Laser Optical Tweezers in Immunology and Molecular Genetics. Cytometry, 1991,12: 479-504
    A.Ashkin. Optical Trapping and Manipulation of Single Cells Using Infrared Laser Beams. Nature, 1987, 33: 256-267
    A.Ashkin. Optical Trapping and Manipulation of Neutral Particals Using Lasers. Proc. Natl. Acad. Sci. USA, 1986, 94: 1687-1695
    K.O.Greulich, J.Wolfrum. Laser Micro-Beam and Optical Tweezers. LaborPraxis Labor 2000, 1990, 32: 675-663
    H.Tashiro, J.Scheet, A.Harim. Three-Dimensional Cell Manipulator by Means of Optical Trapping for the Specification of Cell-to-Cell Adhesion, Optical Engineering, 1993, 32: 1247-1256
    Y.Tadir, H.C.Berg. Micromanipulaiton of Sperm by a Laser Generated Optical Trap, Fertility and Sterility, 1989, 52: 2356-2364
    N.Ponelies, D.Wilson, R.Simmons, et al., Laser Micromanipulations for Biotechnology and Genome Research, Journal of Biotechnology, 1994, 35: 321-325
    G.Leitz, H.Tashiro, The Laser Microbeam Trap as an Optical Tool for Living Cells, Physiological Chemistry and Physics and Medical NMR26, 1994, 23: 2213-2216
    A.Ashkin, J.M.Dziedzic, Ber.Bunsenges. Force Generation of Orgarelle Transport
    
    
    Measured in Vivo by an Infrared Laser Trap. Phys. Chem, 1989, 93: 254-260
    S.Sato, M.Ohyumi., H.Shibata., et al., Optical Trapping of Small Particles Using a 1.3-mm Compact InGaAsp Diode Laser. Opt. Lett, 1991, 16: 282-284
    R.S.Afzal, E.B.Treacy. Optical Tweezers Using a Diode Laser. Rev. Sci. Instrum, 1992 , 63: 2157-2163
    T.C.Bakker Schut, E.F.Schipper. Optical-Trapping Micromanipulation Using 780-nm Diode Laser. Opt. Lett. 1993, 18: 447-449
    S.Seeger, N.Leclerc, Stelzer. Photonische Pinzette and Laser-Nanoskalpel. BIOforum, 1994, 17: 417-421
    M.W.Berns, J.Renken. Optical Trapping in Animal and Fungal Cells Using a Tunable Near-Infrared Titanium-Sapphire Laser. Experimtenal Cell Reasearch, 1992, 4: 196-198
    K.Visser, M.Uchida, S.M.Block. Micromanipulation by Multiple Optical Trap Created by a Single Fast Scanning Trap Integrated with the Bilateral Confocal Scanning Microscope, Cytometry, 1993, 14: 1981-1995
    M.I.Angelova, G.Grehan, G.Gousbet.Trapping and Levatation of Dielectric Sphere with Off-Centered Gussian Beams: I. Experimental, Pure Appl. Opt, 1993, 2: 432-438
    K.Svoboda, C.F.Schmidt, B.J.Schnapp, et al., Direct Observation of Kinesin Stepping by Optical Trapping Interferometry. Nature, 1993, 365: 721-727
    R.Simmons, J.T.Finer, S.Chu, J.A.Spudich. Quantitative Measurements of Force and Displacement Using an Optical Trap. Biophys. J. 1996, 70: 1813-1822
    E.Fallman, O.Axner. Design of Fully Steerable Dual-trap Optical Tweezers. Appl. Opt, 1997, 36: 2107-2133
    J.E.Molloy, R.X.Bian, X.S.Xie. Optical Chopsticks: Digital Synthesis of Multiple Optical Traps. Methods in Cell Biology, 1998, 55: 205-215
    M.Sasaki, T.Kurosawa, K.Hane. Micro-Objective Manipulated with Optical Tweezers. Appl. Phys. Lett, 1997, 70: 785-787
    Nakatani, K.Chikama. Laser Traping-Spectroscopy-Electrochemistry of Individual Microdroplets in Solution.Advances in Photochemistry, 1999, 25: 173-223
    Zong-Ping. An Optical Spin Micromotor. Appl. Phys. Lett, 2000,76: 1779-1781
    
    S.D.Collins, R.J.Baskin, D.G.Howitt. Microinstrument Gradient-force Optical Trap. Appl. Opt, 1999, 38: 6068-6074
    A.Constable, J.Kim, J.Mervis, et al., Demonstration of a Fiber-Optical Light-Force Trap. Opt. Lett, 1993, 18: 1867-1869
    E.Lyons, G.J.Sonek. Confinement and Bistability in a Tapered Hemispherically Lensed Optical Fiber Trap. Appl. Phys. Lett, 1995, 66: 1584-1586
    K.Taguchi, H.Ueno, T.Hiramatsu, et al., Optical Trapping of Dielectric Particle and Biological Cell Using Optical Fibre. Electr. Lett. 1997,33: 413-414
    K.Taguchi, K.Atsuta, T.Nakata, et al., Levitation of Microscopic Object Using Plural Optical Fibers. Opt. Comm, 2000, 176: 43-47
    A.Ashkin. Forces of a Single-Beam Gradiant Laser Trap on a Dielectric Sphere in the Ray Optics Regime. Biology. J. 1992, 61: 569-582
    J.P.Braton, D.R.Alexander, S.A.Schaub. Theoretical Determination of Net Radiation Force and Torque for a Shperical Particle Illuminated by a Focused Laser Beam. Appl. Phys, 1989, 66: 4594-4602
    J.Braton, G.H.esselink, J.Greve, et al., Experimental and Theoretical Investigations on the Validity of the Geometrical Optics Model for Calculating the Stability of Optical Traps. Cytometry, 1991, 12: 479-485
    韩正甫,郭光灿.粒子在单束激光势阱中的束缚力.中国激光,1992,7:517-522
    K.Visscher, G.J.Brakenhoff. Theoretical Study of Optically Induced Forces on Particle in a Single Beam Trap: Rayleigh Scatterers. Optic, 1992, 89: 174-180
    K.F.Ren, G.Grehan, G.Gousbet. Prediction of Reverse Radiation Pressure by Generalized Lorenz-Mie Theory. Appl.Opt, 1996, 35:2702-2710
    W.H.Wright, G.J.Sonek, M.W.Berns. Radiation Trapping Force on Microspheres with Optical Tweezers. Appl. Phys. Lett, 1993, 63: 715-717
    W.H.Wright, G.J.Sonek, M.W.Berns. Parametric Study of the Forces on Microspheres Held by Optical Tweezers. Appl. Opt, 1994, 33: 1735-1748
    N.B.Simpson. Optical Tweezers with Increased Axial Trapping Efficiency, Journal of Modern Optics,1998,45(9):1943-1949
    M.Gu, P.C.Ke, X.S.Gan. Trapping Force by a High Numerical-Aperture Microscope Objetive Obeying the Sine Condition. Rev. Sci. Instru-m, 1997, 68: 3666-3668
    K.Shima, R.Omori, A.Suzuki. Forces of a Single-Beam Gradient-Force Optical Trap
    
    
    on Dielectri Spheroidal Particles in the Geometric-Optics Regime. Appl. Phys, 1998, 37: 6012-6015
    R.C.Gauthier, M.Ashman. Simulated Dynamic Behaviour of Single and Multiple Sphere in the Trap Region of Focused Laser Beams.Appl. Opt, 1998, 37: 6421-6431
    T.Sugimoto, G.A.Swartzlander. Direct Measurement of Interparticle Forces by the Optical Trapping Technique. Langmuir 1997, 13: 5528-5530
    R.C.Gauthier. Theoretical Investigation of the Optical Trapping Force and Torque on Cylindriacal Microobjects. Opt. Soc Am, 1997, 14: 3323-3333
    S.Sato, Y.Harada, Y.Waseda. Optical Trapping of Microscopic Metal Particles.Opt. Lett, 1994, 19: 1807-1809
    K.Svoboda, S.M.Block. Optical Trapping of Metallic Rayleigh Particles. Opt. Lett, 1994, 19: 930-932
    Ashkin., Dziedzic J.M. Optical Trapping and Manipulation of Viruses and Bacteria. Science, 1987, 235: 1517-1520
    A.Ashkin, J.M.Dziedzic, K.Schutze. Force Generation of Organelle Transport Measured in Vivo by An Infrared Laser Trap. Nature, 1990, 348: 346-348
    H.W.Guilford, G.Kennedy. Smooth Muscle and Skeletal Muscle Myosins Produce Similar Unitary Forces and Displacements in the Laser Trap. Biophys. J, 1997, 72: 1006-1021
    R.Steubing, S.Cheng, W.H.Wright. Laser Induced Cell Fusion in Combination with Optical Tweezers: The Laser Cell Fusion Trap. Cytometry, 1991, 12: 505-510
    H.Liang, W.H.Wright, S.Cheng. Micromanipulation of Chromosomes in PK2 Cells Using Laser Microsurgery(Optical Scalpel)in Combination with Laser-Induced Optical Force(Optical Tweezers). Exper. Cell. Res, 1993, 204: 110-120
    M.W.Berns, Y.Tadir, H.Liang. Laser Scissors and Tweezers. Methods in Cell Biology, 1998, 55: 71-94
    T.T.Perkins. Optical Tweezers Glasperlenspeil Ⅱ, Current Biology, 1993, 3: 235-240
    H.Felgner, F.Grolig, O.Muller, et al., In Vivo Manipulation of Interal Cell Organelles. Methods in Cell Biology,1998,55:167-160
    
    N.Kitamura, N.Sekiguchi, K.J.Haeng. Optical Transformation and Fission of Single Giant Vesicles in Water by Radiation Pressure. Chem. Soc, 1998, 120: 1942-1943
    J.Meiners, S.R.Quake. Direct Measurements of Hydrodynamic Cross Correlations Between Two Particles in an External Potential. Phys. Rev. Lett, 1999, 82:2211-2214
    李银妹,楼立人,操传顺等. 光阱阱位的观察与调节. 中国激光,1998,(25)12:1083-1086
    付道林,王兰岚. 微束激光转基因技术研究进展. 激光物理学报,1999,(8)1:70-74
    周辉,李银妹,李先锋等. 单光镊技术测量红细胞膜弹性新方法的建立. 生物化学与生物物理进展,2001,(28)6:904-907
    王瑞丽,尚鹤龄,欧家鸣等. 激光对生物体的力学作用. 云南师范大学学报,1999,(19)4:31-33
    王瑞丽,尚鹤龄,张家春等.激光光镊对生物体的光操纵研究. 中国激光,2000,(27)10:921-926
    尚鹤龄,王瑞丽,杨卫平等. 利用激光微束动力学效应操纵生物体的实验研究. 物理实验,2001,(21)10:15-20
    蔡惟泉. 介质微粒的光捕陷、光悬浮和光操纵. 物理学进展,1997,(17)1:64-82
    孟祥旺,李岩,欧家鸣等. 激光微束光场辐射压力对微粒子的作用. 激光杂志,2001,(22)2:15-18
    孟祥旺,李岩,张书练等. 单光刀与单光镊激光微束系统. 清华大学学报,2002,(42)8:1065-1067
    姚新程,李兆霖,张道中等. 双层介质球体所受光作用力的分析与计算. 光学学报,2000,(20)10:1305-1310
    姚新程,李兆霖,郭红莲等. 光阱位置操纵系统的研究. 光学 精密工程,2001,(9)1:55-58
    姚新程, 李兆霖,郭红莲等. 一种实现CCD亚像元位移分辨率的新方法.仪器仪表学报,2002,(23)1:60-63
    姚新程,李兆霖,张道中等. 发明专利,专利号:01104110.2
    A.Ashkin., J.M.Dziedzic. Optical Levitation by Radiation Pressure.Appl. Phys . Lett. 1971,19:283-285
    A.Ashkin. Trapping of Atoms by Resonance Radiation Pressure. Phys. Rev. Lett. 1978, 40: 729-732
    Michael., N.R.Heckenberg. T-Matrix Computations of Light Scattering by
    
    
    Nonspherical Particles. J. Quant. Spectrosc. Radiat. Transfer,1996, 55: 535-575
    M.杨编著. 《光学与激光》工程物理方法. 霍崇儒,初桂荫,陈玉玲译. 第一版,北京:科学出版社,1982:20-21

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700