跳频OFDM系统关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
OFDM(Orthogonal Frequency Division Multiplexing)技术作为一种有效对抗多径衰落信道的调制技术,在军事通信领域有着很好的应用前景。跳频OFDM(FH-OFDM)系统通过射频频率的不断切换来获得抗干扰的能力,这使得它同时具有了连续和突发两种通信模式的特征,对载波频偏估计(Carrier FrequencyOffset,CFO)和信道估计技术提出了更高的要求,具体表现为在极大地提高系统的传输效率的同时保证CFO和信道估计算法的收敛速度和估计性能。同时暂态过程也成为影响系统性能的重要因素之一,必须采取应对措施。为了提高系统的传输效率,本文在给出了两种前导字较短时的CFO与信道捕获算法的基础上,重点研究了两种无需内插导频的同步与信道联合跟踪算法,并对FH-OFDM系统中相位畸变抑制技术进行了深入研究,获得以下研究成果。
     1.以CFO和信道估计的CRB(Cramer-Rao Bound)作为统一衡量标准,以最大似然(Maximum Likelihood,ML)估计准则为统一的估计准则,系统地分析了CFO和信道对彼此的估计性能的影响以及联合估计时方差可以达到的下限。得出结论:信道完全未知条件下的联合估计中,CFO的JCRB比信道统计特性已知条件下的独立估计的CRB更低,而信道的JCRB可逼近理想条件下信道估计的CRB。
     2.提出了一种面向判决(Directed Decision,DD)的同步和信道联合估计算法,得到了一定误码率条件下CFO与信道估计的均方差的表达式。为了提高算法的性能,针对不同的信道环境提出了开环和闭环两种不同结构的算法,通过理论分析和仿真验证,给出了在连续传输和突发传输两种模式下闭环结构算法中环路因子的取值准则。考虑到面向判决法所存在的误码扩散以及严重衰落信道下存在误码平台效应,将该算法与信道优选算法相结合。提出以归一化的矢量信号误差作为信道优选的度量值,与传统信道选择算法相比具有更强的鲁棒性。
     3.提出了两种基于期望最大(EM)算法的CFO和信道联合估计算法,根据处理域的不同分别称之为时域和频域EM联合估计算法。从提高性能和降低复杂度的角度给出了它们的改进算法——基于Bayesian准则的EM算法和逐子信道处理的频域EM估计算法。根据数据重构的方式的不同,将它们与APP(A PosterioriProbabilities)检测器和SISO(Soft-in Soft-Out)译码器结合使用,实现了CFO、信道和数据的联合检测,克服了面向判决法的误码扩散问题,大大提高了系统性能。对两种EM算法的的估计性能、复杂程度和适应的环境进行了分析和对比,频域EM算法具有更低的复杂度,并且更适合于严重衰落信道和高阶调制系统。
     4.针对时变信道,为CFO与信道建立了新的状态转移模型,在此基础上利用Kalman平滑算法实现了CFO与信道的联合跟踪,该算法可以归纳为EM-Kalman算法。与传统EM-Kalman算法相比,适当增加本算法的迭代次数,可以将系统性能损失控制在0.5dB以内的同时提高了10%以上的带宽利用率。
     5.FH-OFDM系统中的相位畸变的来源由相位抖动和杂散信号组成,确立了与之对应的统计模型,分析了相位畸变对系统性能的影响,得到了MPSK调制方式下统一的误码率表达式。在此基础上,针对相位抖动和杂散信号统计特性的不同,提出了两种相位畸变抑制算法,它们分别基于LS(Least Square)准则和MMSE(Minimum Mean Square Error)准则实现,直接对均衡器进行估计,在较少的导频符号的辅助下,以较低的复杂度实现了对相位畸变的抑制。
Orthogonal Frequency Division Multiplexing (OFDM) is an effective technique for high speed transmission which is commendable to be applied in the region of military communication. Frequency Hopping OFDM (FH-OFDM) system improves its anti-jamming ability by switching frequencies in succession, which makes it bearing with the features of both continuation and burst communication mode. It comes up with higher requirement on the carrier frequency offset (CFO) estimation and channel estimation, which requires to guarantee the estimated performance and to improve the transmission efficiency as much as possible at the same time. Moreover the transient state during the communication would become a significant factor impacting the system performance.
     In conventional OFDM systems, the pilots are interpolated for the tracking of residual CFO and channel, which expend a lot of system resources. In order to improve the utilization ratio of bandwidth, we propose two new joint CFO and channel estimation algorithms which need no pilots. The phase distortion suppression technique for RF FHOFDM systems is also studies. The main research findings are shown as follows.
     1. By choosing Cramer-Rao Bound (CRB) as the unified reference point and Maximum Likelihood (ML) criteria as the unified estimation criteria for CFO and channel estimation, the impaction between CFO and channel estimation and the performance upper limit of joint estimation are analyzed systemically. The conclusion is drawn that the JCRB (Joint CRB) is beeter than the CRB of dependent estimation where the statistical characteristicr is known for CFO and is closed to the CRB in ideal conditions for the channel.
     2. Propose a joint Detected-Directed (DD) CFO and channel estimation technique, and obtain the expressions of Mean Square Error (MSE) of the CFO and channel estimation results with a certain Symbol Error Rate (SER) by theoretical derivation. In order to improve the estimation performance furtherly, open loop and closed loop schemes are suggested for different SNR ( Signal Noise Ratio) and channel environment. The rules that how to set the values of the loop factors are also suggested for both continuous transmission and burst transmission modes. In consideration of the problems of error spreading and error platform phenomenon, this algorithm should be assisted with the channel preference algorithm. We use the normalized Vector Signal Errors (NVSE) as the metric for the algorithm which is more robust than conventional ones.
     3 . Propose two CFO and channel joint estimation algorithm based on Expectation-Maximization (EM) algorithm, which are named as time domain EM (TEM) and frequency domain (FEM) algorithms according to the disposal domain respectively. The refinement algorithms to improve the performance or decrease the complexity are also proposed. The former is constructed on Bayesian criteria for both two schemes and the latter is disposed subchannel by subchannel for FEM. According to the methods of data reconstruction, the algorithm can be combined with the A Posteriori Probabilities (APP) detector or Soft-In Soft-Out (SISO) decoder to implement the joint detection of CFO, channel and data, which can improve the estimated performance greatly. The estimation performance, complexity and application settings of the two EM algorithms are analyzed and compared. The algorithm disposed in the frequency domain has lower complexity and better performance for deep fade channels and high order modulation systems. They all conquer the shortcoming of error spreading.
     4. Build the new state transition model for CFO and channel parameters in time varying channels. The joint estimation algorithm based on EM criteria is proposed which can be realized with EM-Kalman algorithm and tracking the time varying channel effectively. As compared with the conventional EM-Kalman algorithm based on pilots, it can improve the utilization ratio of bandwidth more than 10% and make the performance loss less than 0.5dB at the same time.
     5. The phase distortion of RF FH -OFDM system is made up of phase jitter and spurs. We build the corresponding statistical model for them and analyze the impact one system performance. The unified Bit Error Rate (BER) expression is made for MPSK modulation systems. Based on the analysis above, the corresponding phase jitter suppression and spurs suppression algorithm are proposed which are based on Least Square (LS) and Minimum Mean Square Error (MMSE) criteria respectively. We estimate the equalizer directly and reduce the effects of phase distortion greatly with a few pilots.
引文
[1]IEEE 802.11 WG.part 11:Wireless LAN Medium Access Control(MAC) and Physical Layer(PHY) Specifications:High-speed Physical Layer in the 5GHz band,Supplement to IEEE 802.11 Standard,Sep.1999.
    [2]EST1 TS 101 475.EST1 TS 101 475 Broadband radio access nehvork(BRAN)HIPERLAN Ⅱ;Physical layer.2001.
    [3]IEEE 802.16 WiMAX-Broadband Wireless Access for Everyone,http://www.intel.com/ebusiness/pdf/wireless/intel/80216_wimax.pdf.2004
    [4]IEEE 802.20 PD-03,Mobile broadband wireless access systems.http://grouper.ieee.org/groups/802/20/P_Docs/IEEE%20802.20%20PD-03.pdf.
    [5]Sass P,Freebersyser J,FCS communications technology for the objective force.http://www.the-mitre-corporation.org/work/tech_papers/tech_papers_02/sass_fcs comms/sass_fcscomms.pdf.
    [6]中国军事百科全书编审委员会.中国军事百科全书:军事技术.北京:军事科学出版社,1997.
    [7]Scholand T,Faber T,Seebens A,et al.Fast frequency hopping OFDM concept.Electronics Letters,2005,41(13):748-749.
    [8]Ebrahimi M,Nasiri-Kenari M.Performance analysis of multicarrier frequency-hopping(MC-FH) coded-division multiple access systems:Uncoded and coded schemes,IEEE Trans.on Vehicular Technology.2004,53(4):968-981.
    [9]van de Beek J J,Borjesson,P O,Boucheret,M L,et al.Synchronization of a TDMA-OFDM frequency hopping system.In Proc.IEEE Vehicular Technology Conference,VTC'98.Ottawa,Canada,1998:1290-1294.
    [10]Chung S,Yoon H,Cho J.A fast handoffscheme for IP over Bluetooth.In Proc.International Conference on 2002 International Conference on Parallel Processing,ICPPW,2002:51-55.
    [11]梅文华.跳频通信.北京:国防工业出版社.2005.
    [12]Choi H K,Kim S W.Frequency-hopped multiple-access communications with nonorthogonal BFSK in Rayleigh fading channels.IEEE Trans.Commun.,1998,46(11):1478-1483.
    [13]Wilhelmsson L,Zigangirov K S.Analysis of MFSK frequency hopped spread-spectrum multiple access over Rayleigh fading channel.IEEE Trans.Commun.,1998,46(10):1271-1274.
    [14]Kim S H,Kim S W.Frequency-hopped multiple-access communications with multicarrier on-off keying in Rayleigh fading channels.IEEE Trans.Commun., 2000,48( 10): 1692-1701.
    [15] Lam Y, Wittke P H. Frequency-hopped spread-spectrum transmission with band efficient modulations and simplified noncoherent sequence estimation. IEEE Trans. Commun., 1990, 38 (12):2184-2195.
    [16] Lindsey W C, An S H, Vacek Robert M. Performance of M-ary FH-DPSK systems in the presence of jamming. In Proc. IEEE Military Communications Conference, MILCOM '88, San Diego, CA, 1988: 605-609.
    [17] Svensson T, Svensson A. Maxomizing minimum Euclidean distance of spectrally constrained partial response CPM, In Proc. IEEE Vehicular Technology Conference, VTC'01, Rhodes, Greece, 2001:1244-1248.
    [18] Nee R, Prasad R. OFDM wireless multimedia communications. Boston, London:Aetech House, 2000.
    [19] ROhling H, Engels V. Multilevel differential modulation technique with 64-DAPSK. Deutsche Telekon AG, Forschungszentrum Berlin/Darmstadt,DAPSK Workshop, 1995.
    
    [20] Walker J. Mobile information systems. London: Artech House Inc, 1990.
    [21] Doelz G A, Heald E T, Martin D L. Binary data transmission techniques for linear systems. Proc. I.R.E., May 1957,45:656-661.
    [22] Franco G A, Lachs G. An orthogonal coding technique for communications, IRE Int. Conv. Rec, 1961, 8:126-133.
    [23] Bello P A. Selective fading limitations of the Kathrynu modem and some system design considerations. IEEE Trans. Commun. Technol., 1965, COM-13(9):320-333.
    [24] Chang R W. Synthesis of band-limited orthogonal signals for multichannel data transmission. The Bell System Technical Journal, 1966,45(12): 1775—1796.
    [25] Shnidman D A. A generalized Nyquist criterion and an optimum linear receiver fir a pulse modulation system, The Bell System Technical Journal, 1966, 45(11):2163-2177.
    [26] Saltzberg B R. Performance of an efficient parallel data transmission system.IEEE Trans. Commun., 1967, COM-15(6): 805-811.
    [27] Weinstein S B, Ebert P M. Data transmission by frequency division multiplexing using the discrecte Fourier transform, IEEE Trans. Commun., 1971, COM-19(5):628-634.
    [28] Peled A, Ruize A. Frequency domain data transmission using reduced computational complexity algorithm. Proc. IEEE Int. Conf. Acoust Speech Signal Processing. Denver, Co, 1980:964-967.
    [29] Chuang J, Sollenberger N. Beynd 3G: Wideband wireless data access based on OFDM and dynamic packet assignment. IEEE Commun. 2000, 38(1):78—87.
    [30] Hara, S, Prasad R. Multicarrier techniques for 4G mobile communications. Boston:Artech House,2003.
    [31]Fina S D.Comparison of FH-MA communications using OFDM and DS-MA systems for Wideband Radio Access,Proc.ICUPC,Firenze,Ottobre,1998:143-147.
    [32]Xiong F.M-ary Amplitude shift keying OFDM system.IEEE Trans.Commun.2003,51(10):1638-1642.
    [33]Al-Dweik A,Xiong F.Frequency-hopped multiple-access communications with noncoherent M-ary OFDM-ASK.IEEE Trans.Commun.2003,51(1):33-36.
    [34]Al-Dweik A,Xiong F.Frequency-hopped multiple access communications with noncoherent M-ary OFDM in AWGN channels.In Proc.IEEE Military Communications Conference,MILCOM,McLean,VA,2001:1355-1359.
    [35]Kleider J E,Gifford S,Maalouli,G,et al.Synchronization for RF carrier frequency hopped OFDM:Analysis and simulation,In Proc.IEEE Military Communications Conference,MILCOM,Boston,MA,2003:1237-1242.
    [36]Kleider J E,Maalouli,G,Gifford S,et al.Preamble and embedded synchronization for RF cartier frequency-hopped OFDM,IEEE Journal on Selected Areas in Communication,2003,23(5):920-931.
    [37]Pollet T,Bladel M V.BER sensitivity of OFDM systems to carrier frequency offset and Wiener phase noise.IEEE Trans.Commun.,1995,38(2/3/4):191-193
    [38]Speth M,Fechtel M,Fock G,et al.Optimum receiver design for OFDM-based broadband transmission-Part Ⅱ:A case study.IEEE Trans.Commun.,2001,49(4):571-578.
    [39]Athaudage C R N.BER sensitivity of OFDM systems to time synchronization error.In Proc.International Conference on Communication Systems,ICCS,Amsterdam,The Netherlands,2002:42-46.
    [40]Gudmundson M,Anderson P O,Adjacent channel interference in an OFDM system.In Proc.IEEE Vehicular Technology Conference,VTC'96,1996,Atlanta,USA,28(2):918-922.
    [41]Moose P H.A technique for orthogonal frequency division multiplexing frequency offset correction.IEEE Trans.Commun.,1994,42(10):2908-2914.
    [42]Speth M,Fechtel S A,et al.Optimum receiver design for wireless broad-band systems using OFDM-Part Ⅰ.IEEE Trans.Commun.,1999,47(11):1668-1677.
    [43]束锋,程时昕,李重仪等。OFDM无线通信系统的时间和频率同步误差分析,中国科学E辑,信息科学,2005,35(2):135-149.
    [44]Classen F,Meyr H,Frequency synchronization algorithms for OFDM systems suitable for communication over frequency-selective fading channels.In Proc.IEEE Vehicular Technology Conference,VTC'94,Stockholm,Sweden,1994:1655-1659.
    [45]Schmidl M T,Donald C C,Robust frequency and timings ynchronization for OFDM.IEEE Tran.Commun.,1997,45(12):1613-1621.
    [46]Kim Y H,Song I,Yoon S,et al.An efficient frequency offset estimator for OFDM systems and its performance characteristics.IEEE Tran.Vehicular Technology,2001,50(5):1307-1312.
    [47]Zhang Z,Zhao M,Zhou H,et al.Frequency offset estimation with fast acquisition in OFDM system.IEEE Communication Letters,2004,8(3):171-173.
    [48]Seo B S,Kim S C,Park J.Fast coast frequency offset estimation for OFDM systems by using differentially modulated subcarriers,IEEE Trans.On Consumer Electronics,2002,48(4):1075-1081.
    [49]Luise M,Reggiannini R.Carrier frequency acquisition and tracking for OFDM systems.IEEE Trans.Commun.,1996,44(11):1590-1598.
    [50]Luise M,Reggiannini R.Carrier frequency recovery in all-digital modems for burst-mode transmissions.IEEE Trans.Commun.,1995,43(2/3/4):1169-1178.
    [51]Morelli M,Mengali U.An improved frequency offset estimator for OFDM applications.IEEE Communication Letters,1999,3(3):75-77.
    [52]van de Beek J J,Sandell M.ML estimation of time and frequency offset in OFDM systems.IEEE Trans.on Signal Processing,1997,45(7):1800-1805.
    [53]Van de Beek J J,Borjessom P O Boucheret M L,et al.Three non-pilot based time and frequency estimators for OFDM.IEEE Trans.on Signal Processing,2000,80(7):1321-1334.
    [54]Zhao D,Yu Q,Wei J B.A technique of timing and carrier frequency synchronization for windowed OFDM.In Proc.Global Mobile Congress,GMC,Chongqing,China.2005:101-106.
    [55]Hsieh M,Wei C.A low-complexity frame synchronization and frequency offset compensation scheme for OFDM systems over fading channels",IEEE Trans.on Vehicular Technology,1999,48(5):1596-1609.
    [56]van de Beek J J,B"orjesson P O,Boucheret M,A time and frequency synchronization scheme for multiuser OFDM,IEEE Journal on Selected Areas in Communication,1999,17(11):1900-1914.
    [57]Choi Y S,Voltz P J,Cassara F A.ML estimation of carder frequency offset for multicattier signal in Rayleigh fading channels.IEEE Trans.on Vehicular Technology,2001,50(2):644-655.
    [58]Takahashi K,Saba T.A novel symbol synchronization algorithm with reduced influence of ISI for OFDM systems,IEEE GLOBECOM'01,San Antonio,USA,2001:534-528.
    [59]Du Y,Zhang X M.,Zhu P C.A signal reconstruction CFO blind tracking algorithm for OFDM system in multipart channels.In Proc.PIMRC'03.Beijing,China,2003:874-876.
    [60] Shi K, Serpedin E, Ciblat P. Decision-directed fine synchronization in OFDM systems. IEEE Trans. Commun. 2005, 53(3):408~412.
    [61] Keller T, Piazzo L, Mandarini P, et al. Orthogonal frequency division multiplex synchronization techniques for frequency-selective fading channels. IEEE Journal on Selected Areas in Communication, 2001, 19(6):999-1008.
    [62] Luise M, Marselli M, Reggiannini R. Low-complexity blind carrier frequency recovery for OFDM signals over frequency-selective radio channels. IEEE Trans.on Commun., 2002, 50(7): 1182-1188.
    [63] Barbarossa S, Pompili M, Giannakis G B. Channel-independent synchronization of Orthogonal Frequency Division Multiple access systems. IEEE Journal on Selected Areas in Communication, 2002, 20(2):474-486.
    [64] Tureli U, Kivanc D, Liu H. Experimental and analytical studies on a high-resolution OFDM carrier frequency offset estimation. IEEE Trans. on Vehicular Technology, 2001, 50(2):629-643.
    [65] H. Liu and U. Tureli, "A high-efficiency carrier estimator for OFDM communications," IEEE Commun. Lett., vol. 2, no. 4, pp. 104-106, April 1998.
    [66] Tureli U, Liu H, Michael D. OFDM blind carrier estimation: ESPRIT, IEEE Trans. Commun., 2000, 48(9): 1459-1461.
    [67] Chen B. Maximum likelihood estimation of OFDM carrier frequency offset.IEEE Signal processing Letter, 2002, 9(4): 123-126.
    [68] Warrier D, Madhow U. Spectrally efficient noncoherent communication. IEEE Trans. Inf. Theory, 2002, 48(3): 651-668.
    [69] Kuang L L, Lu J H, Zheng J L, et al. Blind time and frequency synchronization scheme for OFDM. in Proc. of the International Conference on Telecommunications, Beijing, China, 2002:68-72.
    [70] Gini F, Giannakis G B. Frequency offset and symbol timing recovery in flat-fading channels: A cyclostationary approach. IEEE Trans. Commun., 199846(3):400-411.
    [71] Van de Beek J J, Edfors O S, Sandell M, et al. On channel estimation in OFDM systems, In Proc. IEEE VTC'95, Piseataway, USA. 1995:815-819.
    [72] Minn H, Bhargava V K. An investigation into time-domain approach for OFDM channel estimation. IEEE trans. Broadcasting, 2000, 46(4):240-248.
    [73] Coleri S, Ergen M, Puri A, et al. Channel estimation techniques based on pilot arrangement in OFDM systems. IEEE Trans. Broadcasting, 2002, 48(3):223-229.
    [74] Morelli M, Mengali U. A comparison of pilot-aided channel estimation methods for OFDM systems. IEEE Trans. Signal Processing, 2001,49(12):3065-3073.
    [75] Li Y. Pilot-symbol-aided channel estimation for OFDM in wireless systems. In Proc. IEEE VTC'99, Houston Texas, 1999:16-19.
    [76] Muck M, de Courville M, Debbah M, et al. A pseudo random postfix OFDM modulator and inherent channel estimation techniques. In Proc. IEEE GLOBECOM'03, San Francisco, USA, 2003:2380-2384.
    [77] Mignone V, Morello A. CD3-OFDM: A novel demodulation scheme for fixed and mobile receivers. IEEE Trans. on Commun., 1996, COM-44(9): 1144-1151.
    [78] Chini A, Wu Y. Filtered decision feedback channel estimation for OFDM based DTV terrestrial broadcasting system. IEEE Trans. Broadcasting, 1998,44(1):2-10.
    [79] Liu H. Yu Y, Hung C, et al. Combining Adaptive Smoothing and Decision-Directed Channel Estimation Schemes for OFDM WLAN Systems, In Proc. IEEE International Symposium on Circuits and Systems, ISCAS, Bangkok Thailand, 2003:149-152.
    [80] Rim M. Optimally combining decision-directed and pilot-symbol-aided channel estimators. IEE Electronics Letters, 2003,19(3):558-560.
    [81] Dempster A P, Laird N M, Rubin D B. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, vol. Series B,39(1), 1977:1-38.
    [82] Wautelet V, Herzet C, Dejohghe A, et al. MMSE-based and EM iterative channel estimation methods. In Proc. IEEE Symposium on Communications and Vehicular Technology, SCVT, Benelux, Eindhoven, The Netherlands, 2003:1-8.
    [83] Chiavaccini E, Vitetta G M, MAP symbol estimation on frequency-flat Rayleigh fading channels via a Bayesian EM algorithm. IEEE Trans. Commun., 2001,49(11):1869-1872.
    [84] Kobayashi M, Caire B J. Successive interference cancellation with SISO decoding and EM channel estimation. IEEE Journ. On Sel. Areas in Commun.,2001, 19(8): 1450-1460.
    [85] Ma X, Kobayashi H, Schwartz S C. EM-Based Channel Estimation Algorithms for OFDM. EURASIP Journal on Applied Signal Processing 2004(10):1460-1477.
    [86] Mazet L, Buzenac-Settineri V, de Courville M, et al. An EM based semi-blind channel estimation algorithm designed for OFDM. In Proc. Record of the 36rd Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA,2002:1642-1646.
    [87] Touati A, Ocloo J M, Duhamel P, et al. Semi-blind channel estimation for OFDM systems via an EM-Block algorithm. EUSIPCO, Vienna, Ausha,September 2004.
    [88] Carlos H. Aldana, Elisabeth de Carvalho and John M. Cioffi, Channel estimation for multicarrier multiple input single output systems using the EM algorithm.IEEE Trans. on Signal Processing, 2003, 51(12):3280-3292._________________
    [89] Wautelet X, Herzet C, Dejonghe A, et al. Comparison of EM-Based algorithms for MIMO channel estimation. IEEE Trans. Commun., 2007, 55(1):216-226.
    [90] Khalighi M A, Boutros J. Modified unbiased EM-based channel estimation for MIMO turbo receivers. In Proc. IEEE Symposium on Signal Processing and Information Technology, ISSPIT, Rome, Italy, 2004:127-131.
    [91] Nissila M, Pasupathy S. Adaptive Bayesian and EM-based detectors for frequency-selective fading channels, IEEE Trans. Commun., 2003, 51(8):1325-1336.
    [92] Gallo A S, Chiavaccini E, Vitetta G M, A novel BEM-based multiuser detector for co-channel signals transmitted over frequency-flat fading channels. In Proc.IEEE GLOBECOM, San Francisco, USA, 2003:241-246.
    [93] Uclao J M, Alberge F, Duhamel P. Semi-blind channel estimation for OFDM systems via an EM-MAP algorithm. In proc. IEEE 6th Workshop on Signal Processing Advances in Wireless Communications, New York, USA,2005:605-609.
    [94] Martin R, Bar-Ness Y. A novel reduced-complexity EM-based receiver with joint iterative channel estimation and decoding for OFDM systems. In Proc. 41st Annual Allerton Conference on Communication, Control and Computing,Monticello, Illinois, 2003.
    [95] Jafarian H Z, Pasupathy S. EM-based recursive estimation of channel parameters.IEEE Trans. Commun., 1999,47(9):1297-1302.
    [96] Li Q, Georghiades C N, Wang X. Blind multiuser detection in uplink CDMA with multipath fading: a sequential EM approach. IEEE Trans. Commun., 2004,52(1): 71-81.
    [97] Al-Naffouri T Y, Paulraj A. A forward-backward Kalman for the estimation of time-variant channels in OFDM. In Proc. 6th IEEE Workshop on Signal Processing Advances in Wireless Communications (SPAWC), New York, USA,2005:670-674.
    [98] Al-Naffouri T Y. An EM-based forward-backward Kalman for the estimation of time-variant channels in OFDM. IEEE Trans. on Signal Processing, 2006,1(11):1-7.
    
    [99] Li C, Roy, S. Subspace based blind channel estimation for OFDM by exploitingvirtual carrier. In Proc. IEEE GLOBECOM, San Antoni, USA, 2001:295 -299.
    [100] Heath R W, Giannakis G B. Exploring input cyclostationarity for blind channel identification in OFDM system. IEEE trans. Signal processing, 1999,47(3):848-856.
    [101] Mostofi, Y, Cox D C, Bahai A. Effect of frame synchronization errors on pilot-aided channel estimation in OFDM: Analysis and solution. The 5th International Symposium on Wireless Personal Multimedia Communications,Honolulu, Hawaii, USA. 2002,3: 1309 -1313.
    [102] Park J, Kim J, Park M, et al. Performance analysis of channel estimation for OFDM systems with residual timing offset. IEEE Trans. Wireless Commun.,2006, 5(7): 1622-1625.
    [103] Park S Y, Seo B S, Kang C C. Effects of frequency offset compensation error on channel estimation for OFDM system under mobile radio channels. ELSEVIER on Signal Processing, 2003, 2621-2630.
    [104] Kim Y H, Lee J H, Kim S C. Joint common phase error and channel estimation for OFDM-based WLANs in the presence of Wiener phase noise and residual frequency offset, In Proc. IEEE ICC'06, Istanbul, Turkey, 2006:3040-3045.
    [105] Larsson E G, Liu G, Li J, et al. Joint symbol timing and channel estimation for OFDM based WLANs. IEEE Commun. Lett., 2001, 5(8):325-327.
    [106] Lim W C, Kannan B, Tjhung, T T. Communications, Joint channel estimation and OFDM synchronization in multipath fading , In Proc. ICC'04, Paris, France,2004:983- 987.
    [107] Minn H, Bhargava V K, Letaief K B. A combined timing and frequency synchronization and channel estimation for OFDM. In Proc. IEEE ICC'04, Paris,France, 2004:872-876.
    [108] Minn H, Bhargava V K, Letaief K B. Channel estimation assisted improved timing offset estimation. In Proc. IEEE ICC'04, Paris, France, 2004:988-992.
    [109] Minn H, Bhargava V K, Letaief K B. A Combined Timing and Frequency Synchronization and Channel Estimation for OFDM. IEEE Trans. Commun.,2006, 54(3):416-422.
    [110] Ma X, Kobayashi H, Schwartz S. C, Joint frequency offset and channel estimation for OFDM, in Proc. IEEE Global Telecommunication Conf., vol. 1,Dec. 2003, pp. 15-19.
    [111] Lee J H, Han J C, Kim S C. Joint carrier frequency synchronization and channel estimation for OFDM systems via the EM algorithm. IEEE Trans. Vehicular Technology, 2006, 55(1): 167-172.
    [112] Cui T, Tellambura C. Joint frequency offset and channel estimation for OFDM systems using pilot symol and virtual carriers. IEEE Trans. Wireless Communcatiom, 2007, 6(4): 1193-1202.
    [113] Robins W P. Phase noise in signal sources. IEE Telecommunication series 9,1991.
    [114] Kroupa V F. Noise properties of PLL systems. IEEE Trans Commun. 1982,30(10):2244-2252.
    [115] Luciano T. On the effect of Wiener phase noise in OFDM system, IEEE Trans.On Commun., 1998,46(5):580-583.
    [116] Robertson P, Kaiser S, Analysis of the effects of phase noise in orthogonal frequency division multiplexing (OFDM) systems, In Proc. ICC'95, Seattle, WA,1995:1652-1657.
    [117] Shentu J, Panta K, and Armstrong J, Effects of Phase Noise on Performance of OFDM Systems Using an ICI Cancellation Scheme, IEEE Trans. Broadcasting,2003,49(2):221-22.
    [118] Zhang J H, Rohling H, Zhang P. Analysis of ICI cancellation scheme in OFDM systems with phase noise. IEEE Trans. Broadcasting, 2004, 50 (2):97-106.
    [119] Armada A G, Calvo M. Phase noise and sub-carrier spacing effects on the performance of an OFDM communication system. IEEE Commun. Lett., 1998,2(1):11-13.
    
    [120] Armada A G. Under the effects of phase noise in orthogonal frequency division multiplexing (OFDM). IEEE Trans. Broadcast., 2001,47(6): 153-159.
    [121] Wu S P, Bar-Ness Y. Performance analysis on the effect of phase noise in OFDM systems. In Proc. ISSTA'02, Pragure, Czech, 2002:133-138.
    [122] Wu S P, Bar-Ness. OFDM system in the presence of phase noise: Consequences and solutions. IEEE Trans. Commun., 2004, 52(11):1988-1996.
    [123] Tomba L, Krzymien W.A, Sensitivity of the MC-CDMA access scheme to carrier phase noise and frequency offset, IEEE Trans Veh Tech, 1999,48(5) :1657-1665.
    [124] Wu S P, Bar-Ness Y. A phase noise suppression algorithm for OFDM-based WLANs, IEEE Commun. Letters, 2002, 6(12):535-537.
    [125] Casas R A, Biracree S L, Youtz A E. Time domain phase noise correction for OFDM signals, IEEE Trans. Broadcasting, 2002,48(3):230 -236.
    [126] Liu G H, Zhu W L, Compensation of phase noise in OFDM systems using an ICI reduction scheme, IEEE Trans. Broadcasting, 2004, 50(4):399-407.
    [127] Onizawa T, Mizoguchi M, Sakata T, et al. A new simple adaptive phase tracking scheme employing phase noise estimation for OFDM signals. In proc. IEEE VTC'02, Birmingham, AL, 2002:1252-1256.
    [128] Liao Y, Chen K. Estimation of statianry phase noise by the autocorrelation of the ICI weighting function in OFDM systems. IEEE Trans. Wireless Communications, 2006, 5(12):3370-3374.
    [129] Wu S P, Liu P, Bar-ness Y. Phase noise estimation and mitigation for OFDM systems. IEEE trans. Wireless Communication, 2006, 5(12):3616-3625.
    [130] Sadowsky J S, Kafedziski V. On the correlation and scatting function of the WSSUS channel for mobile communications. IEEE Trans. Vechicular Technology, 1998, 47(1):270-282.
    [131] Proakis P G. Digtal Communication. 3~(rd) Edition. Beijing: Publishing House of Electronics Industry, 2000.
    [132] Rappaport T S. Wireless communications: Principles and practice. 2~(nd) Edition. Beijing: Publishing House of Electronics Industry, 2004.
    [133] Durgin G D. Space-time wireless channel, Prentice Hall PTR, 2003.
    
    [134] IST-2000-32620 MATRICE D1.3.
    [135] Erceg V, Hari K V S, and Smith M S. Channel models for fixed wireless applications. IEEE 802.16 Broadband Wireless Access Working Group. 2001.
    [136] Kay S M. Fundamentals of statistical signal procedding. Vol.1: Estimation theory.Beijing: Publishing House of Electronics Industry, 2003.
    [137] Brookes M. Matrix reference manual.http://www.ee.ic.ac.uk/hp/staff/dmb/matrix/intro.html
    [138] Morelli M, Mengali U. Carrier-Frequency estimation for transmissions over selective channels. IEEE Trans. Commun., 2000,48(9): 1580-1589.
    [139] Yu E H, Liu H Y, Hsu T E et al. Joint scheme of decision directed channel estimation and weighted-average phase error tracking for OFDM WLAN systems.In Proc. IEEE Asia-Pacific Conference on Circuits and Systems, December 6-9,2004:985-988.
    [140] Charalambous C D, Logothetis A. Maximum-Likelihood parameter estimation from Incomplete Data via the sensitivity equations: The continuous time case.IEEE Trans. Automatic Control, 2000,45(5):928-934.
    [141] Krusevac Z B, Rapajic P B, Kennedy R A. Information Theoretic Approach to Finite State Markov Modeling of Time Varying Channels, In Proc. ISSSTA,Sydney Australia, 2004: 97-101.
    [142] Haykin S S. Adaptive Filter Theory, 4th Edition, Prentice Hall International Editions, 2002.
    [143] Abhayawardhana V S, Wassell I J. Residual frequency offset correction for coherently modulated OFDM systems in wireless communication. In Proc. IEEE VTC'02, Birmingham, USA, 2002:777-781.
    [144] Fechtel S A. OFDM carrier and sampling frequency synchronization and its performance on stationary and mobile channels. IEEE Trans. on Consumer Electronics, 2000, 46(3):438-441.
    [145] Bahl L R, Cocke J, Jelinek E, et al. Optimum decoding of linear codes for minimizing symbol error rate. IEEE Trans. Inform. Theory. 1974, 20(3):284-287.
    [146] Berrou C, Adde P, Angui E, et al. A low complexity soft-output Viterbi decoder architecture. In Proc. IEEE International Communication Conference, ICC'93,Geneva, Switzerland, 1993:737-740.
    [147] Stefanov A, Duman T M. Turbo-coded modulation for systems with transmit and receive antenna diversity over block fading channels: system model, decoding approaches, and practical considerations. IEEE J. Select. Areas Commun. 2001, 19(5): 958-968.
    [148] Hagenauer J, Offer E, and Papke L. Iterative decoding of binary block convolutional codes. IEEE Trans. Inform. Theory. 1996,42(3): 429-445.
    [149] Wu S H, Mitra U, Kuo C J. Graph representation for joint channel estimation and symbol detection. In Proc. IEEE GLOBECOM, Texas, USA, 2004:2329-2333.
    [150] SCHREIBER H H, Self-noise frequency hopping signals, IEEE trans. Commun.Technol., 1969, 588-560.
    [151] Alexovich J R, Gagiardi R M. Effect of PLL frequency synthesizer in FSK frequency-hopped communications, IEEE Trans. Commun. 1989, 37(3):268-276.
    [152] Reinhardt V S. Spurs reduction techniques in direct digital synthesizers. In Proc.IEEE International frequency control symposium. Salt Lake City, 1993:230-235.
    [153] Costa E and Pupolin S, M-QAM-OFDM System Performance in the Presence of a Nonlinear Amplifier and Phase Noise, IEEE Trans. Commun., 2002,50(3):462-472.
    [154] Petrovic D, Rave W, Fettweis G. Intercarrier interference due to phase noise in OFDM-Estimation and suppression, In Proc. IEEE VTC'02, Los Birmingham,USA. 2002:2191-2195.
    [155] Ryu H G, Li Y S, Park J S. Effects of frequency instability caused by phase noise on the performance of the fast FH communication system. IEEE Trans. Vehicular Technology, 2004, 53(5): 1626-1632.
    [156] Pawula R F, Rice S O, Roberts J H. Distribution of the phase angle between two vectors perturbed by Gaussian noise. IEEE Trans On Commun., 1982 ,30(8): 1828-1841.
    [157] Pawula R F. Distribution of the phase angle between two vectors perturbed by Gaussian noise. IEEE Trans On Veh Technol., 2001, 50 (3):576 -583.
    [158] Kaplan G, Ram U. Bound on performance for the noisy reference PSK channel.IEEE Trans. Commun, 1990, 38 (10): 1699- 1707.
    [159] Kam P Y, Teo S, et al. Approximate results for the bit error probability of binary phase shift keying with noisy phase reference. IEEE Trans On Commun, 1993,41(7):1020-1022.
    [160] Edfors O, Sandell M, Beek J V D. et al. OFDM channel estimation by singular value decomposition. IEEE Trans. Commun, 1998,46(6):931-939.
    [161] Kim Y H, Lee J H, Kim S C. Joint common phase error and channel estimation for OFDM-based WLANs in the presence of Wiener phase noise and residual frequency offset. In Proc. IEEE ICC'06, 2006:3040-3045.
    [162] Lin D D, Ryan A. Pacheco, Joint estimation of channel response, frequency offset, and phase noise in OFDM, IEEE Trans. Signal Processing, 2006,54(9):3542-3554.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700